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Abstract. Sufficient conditions for existence of fixed point in the setting of generalized cone

metric spaces are obtained and then several common fixed point theorems are proved for

two maps. These results generalize several well known comparable results in the literature.

1. Introduction and Preliminaries.

Recently the study of common fixed points of mappings satisfying certain
contractive conditions has been at the center of vigorous research activity.
Sessa [15] introduced the notion of weakly commuting maps. Jungck [5] coined
the term compatible mappings in order to generalize the concept of weak
commutativity and showed that weakly commuting maps are compatible but
the converse is not true. Afterwards, Jungck [7] defined a pair of self mappings
to be weakly compatible if they commute at their coincidence points. For
details on coincidence point theory, its applications, comparison of different
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contractive conditions and related results, we refer to ( [2, 8, 6] and references
contained therein).

To overcome fundamental flaws in Dhage’s theory of generalized metric
spaces [4], Mustafa and Sims [12] introduced a more appropriate generaliza-
tion of metric spaces, that of G− metric spaces. Afterwards, Mustafa et.
el [11] obtained fixed point theorems for mappings satisfying different con-
tractive conditions in G− metric spaces. Abbas and Rhoades [1] obtained
common fixed point results for noncommuting mappings without continuity
in generalized metric spaces.

Guang and Xian [10] generalized the concept of a metric space, replacing the
set of real numbers by an ordered Banach space and obtained some fixed point
theorems for mappings satisfying different contractive conditions. Rezapour
and Hamlbarani [13] showed the existence of a non normal cone metric space
and obtained some fixed point results in cone metric spaces ( See also [14] ). In
this paper, common fixed point theorems for two pairs of weakly compatible
map, which are more general than R− weakly commuting, and compatible
mappings are obtained, in the setting of non normal generalized cone metric
spaces, without exploiting the notion of continuity. Our results extend [1,
Theorem 2.1-2.6] to a generalized cone metric space.

We first state following definitions which are needed in the sequel.
Let E be a real Banach space. A subset P of E is called a cone if and only

if:
(a) P is closed, non empty and P 6= {0};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;
(c) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y − x ∈ P. A cone P is said to be normal if there is a
number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying the above inequality is called the normal
constant of P, while x� y stands for y − x ∈ intP (interior of P ).

Rezapour [13] proved that there is no normal cones with normal constants
K < 1 and for each k > 1 there are cones with normal constants K > k.

Definition 1.1. [3] Let X be a nonempty set. Suppose that the mapping
G : X ×X ×X → E satisfies:

(a) 0 ≤ G(x, y, z) for all x, y, z ∈ X and G(x, y, z) = 0 if and only if
x = y = z,

(b) 0 < G(x, x, y) for all x, y ∈ X, with x 6= y,
(c) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X, with y 6= z,
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(d) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetric in all three vari-
ables)

(e) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X. (rectangle
inequality)

Then G is called a generalized cone metric on X or G- cone metric on X and
(X,G) is called a G-cone metric space. The concept of a G-cone metric space
is more general than that of G-metric spaces and cone metric spaces.

Definition 1.2. A G-cone metric space X is said to be symmetric if

G(x, y, y) = G(y, x, x) for all x, y ∈ X.
Let X be a G− cone metric space, define dG : X ×X → E by

dG(x, y) = G(x, y, y) +G(y, x, x).

Then it is noted that dG is a cone metric on X. Also note that if X is symmetric
G− cone metric space, then

dG(x, y) = 2G(x, y, y),

for all x, y ∈ X.

Definition 1.3. Let X be a G-cone metric space and {xn} be a sequence
in X. We say that {xn} is:

(a) a Cauchy sequence if, for every c ∈ E with 0� c, there is N such that
for all n,m, l > N, G(xn, xm, xl)� c.

(b) a convergent sequence if, for every c in E with 0� c, there is N such
that for all n,m > N, G(xn, xm, x)� c for some fixed x in X. Here x
is called the limit of a sequence {xn} and is denoted by lim

n→∞
xn = x.

A G-cone metric space X is said to be complete if every Cauchy sequence
in X is convergent in X.

Remark 1.4. [3]

(a) If x� y � z, then x� z.
(b) If x� y ≤ z, then x� z.
(c) If x ≤ y � z, then x� z.
(d) If E is a real Banach space with cone P and if a ≤ λa where a ∈ P

and λ ∈ [0, 1) then a = 0.

