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Abstract. The purpose of this paper is to present the applications of multidimensional

fixed point theorems. For this, we provide two multidimensional fixed point theorems and

then using these theorems, we prove the existence and uniqueness of solution of a nonlinear

systems of matrix equations.

1. Introduction and Preliminaries

The notion of multidimensional Υ-fixed point was introduced by Roldán et.
al. [10, 11] in 2012. This notion covers the concepts of coupled, tripled and
quadruple fixed point (see for instance [1, 3, 6, 7, 9, 12]). Due to wide potential
application of fixed point results in various branches of mathematics, such
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as differential equations, mathematical economics, game theory, dynamics,
optimal control, functional analysis, operator theory etc.

In this work we focus to applications of multidimensional fixed points. More
precisely, we prove the existence and uniqueness of solution of the following
system of matrix equations, in a space of n× n− Hermitian matrices H(n).

Xj = Q+
2m∑
i=1

(−1)i−1A∗iF(Xk](i+j−1))Ai, j ∈ Λ2m = {1, 2, ..., 2m} (1.1)

where Q is a positive matrix, Ai, i ∈ Λ2m are n×n matrices, F : H(n)→ H(n)
is a matrix function and k] : Λ4m → Λ2m is a mapping defined as

k](i) =

{
i, if 1 ≤ i ≤ 2m
i− 2m, if 2m < i ≤ 4m.

Let us briefly recall some necessary notions in order to formulate our main
results. These notions can also be found in [10, 11]. Here and further we
denote by (X, d,�) a partially ordered metric space.

Definition 1.1. An ordered metric space (X, d,�) is called regular if it sat-
isfies the following:

- if {xm} is a nondecreasing sequence and {xm}
d→ x, then xm � x for

all m;

- if {ym} is a nonincreasing sequence and {ym}
d→ y, then ym � y for

all m.

Taking a natural number k ≥ 2 we consider the set Λk = {1, 2, . . . , k}. Let
{A,B} be a partition of Λk that is A∪B = Λk and A∩B = ∅. Using this par-
tition and partially ordered metric space (X, d,�) we define a k-dimensional
partially ordered metric space (Xk,dk,�k) as follows:

• the k-cartesian power of a set X

Xk = X ×X × · · · ×X︸ ︷︷ ︸
k−times

= {(x = (x1, x2, ..., xk)) : |xi ∈ X for all i ∈ Λk};

• the maximum metric dk : Xk ×Xk → [0,+∞), given by

dk(x,y) = max
1≤i≤k

{d(xi, yi)},

where x = (x1, x2, ..., xk),y = (y1, y2, ..., yk) ∈ Xk;
• the partial order w.r.t {A,B} that is, for any x = (x1, x2, ..., xk) and

y = (y1, y2, ..., yk) ∈ Xk we have

x �k y⇔
{
xi � yi, if i ∈ A,
xi � yi, if i ∈ B.
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It is easy to see that if (X, d) is a complete metric space, then (Xk,dk) is also
a complete metric space.

Definition 1.2. We say that a mapping F : Xk → X has the mixed monotone
property w.r.t partition {A,B}, if F is monotone nondecreasing in arguments
of A and monotone nonincreasing in arguments of B.

We define the following set of mappings:

ΩA,B = {σ : Λk → Λk : σ(A) ⊆ A, σ(B) ⊆ B},

Ω′A,B = {σ : Λk → Λk : σ(A) ⊆ B, σ(B) ⊆ A}.
Let Υ = (σ1, σ2, . . . , σk) be k-tuple of mappings of σi : Λk → Λk such that
σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′A,B if i ∈ B. In the sequel we consider only such
kind of k-tuple of mappings.

Definition 1.3. A point x = (x1, x2, . . . , xk) ∈ Xk is called an Υ-fixed point
of a mapping F : Xk → X if

F (xσi(1), xσi(2), . . . , xσi(k)) = xi

for all i ∈ Λk.

2. Roldàn’s multidimensional fixed point theorems

In this section we provide relations between one and multidimensional fixed
point theorems. Define TΥ : Xk → Xk as follows:

TΥ(x1, x2, . . . , xk) =
(
F (xσ1(1), xσ1(2), . . . , xσ1(k)), F (xσ2(1), xσ2(2), . . . , xσ2(k))

. . . , F (xσk(1), xσk(2), . . . , xσk(k))
)

for all x = (x1, x2, . . . , xk) ∈ Xk.

