Nonlinear Functional Analysis and Applications Vol. 15, No. 2 (2010), pp. 247-260

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2010 Kyungnam University Press

SOME GENERALIZATIONS OF POLYNOMIAL INEQUALITIES

A. Liman¹, W. M. Shah² and Shamim Ahmad Bhat³

¹Department of Mathematics, National Institute of Technology, Kashmir, 190006, India e-mail: abliman22@yahoo.co.in

²P.G.Department of Mathematics, Kashmir University, 190006, India e-mail: wmshah@rediffmail.com

³Vinayaka Mission Research Foundation, Deemed University, Tamilnadu, 636308, India e-mail: bhatshamim@gmail.com

Abstract. In this paper, we investigate the dependence of $\left\{\int_{0}^{2\pi} |P(Re^{i\theta}) - \beta P(re^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}$ on $\left\{\int\limits_{0}^{2\pi} |P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}$ for each real or complex number β with $\beta \leq 1$, $R > r \geq 1$ and $q > 0$ and present compact generalizations of some well-known polynomial inequalities.

1. INTRODUCTION

Let P_n be the class of polynomials $P(z) = \sum_{n=1}^{\infty}$ $j=0$ $a_j z^j$ of degree at most n.

Then

$$
\left\{\int_{0}^{2\pi} |P'(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \le n \left\{\int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}, q \ge 1
$$
 (1)

and

$$
\left\{\int_{0}^{2\pi} |P(Re^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \le R^n \left\{\int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}, R \ge 1, q > 0. \tag{2}
$$

⁰Received February 20, 2009. Revised October 18, 2009.

⁰200 Mathematics subject classification: 26D05, 30D15, 30A10, 26A48.

 0 Keywords: Polynomials, growth, integral mean estimates, zeros.

Inequality (1) is due to Zygmund [17], whereas inequality (2) is a simple consequence of a result due to Hardy [7]. Arestove [2] verified that (1) remains true for $0 < q < 1$ as well. If we make $q \to \infty$ in inequalities (1) and (2) and note that

$$
\lim_{q \to \infty} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{\frac{1}{q}} = \max_{|z|=1} |P(z)|,
$$

we get

$$
\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)| \tag{3}
$$

and

$$
\max_{|z|=R>1} |P(z)| \le R^n \max_{|z|=1} |P(z)|. \tag{4}
$$

Inequality (3) is an immediate consequence of a famous results due to Bernstein on the derivative of a trigonometric polynomial (for reference see [9, p.531], [10], [16]), whereas inequality (4) is a simple deduction from the maximum modulus principle (see [9, p. 346], [11] or [13, p. 158 problem 269]).

Inequalities (1) and (2) can be sharpened, if we restrict ourselves to the class of polynomials having no zeros in $|z| < 1$. In such a case, we have

$$
\left\{\frac{1}{2\pi}\int_{0}^{2\pi}|P'(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \le n \ A_q \left\{\frac{1}{2\pi}\int_{0}^{2\pi}|P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}, \ q \ge 1 \tag{5}
$$

where

$$
A_q = \left\{ \frac{1}{2\pi} \int\limits_0^{2\pi} |1 + e^{i\alpha}|^q d\alpha \right\}^{\frac{-1}{q}},
$$

and

$$
\left\{\frac{1}{2\pi}\int_{0}^{2\pi}|P(Re^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \le B_q \left\{\frac{1}{2\pi}\int_{0}^{2\pi}|P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}, \ q \ge 1,
$$
 (6)

where

$$
B_{q} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |1 + R^{n} e^{i\alpha}|^{q} d\alpha \right\}^{\frac{1}{q}} / \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |1 + e^{i\alpha}|^{q} d\alpha \right\}^{\frac{1}{q}}.
$$

Inequality (5) is due to deBrujin [6, Theorem 13], whereas inequality (6) was proved by Boas and Rahman [5]. Both these inequalities were latter extended by Rahman and Schmeisser [14] for $0 < q < 1$ as well.

Aziz and Rather [3] investigated the dependence of

$$
\left\{\int\limits_{0}^{2\pi}|P(Re^{i\theta})-\beta P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}
$$

on $\begin{cases} 2\pi \\ 1 \end{cases}$ 0 $|P(e^{i\theta})|^q d\theta\Big\}^{\frac{1}{q}}$ for $q \geq 0$ and proved the following compact generalization of (1) and (2) .