For the sake of completeness, we now state following basic facts (Lemmas
1.5 and 1.6) in a generalized cone metric space, proof is an easy exercise.

Lemma 1.5. [3] Let X be a G-cone metric space then the following are
equivalent.

(i) {xn} is converges to x.
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(ii) G(xn, xn, x)� c, as n→∞.
(iii) G(xn, x, x)� c, as n→∞.
(iv) G(xn, xm, x)� c, as m,n→∞.

Lemma 1.6. [3] Let X be a G-cone metric space.

(i) If {xm}, {yn}, and {zl} are sequences in X such that xm → x, yn → y,
and zl → z, then G(xm, yn, zl)→ G(x, y, z) as m, n, l→∞.

(ii) Let {xn} be a sequence in X and x ∈ X. If {xn} converges to x and
{xn} converges to y, then x = y.

(iii) Let {xn} be a sequence in X and x ∈ X. If {xn} converges to x, then
G(xm, xn, x)→ 0 as m, n→∞.

(iv) Let {xn} be a sequence in X and x ∈ X. If {xn} converges to x ∈ X,
then {xn} is a Cauchy sequence.

(v) Let {xn} be a sequence in X. If {xn} is a Cauchy sequence in X, then
G(xm, xn, xl)→ 0, as m,n, l→∞.

Definition 1.7. Let f and g be self maps of a set X. If u = fx = gx for
some x in X, then x is called a coincidence point of f and g, and u is called a
point of coincidence of f and g.

Lemma 1.8. ([1]) Let f and g be weakly compatible self maps of a set
X. If f and g have a unique point of coincidence w = fx = gx, then w is the
unique common fixed point of f and g.

Definition 1.9. Let (X, d) is said be a cone metric space and f be a mapping
of X into itself. An orbit of f at the point x in X is the set

O(x, f) = {x, fx, f2x, ..., fnx, ...}.
A cone metric space (X, d) is said to be f -orbitally complete if f is self-

mapping of X and if any Cauchy subsequence {fnix} in orbit O(x, f), x ∈ X,
converges in X.
A mapping f : X → X is said to be orbitally continuous if fnix → p ⇒
f(fnix)→ fp as i→∞.

2. Common Fixed Points.

In this section we first obtain a fixed point theorem for a single map, and
then obtain coincidence and common fixed point theorems for mappings de-
fined on a G-cone metric space.

Theorem 2.1. Let X be a complete G-cone metric space. If there exists a
point u ∈ X and a λ ∈ [0, 1) with O(u) complete and

G(fx, fy, fy) ≤ λG(x, y, z), (2.1)
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for each x, z = y = fx ∈ O(u), then {fnu} converges to some point p ∈ X
and, for all m,n ∈ N,m > n,

G(xn, xm, xm) ≤ λn

1− λ
G(u, fu, fu),

for n ≥ 1. Further, if f is orbitally continuous at p or if (2.1) holds for all

x ∈ O(u), then p is a fixed point of f.

Proof. If G is symmetric, then

dG(x, y) = 2G(x, y, y),

(2.1) becomes

dG(fx, fy) ≤ λdG(x, y)

for all y ∈ O(x), and the result follows from [14, Theorem 2.3]. Suppose that
G is not symmetric. With xn = fnu, one has from (2.1), that

G(xn+1, xn+2, xn+2) ≤ λG(xn, xn+1, xn+1)

≤ · · ·
≤ λnG(u, fu, fu).

For all m,n ∈ N, m > n, it follows that

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+ · · ·+G(xm−1, xm, xm)

≤ (λn + λn+1 + · · ·+ λm−1)G(u, fu, fu)

≤ λn

1− λ
G(u, fu, fu).

Let 0 � c be given. Choose δ > 0 such that c + Nδ(0) ⊆ P, where
Nδ(0) = {y ∈ E : ‖y‖ < δ}. Also, choose a natural number N1 such that
λn

1− λ
G(u, fu, fu) ∈ Nδ(0), for all m ≥ N1. Then,

λn

1− λ
G(u, fu, fu)� c, for

all m ≥ N1. So we have G(xn, xm, xm) � c, for all m > n. Thus {xn} is a
Cauchy sequence, so there exist p ∈ X such that {xn} converges to p.