Now we are ready to formulate Roldàn’s theorems.

Theorem 2.1. ([11]) Let (X, d,�) be a complete partially ordered metric
space. Let Υ : Λk → Λk be a k-tuple of mappings Υ = (σ1, σ2, ..., σk) which is
verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′A,B if i ∈ B.

- If F has the mixed monotone property, then TΥ is monotone nonde-
creasing w.r.t �k .

- If F is continuous, then TΥ is also continuous.
- A point x = (x1, x2, . . . , xk) ∈ Xk is a Υ-fixed point of F, if and only

if x = (x1, x2, . . . , xk) is a fixed point of TΥ.

We need the following definition which was introduced by Khan et. al. in
[8].



588 H. Akhadkulov, A.B. Saaban, M.F. Alipiah and A.F. Jameel

Definition 2.2. A function ψ : [0,+∞) → [0,+∞) is called an altering dis-
tance function, if ψ is continuous, monotonically increasing and ψ({0}) = {0}.

Theorem 2.3. ([11]) Let (X, d,�) be a complete partially ordered metric
space. Let Υ : Λk → Λk be a k-tuple of mappings Υ = (σ1, σ2, ..., σk) which
is verifying σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′A,B if i ∈ B. Suppose F : Xk → X
satisfies the following conditions:

(i) There exist altering distance functions ψ, ϕ such that for all x =
(x1, x2, . . . , xk),y = (y1, y2, . . . , yk) ∈ Xk with x �k y

ψ(d(F (x1, x2, . . . , xk), F (y1, y2, . . . , yk))) ≤ ψ(dk(x,y))− ϕ(dk(x,y));

(ii) There exists x0 = (x0
1, x

0
2, . . . , x

0
k) ∈ Xk such that

(a) x0
i � F (x0

σi(1), x
0
σi(2), . . . , x

0
σi(k)) if i ∈ A and

(b) x0
i � F (x0

σi(1), x
0
σi(2), . . . , x

0
σi(k)) if i ∈ B;

(iii) F has the mixed monotone property w.r.t {A,B};
(iv) For all i ∈ Λk, the mapping σi is a permutation of Λk;
(v) (a) F is continuous or

(b) (X, d,�) is regular.

Then F has at least one Υ-fixed point.

Note that, in this theorem, the uniqueness of Υ-fixed point can easily be
proven under the following additional condition.

Remark 2.4. If for any x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk

there exists a z = (z1, z2, . . . , zk) ∈ Xk, such that x �k z and y �k z x∗ =
(x∗1, x

∗
2, . . . , x

∗
k) ∈ Xk. F has a unique Υ-fixed point.

Moreover, in above theorem the authors required to be a permutation of
the mapping σi for all i ∈ Λk (i.e. condition (iv)). It runs out this condition
would not be necessary, if we change the contractive condition of Theorem 2.3.
More precisely, we have:

Theorem 2.5. Let (X, d,�) be a complete partially ordered metric space. Let
Υ : Λk → Λk be a k-tuple of mappings Υ = (σ1, σ2, ..., σk) which is verifying
σi ∈ ΩA,B if i ∈ A and σi ∈ Ω′A,B if i ∈ B. Suppose F : Xk → X be a mapping
which obeys the following conditions:

(i) There exist altering distance functions ψ, θ and a monotonically de-
creasing continuous function ϕ : [0,∞) → R such that for all x =
(x1, x2, . . . , xk),y = (y1, y2, . . . , yk) ∈ Xk with x �k y

ψ(d(F (x1, x2, . . . , xk), F (y1, y2, . . . , yk))) ≤ θ(dk(x,y))− ϕ(dk(x,y))

where θ(0) = ϕ(0) = 0 and ψ(x)− θ(x) + ϕ(x) > 0 for all x > 0;
(ii) There exists x0 = (x0

1, x
0
2, . . . , x

0
k) ∈ Xk such that



On applications of multidimensional fixed point theorems 589

(a) x0
i � F (x0

σi(1), x
0
σi(2), . . . , x

0
σi(k)) if i ∈ A and

(b) x0
i � F (x0

σi(1), x
0
σi(2), . . . , x

0
σi(k)) if i ∈ B;

(iii) F has the mixed monotone property w.r.t {A,B};
(iv) (a) F is continuous or

(b) (X, d,�) is regular.