If f is orbitally continuous at x = p, then lim fnu = p implies that
lim(fn+1u) = fp, and p is a fixed point of f . If (2.1) holds for all x, y =

z ∈ O(u), then we have

G(fp, fn+1u, fn+1u) ≤ λG(p, fnu, fnu)� c,

whenever n > N . Thus G(fp, fn+1u, fn+1u) � c. By Lemma 1.6(ii) implies
fp = p. �
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Example 2.2. Let X = [0, 1] and

G(x, y, z) = (|x− y|+ |y − z|+ |z − x| , α(|x− y|+ |y − z|+ |z − x|)),

where α is a positive constant, be a G−cone metric on X. Define f : X → X

as f(x) =
x

2
. Take u = 1

2 ∈ X, then O(u) = {0, 12 ,
1
4 ,

1
8 , .....} and it may be

verified that G(fx, fy, fy) ≤ λG(x, y, z) for each x, z = y = fx ∈ O(u), where

λ =
1

2
. Obviously {fnu} converges to 0 and f is orbitally continuous at 0 ∈ X.

Moreover, 0 is a fixed point of f.

Theorem 2.3. Let X be a G−cone metric space. Suppose that the mappings
f, g : X −→ X satisfy one of the following condition

G(fx, fy, fz) ≤ aG(gx, gy, gz) + bG(gx, fx, fx)

+cG(gy, fy, fy) + dG(gz, fz, fz), (2.2)

or

G(fx, fy, fz) ≤ aG(gx, gy, gz) + bG(gx, gx, fx)

+cG(gy, gy, fy) + dG(gz, gz, fz), (2.3)

for all x, y, z ∈ X, where a+ b+ c+d < 1. If the range of g contains the range
of f and g(X) is complete subspace of X, then f and g have a unique point of
coincidence in X. Moreover, if f and g are weakly compatible, f and g have
a unique common fixed point.

Proof. Suppose that f and g satisfy condition (2.2). Then for all x, y ∈ X we
have

G(fx, fy, fy) ≤ aG(gx, gy, gy) + bG(gx, fx, fx) + (c+ d)G(gy, fy, fy).

Also,

G(fy, fx, fx) ≤ aG(gy, gx, gx) + bG(gy, fy, fy) + (c+ d)G(gx, fx, fx),

If G is symmetric, then adding above two given inequalities we have

dG(fx, fy) ≤ adG(gx, gy) +
b+ c+ d

2
dG(fx, gx) +

b+ c+ d

2
dG(gy, fy). (2.4)

Since a+ b+ c+ d < 1, the existence and uniqueness of a common fixed point
follows from [9, Theorem 2.8]. However, if (X,G) is not symmetric, then (2.4)
gives no information about the maps, as in this case, the contractive constant
need not be less that 1. In this case, let x0 be an arbitrary point in X. Choose
a point x1 in X such that f(x0) = g(x1). This can be done, since the range of
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g contains the range of f. Continuing this process, having chosen xn in X, we
obtain an xn+1 in X such that f(xn) = g(xn+1). Then

G(gxn, gxn+1, gxn+1) = G(fxn−1, fxn, fxn)

≤ aG(gxn−1, gxn, gxn) + bG(gxn−1, fxn−1, fxn−1)

+(c+ d)G(gxn, fxn, fxn),

that is,

G(gxn, gxn+1, gxn+1) ≤ (a+ b)G(gxn−1, gxn, gxn)

+(c+ d)G(gxn, gxn+1, gxn+1),

which implies that

G(gxn, gxn+1, gxn+1) ≤ kG(gxn−1, gxn, gxn),

where, 0 ≤ k =
a+ b

1− c− d
< 1. Continuing the above process, we obtain

G(gxn, gxn+1, gxn+1) ≤ knG(gx0, gx1, gx1).

Then, for m > n,

G(gxn, gxm, gxm) ≤ G(gxn, gxn+1, gxn+1) +G(gxn+1, gxn+2, gxn+2)

+G(gxn+2, gxn+3, gxn+3) + ...+G(gxm−1, gxm, gxm)

≤ (kn + kn+1 + ...+ km−1)G(gx0, gx1, gx1)

=
kn

1− k
G(gx0, gx1, gx1).

Let 0 � c be given. Choose δ > 0 such that c + Nδ(0) ⊆ P , where Nδ(0) =
{y ∈ E : ‖y‖ < δ}. Also, choose a natural number N1 such that

kn

1− k
G(gx0, gx1, gx1) ∈ Nδ(0),

for all n ≥ N1. Then,
kn

1− k
G(gx0, gx1, gx1) � c, for all n ≥ N1. So we have

G(gxn, gxm, gxm) � c, for all m > n. Hence {gxn} is a Cauchy sequence.
Since g(X) is complete, there exists, a point q such that gxn → q as n→∞.
Consequently, we can find a point p in X such that g(p) = q. We claim that
f(p) = g(p). For this consider

d(gxn, fp, fp) = G(fxn−1, fp, fp)

≤ aG(gxn−1, gp, gp) + bG(gxn−1, fxn−1, fxx−1)

+(c+ d)G(gp, fp, fp),

which, on taking the limit as n→∞ implies that

G(gp, fp, fp) ≤ (c+ d)G(gp, fp, fp),
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Remark 1.4(d) implies that G(gp, fp, fp) = 0, and hence f(p) = g(p). Hence
f and g have a coincidence point in X.

Assume that f and g are weakly compatible. Now we show that f and g
have a unique point of coincidence. For this, suppose that there exist a point
q in X such that f(q) = g(q). We need to prove g(p) = g(q). For this

G(gq, gp, gp) = G(fq, fp, fp)

≤ aG(gq, gp, gp) + bG(gq, fq, fq)

+(c+ d)G(gp, fp, fp),

that is,
G(gq, gp, gp) ≤ aG(gq, gp, gp).

Hence by Remarks 1.4(d) G(gq, gp, gp) = 0, and gq = gp. From Lemma 1.8, f
and g have a unique common fixed point. The proof using (2.3) is similar. �

Theorem 2.4. Let X be a G− cone metric space and f, g : X → X, be two
mappings such that for some m ∈ N, satisfies one of the following condition

G(fmx, fmy, fmz) ≤ aG(gmx, gmy, gmz) + bG(gmx, fmx, fmx)

+cG(gmy, fmy, fmy) + dG(gmz, fmz, fmz),(2.5)

or

G(fmx, fmy, fmz) ≤ aG(gmx, gmy, gmz) + bG(gmx, gmx, fmx)

+cG(gmy, gmy, fmy) + dG(gmz, gmz, fmz),(2.6)

for all x, y, z ∈ X, where a+ b+ c+d < 1. If the range of g contains the range
of f and g(X) is complete subspace of X, then f and g have a unique point of
coincidence in X. Moreover, if f and g are weakly compatible, f and g have
a unique common fixed point.

Proof. It follows from Theorem 2.3, that fm and gm have a unique common
fixed point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), and g(p) =
g(gm(p)) = gm+1(p) = gm(g(p)) implies that f(p) and g(p) are also fixed
points for fm and gm. Hence f(p) = g(p) = p. �

Theorem 2.5. Let X be a G−cone metric space. Suppose that the mappings
f, g : X −→ X satisfy either

G(fx, fy, fz) ≤ ku(f,g)(x, y, z),
where

u(f,g)(x, y, z) ∈ {G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz)}, (2.7)

or

u(f,g)(x, y, z) ∈ {G(gx, gx, fx), G(gy, gy, fy), G(gz, gz, fz)}, (2.8)
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for all x, y, z ∈ X where 0 ≤ k < 1. If the range of g contains the range of f
and g(X) is a complete subspace of X, then f and g have a unique point of
coincidence in X. Moreover if f and g are weakly compatible, f and g have a
unique common fixed point.

Proof. Suppose f and g satisfy condition (2.7). Then for all x, y ∈ X, we have

G(fx, fy, fy) ≤ ku(f,g)(x, y, y),

where

u(f,g)(x, y, y) ∈ {G(gx, fx, fx), G(gy, fy, fy), G(gy, fy, fy)}
= {G(gx, fx, fx), G(gy, fy, fy)}. (2.9)

Now interchanging the role of x and y we obtain

G(fy, fx, fx) ≤ ku(f,g)(y, x, x),

where

u(f,g)(y, x, x) ∈ {G(gy, fy, fy), G(gx, fx, fx), G(gx, fx, fx)}
= {G(gy, fy, fy), G(gx, fx, fx)}. (2.10)

If G is symmetric, then adding above two given inequalities we have

dG(fx, fy) ≤ k[u(f,g)(x, y, y) + u(f,g)(y, x, x)].

Now four cases arises:

(1) If u(f,g)(x, y, y) = G(gx, fx, fx) and u(f,g)(y, x, x) = G(gy, fy, fy),
then

dG(fx, fy) ≤ k[G(gx, fx, fx) +G(gy, fy, fy)]

=
k

2
[dG(gx, fx) + dG(gy, fy)].