Then F has at least one Υ-fixed point. Moreover

(v) if for any x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk there exists a
z = (z1, z2, . . . , zk) ∈ Xk, such that x �k z and y �k z, then F has a
unique Υ-fixed point x∗ = (x∗1, x

∗
2, . . . , x

∗
k) ∈ Xk.

Proof. Using condition (i), we get

ψ
(
dk(TΥ(x), TΥ(y)

)
≤ max

i∈Λk

(
θ(max
j∈Λk

d(xσi(j), yσi(j)))− ϕ(max
j∈Λk

d(xσi(j), yσi(j)))
)

≤ θ(dk(x,y))− ϕ(dk(x,y))

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Xk such that x �k y. Thus
we have shown that the mapping TΥ satisfies the contractive condition of
Theorem 2.5 in [12]. The rest of the proof follows exactly same way that of
Theorem 2.5 in [12]. �

3. Main result

In this section we study the existence and uniqueness of solutions of non-
linear systems of matrix equations. We deal on the set of n× n matrices and
we denote this set by M(n). Let P(n) be the set of all n× n positive definite

matrices and P̃(n) be the set of all n × n positive semidefinite matrices. Let
us first define some necessary facts. A partial order � on H(n) defined by

X,Y ∈ H(n), X � Y ⇔ Y −X ∈ P̃(n).

The set H(n) is partially ordered and for every X,Y ∈ H(n) there is a greatest
lower bound and a least upper bound (see [2]). Next we use the following two
norms:

- ‖A‖ =
√
λmax(A∗A) = max

1≤i≤n
si(A) the spectral norm;

- ‖A‖1 = tr
(√

A∗A
)

=
n∑
i=1
si(A) the trace norm, where si(A), i =

1, 2, ..., n are the singular values of A and tr(·) is the trace of a matrix.

Further it is convenient us to use metric induced by the trace norm. Since
H(n) is a finite dimensional linear metric space equipped the metric indicate
by ‖ · ‖1, complete (see Theorem IX.2.2 in [4]). The following lemma plays a
key role for our application.
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Lemma 3.1. ([2]) Let A,B ∈ P̃(n). Then we have

0 ≤ tr(AB) ≤ ‖A‖tr(B)

where ‖ · ‖ is the spectral norm.

3.1. Hypothesis for the system (1.1). We suppose:

(a) A∗2F(Q)A2 +A∗4F(Q)A4 + ...+A∗2mF(Q)A2m � Q;
(b) F is continuous, F(0n) = 0n and preserves the order that is:

X � Y ⇒ F(X) � F(Y )

where 0n is the n× n zero matrix;
(c) there exists a positive number M such that

2m∑
i=1

‖AiA∗i ‖ < M ;

(d) for any X,Y ∈ H(n) such that Y � X we have∣∣∣tr(F(X)−F(Y )
)∣∣∣ ≤ 1

M
exp

(
− 1

tr(X − Y )

)
.

We are ready to formulate our second result.

Theorem 3.2. Under assumptions (a) − (d), the system of equations (1.1)
has a unique solution in H(n).

Proof. Let Λ2m = {1, 2, ..., 2m}. Consider a partition A = {1, 3, ..., 2m − 1}
and B = {2, 4, ..., 2m}. We choose Υ = (σ1, σ2, ..., σ2m) as

Υ =


1 2 . . . 2m− 2 2m− 1 2m
2 3 . . . 2m− 1 2m 1
3 4 . . . 2m 1 2
. . . . . . . . . . . . . . . . . .
2m 1 . . . 2m− 3 2m− 2 2m− 1

 .

Next we consider the operator B : H2m(n)→ H(n)

B
(
X1, X2, ..., X2m

)
= Q+

2m∑
i=1

(−1)i−1A∗iF(Xi)Ai. (3.1)

It is clear that the system (1.1) has a solution if and only if B has a Υ- fixed
point. Therefore, further we show that the operator B satisfies all conditions of
Theorem 2.5. Since F is continuous, B is continuous. Next we show that B has
the mixed monotone property w.r.t {A,B}. By assumption (b) the mapping F
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preserves order, therefore for any X =
(
X1, ..., X2m

)
,Y =

(
Y1, ..., Y2m

)
such

that

X �2m Y⇔
{
Xi � Yi, if i ∈ A,
Xi � Yi, if i ∈ B

we have (
F(X1), ...,F(X2m)

)
�2m

(
F(Y1), ...,F(Y2m)

)
⇔
{
F(Xi) � F(Yi), if i ∈ A,
F(Xi) � F(Yi), if i ∈ B.

Thus

B
(
Y1, Y2..., Y2m

)
− B

(
X1, X2..., X2m

)
=
∑
i∈A

A∗i

(
F(Yi)−F(Xi)

)
Ai +

∑
i∈B

A∗i

(
F(Xi)−F(Yi)

)
Ai

� 0n.

Let
(
Z0

1 , Z
0
2 , ..., Z

0
2m

)
=
(
Q, 0n, ..., 0n

)
. Next we show

Z0
i � B

(
Z0
σi(1), Z

0
σi(2), ..., Z

0
σi(2m)

)
if i ∈ A

and

Z0
i � B

(
Z0
σi(1), Z

0
σi(2), ..., Z

0
σi(2m)

)
if i ∈ B.

Indeed

Q � Q+
∑
i∈A

A∗iF(Q)Ai = B
(
Q, 0n, ..., 0n

)
and by assumption (a) we have

B
(

0n, Q, ..., Q
)

= Q−
∑
i∈B

A∗iF(Q)Ai � 0n.

Further, we show that B satisfies the first condition of Theorem 2.5 with

ψ(x) = e−1/x x > 0, ψ(0) = 0, θ(x) = λψ(x)

for some λ ∈ (0, 1) and ϕ(x) = 0.

Let
(
X1, X2, ..., X2m

)
,
(
Y1, Y2, ..., Y2m

)
∈ H2m(n) such that(

X1, X2, ..., X2m

)
�2m

(
Y1, Y2, ..., Y2m

)
.

Because of B
(
X1, X2, ..., X2m

)
� B

(
Y1, Y2, ..., Y2m

)
we have
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‖B
(
X1, X2, ..., X2m

)
− B

(
Y1, Y2, ..., Y2m

)
‖1

=
∑
i∈A

tr
(
A∗i

(
F(Yi)−F(Xi)

)
Ai

)
+
∑
i∈B

tr
(
A∗i

(
F(Xi)−F(Yi)

)
Ai

)

≤
2m∑
i=1

‖AiA∗i ‖‖F(Xi)−F(Yi)‖1.

(3.2)

Applying assumption (d) we get

2m∑
i=1

‖AiA∗i ‖‖F(Xi)−F(Yi)‖1 ≤ λ exp
(
− 1

max
1≤i≤2m

‖Xi − Yi‖1

)
(3.3)

where

λ =

2m∑
i=1
‖AiA∗i ‖

M
.

Assumption (c) implies λ ∈ (0, 1). It is obvious that exp(−1/x) < x for x > 0.
Taking into account this and inequalities (3.2) and (3.3) we get

exp
(
− 1

‖B
(
X1, X2, ..., X2m

)
− B

(
Y1, Y2, ..., Y2m

)
‖1

)

≤ λ exp
(
− 1

max
1≤i≤2m

‖Xi − Yi‖1

)
. (3.4)

Thus we have shown that the operator B satisfies the conditions (i)− (iv) of

Theorem 2.5. Hence B has a Υ- fixed point
(
X̂1, X̂2, ..., X̂2m

)
∈ H2m(n). On

the other hand, for all X,Y ∈ H(n) there is a greatest lower bound and least
upper bound, hence the conditions of Theorem 2.5 hold. Therefore B has a

unique Υ-fixed point
(
X̂1, X̂2, ..., X̂2m

)
∈ H2m(n) which is also the unique

solutions of the system (1.1), that is

X̂j = Q+
2m∑
i=1

(−1)i−1A∗iF(X̂k](i+j−1))Ai, j = 1, 2, ..., 2m. (3.5)

�

Remark 3.3. Note that Theorem 3.2 generalizes the main result of [5].
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[9] V. Lakshmikantham and L. Ćirić, Coupled fixed point theorems for nonlinear contrac-
tions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349.

[10] A. Roldán, J. Mart́ınez-Moreno, and C. Roldán, Multidimensional fixed point theorems
in partially ordered complete metric spaces, Jour. of Math. Anal. and Appl., 396(2)
(2012), 536–545.

[11] A. Roldán, J. Mart́ınez-Moreno, C. Roldán and E. Karapinar, Some remarks on multi-
dimensional fixed point theorems, Fixed Point Theory, 15(2) (2014), 545–558.

[12] F. Shaddad, M.S. Noorani, S.M. Alsulami and H. Akhadkulov, Coupled point results
in partially ordered metric spaces without compatibility, Fixed Point Theory and Appl.,
(2014), 2014:204.