Since k < 1, the existence and uniqueness of a common fixed point
follows from [9, Corollary 2.4].

(2) If u(f,g)(x, y, y) = G(gx, fx, fx) and u(f,g)(y, x, x) = G(gx, fx, fx),
then

dG(fx, fy) ≤ k[G(gx, fx, fx) +G(gx, fx, fx)]

= kdG(gx, fx).

Since k < 1, the existence and uniqueness of a common fixed point
follows from [9, Corollary 2.7].

(3) If u(f,g)(x, y, y) = G(gy, fy, fy) and u(f,g)(y, x, x) = G(gy, fy, fy),
then

dG(fx, fy) ≤ k[G(gy, fy, fy) +G(gy, fy, fy)]

= kdG(gy, fy).
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Since k < 1, the existence and uniqueness of a common fixed point
follows from [9, Corollary 2.7].

(4) If u(f,g)(x, y, y) = G(gy, fy, fy) and u(f,g)(y, x, x) = G(gy, fy, fy),
then

dG(fx, fy) ≤ k[G(gy, fy, fy) +G(gx, fx, fx)]

=
k

2
[dG(gy, fy) + dG(gx, fx)].

Since k < 1, the existence and uniqueness of a common fixed point
follows from [9, Corollary 2.4].

However, if (X,G) is not symmetric, then (2.9) gives no information about
the maps, as in this case, the contractive constant need not be less that 1. In
this case, let x0 be an arbitrary point in X. Choose a point x1 in X such that
f(x0) = g(x1). This can be done since the range of g contains the range of
f. Continuing this process, having chosen xn in X, we obtain xn+1 in X such
that f(xn) = g(xn+1). From (2.9),

G(gxn, gxn+1, gxn+1) = G(fxn−1, fxn, fxn)

≤ ku(f,g)(xn−1, xn, xn)

where

u(f,g)(xn−1, xn, xn) ∈ {G(gxn−1, gxn, gxn), G(gxn, gxn+1, gxn+1)}.

If u(f,g)(xn−1, xn, xn) = G(gxn, gxn+1, gxn+1), then

G(gxn, gxn+1, gxn+1) ≤ kG(gxn, gxn+1, gxn+1).

Remark 1.4(d), implies gxn = gxn+1 for each n, then since gxn+1 = fxn, f and
g have a coincidence point. Now if u(f,g)(xn−1, xn, xn) = G(gxn−1, gxn, gxn),
then

G(gxn, gxn+1, gxn+1) ≤ kG(gxn−1, gxn, gxn),

and, continuing the above process, we obtain

G(gxn, gxn+1, gxn+1) ≤ knG(gx0, gx1, gx1).

As in the case of Theorem 2.3, it follows that {gxn} is a Cauchy sequence and
hence converges to a point q in g(X). Choose p so that g(p) = q. Suppose that
f(p) 6= g(q). Then

G(gxn, fp, fp) = G(fxn−1, fp, fp)

≤ ku(f,g)(xn−1, p, p),

where

u(f,g)(xn−1, p, p) ∈ {G(gxn−1, fxn−1, fxn−1), G(gp, fp, fp), G(gp, fp, fp)}
= {G(gxn−1, fxn−1, fxn−1), G(gp, fp, fp)}.
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If u(f,g)(xn−1, p, p) = G(gxn−1, fxn−1, fxn−1), then

G(gxn, fp, fp) ≤ kG(gxn−1, fxn−1, fxn−1),

which, on taking the limit as n→∞, implies that

G(gp, fp, fp) ≤ kG(gp, fp, fp),

by using Remark 1.4(d), we get gp = fp.Also if u(f,g)(xn−1, p, p) = G(gp, fp, fp),
then again on taking the limit as n→∞, implies that

G(gp, fp, fp) ≤ kG(gp, fp, fp),

by same above argument, we have f(p) = g(p). Now we show that f and g
have a unique point of coincidence. Assume that there exists another point q
in X such that fq = gq. Now for

G(gq, gp, gp) = G(fq, fp, fp) ≤ ku(f,g)(q, p, p),
where

u(f,g)(q, p, p) ∈ {G(gq, fq, fq), G(gp, fp, fp), G(gp, fp, fp)} = {0}.
Hence G(gq, gp, gp) ≤ 0 implies that −G(gp, gp, gq) ∈ P. But G(gp, gp, gq) ≥
0, therefore G(gp, gp, gq) = 0, and hence gq = gp. From Lemma 1.8, f and g
have a unique common fixed point. The proof using (2.8) is similar. �

Corollary 2.6. Let X be a G−cone metric space and f, g : X → X be two
mappings such that for some m ∈ N, satisfies

G(fmx, fmy, fmz) ≤ hu(f,g)(x, y, z), (2.11)

where

u(f,g)(x, y, z) ∈ {G(gmx, gmx, gmx), G(gmy, fmy, fmy), G(gmz, fmz, fmz)},

for all x, y, z ∈ X, where 0 ≤ h <
1

2
. If the range of g contains the range of

f and g(X) is a complete subspace of X, then f and g have a coincidence
point in X. Moreover if f and g are weakly compatible, f and g have a unique
common fixed point.

Theorem 2.7. Let X be a G− cone metric space. Suppose that the mappings
f, g : X −→ X satisfy one of the following conditions

G(fx, fy, fy) ≤ a{G(gx, fy, fy) +G(gy, fx, fx)}, (2.12)

or
G(fx, fy, fy) ≤ a{G(gx, gx, fy) +G(gy, gy, fx)}, (2.13)

for all x, y ∈ X, where 0 ≤ a <
1

2
. If the range of g contains the range of f

and g(X) is a complete subspace of X, then f and g have a unique point of
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coincidence in X. Moreover, if f and g are weakly compatible, then f and g
have a unique common fixed point.

Proof. If X is symmetric, then from (2.12), we have

G(fy, fx, fx) ≤ a{G(gy, fx, fx) +G(gx, fy, fy)}. (2.14)

Adding (2.12) and (2.14), we have

dG(fx, fy) ≤ a{dG(gx, fy) + dG(fx, gy)}. (2.15)

Since a <
1

2
, the existence and uniqueness of a common fixed point follows

from [9, Corollary 2.5]. However, if X is not symmetric, then (2.12) gives no
information about the maps, as in this case, the contractive constant need not
be less that 1. In this case, let x0 be an arbitrary point in X. Choose {xn} as
in Theorem 2.3. Then

G(gxn, gxn+1, gxn+1) = G(fxn−1, fxn, fxn)

≤ a{G(gxn−1, fxn, fxn) +G(gxn, fxn−1, fxn−1)},
= aG(gxn−1, gxn+1, gxn+1)

≤ aG(gxn−1, gxn, gxn) + aG(gxn, gxn+1, gxn+1),

it gives,

G(gxn, gxn+1, gxn+1) ≤ kG(gxn−1, gxn, gxn),

where k =
a

1− a
, 0 ≤ k < 1. Continuing the above process we obtain

G(gxn, gxn+1, gxn+1) ≤ knG(gx0, gx1, gx1).

Using the same argument as that of Theorem 2.3 yields the result. �

Example 2.8. Let X = [0, 1] and

G(x, y, z) = (|x− y|+ |y − z|+ |z − x| , α (|x− y|+ |y − z|+ |z − x|)),

for α ≥ 0, be a G−cone metric on X. Define f, g : X → X by f(x) =
x

8
, and

g(x) =
x

2
.

Note that

G(gx, fy, fy) =
1

2
(
∣∣∣x− y

4

∣∣∣ , α ∣∣∣x− y

4

∣∣∣),
and

G(gy, fx, fx) =
1

2
(
∣∣∣y − x

4

∣∣∣ , α ∣∣∣y − x

4

∣∣∣).
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Now

G(fx, fy, fy) =
1

8
(|x− y| , α |x− y|)

≤ 1

8
(
∣∣∣x− y

4

∣∣∣ +
∣∣∣y − x

4

∣∣∣ , α(
∣∣∣x− y

4

∣∣∣ +
∣∣∣y − x

4

∣∣∣))
=

1

4
(
1

2

∣∣∣x− y

4

∣∣∣ +
1

2

∣∣∣y − x

4

∣∣∣ , α(
1

2

∣∣∣x− y

4

∣∣∣ +
1

2

∣∣∣y − x

4

∣∣∣))
=

1

4
{G(gx, fy, fy) +G(gy, fx, fx)} .

Therefore

G(fx, fy, fy) ≤ a {G(gx, fy, fy) +G(gy, fx, fx)} ,

is satisfied for all x, y ∈ X, where a =
1

4
<

1

2
. Also, range of g contains the

range of f, g(X) is a complete subset of X and f and g are weakly compatible.
Therefore, f and g satisfy all conditions of Theorem 2.7. Here, 0 is a unique
common fixed point of f and g.
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