Theorem A. If $P \in P_n$, then for every real or complex number β with $|\beta| \leq 1$, $R \geq 1$ and $q > 0$,

$$
\left\{\int\limits_{0}^{2\pi} |P(Re^{i\theta}) - \beta P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \leq |R^n - \beta| \left\{\int\limits_{0}^{2\pi} |P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}.
$$
 (7)

In this paper, we first prove the following more general result which also yields a compact generalization of inequalities (1) and (2).

Theorem 1. If $P \in P_n$, then for every real or complex number β with $|\beta| \leq 1$, $R \geq r \geq 1$ and $q > 0$,

$$
\left\{\int\limits_{0}^{2\pi}|P(Re^{i\theta}) - \beta P(re^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \leq |R^n - \beta r^n| \left\{\int\limits_{0}^{2\pi}|P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}.
$$
 (8)

The result is best possible and equality in (8) holds for $P(z) = \alpha z^n$, $\alpha \neq 0$.

Remark. For $r = 1$, Theorem 1 reduces to Theorem A, for $\beta = 0$, it reduces to inequality (2) and for $\beta = 1$, we get the following:

Corollary 1. If $P \in P_n$, then for $R \ge r \ge 1$ and $q > 0$,

$$
\left\{\int\limits_{0}^{2\pi}|P(Re^{i\theta}) - P(re^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \leq |R^n - r^n| \left\{\int\limits_{0}^{2\pi}|P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}.
$$
 (9)

For $r = 1$, Corollary 1 reduces to a result proved by Aziz and Rather [3, inequality (8)].

If we divide the two sides of (8) by $R - r$ and make $R \rightarrow r$, we get the following:

Corollary 2. If $P \in P_n$, then for $r \geq 1$ and $q > 0$,

$$
\int_{0}^{2\pi} |P'(re^{i\theta})|^q d\theta \leq nr^{n-1} \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta.
$$

By taking $r = 1$ in Corollary 2, we get Zygmund's inequality for every $q > 0$.

If we let $q \to \infty$ in (8), we immediately get the following result which is a compact generalization of inequalities (3) and (4).

Corollary 3. If $P \in P_n$, then for every real or complex number β with $|\beta| \leq 1$ and $R \ge r \ge 1$, we have

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le |R^n - \beta r^n| \max_{|z|=1} |P(z)|.
$$
 (10)

The result is sharp and equality in (10) holds for $P(z) = \alpha z^n$, $\alpha \neq 0$.

For polynomials $P \in P_n$ having no zeros in $|z| < 1$, we next prove the following interesting result which among other things includes deBruijn's theorem (inequality (5)) and a result of Boas and Rahman (inequality (6)) as special cases.

Theorem 2. If $P \in P_n$ and $P(z)$ does not vanish in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$, $R \geq r \geq 1$ and $q > 0$,

$$
\left\{\int_{0}^{2\pi} |P(Re^{i\theta}) - \beta P(re^{i\theta})|^q d\theta \right\}^{\frac{1}{q}}
$$

$$
\leq \frac{\left\{\int_{0}^{2\pi} |(R^n - \beta r^n)e^{i\alpha} + (1 - \beta)|^q d\alpha \right\}^{\frac{1}{q}}}{\left\{\int_{0}^{2\pi} |1 + e^{i\alpha}|^q d\alpha \right\}^{\frac{1}{q}}} \left\{\int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta \right\}^{\frac{1}{q}}.
$$
 (11)

For $\beta = 0$, Theorem 2 reduces to a result due to Boas and Rahman (inequality (6)) for each $q > 1$. A variety of interesting results can be easily deduced from Theorem 2. For example the following Corollary which is an improvement of inequality (8) for polynomials $P \in P_n$ having no zeros in $|z| < 1$, immediately follows from Theorem 2 by taking $\beta = 1$.

Corollary 4. If $P \in P_n$ and $P(z)$ does not vanish in $|z| < 1$, then for $R \ge r \ge 1$ and $q > 0$, we have

$$
\left\{\int_{0}^{2\pi} |P(Re^{i\theta}) - P(re^{i\theta})|^q d\theta\right\}^{\frac{1}{q}} \le \frac{R^n - r^n}{\left\{\frac{2\pi}{2\pi} \int_{0}^{2\pi} |1 + e^{i\alpha}|^q d\alpha\right\}^{\frac{1}{q}}} \left\{\int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta\right\}^{\frac{1}{q}}.
$$
\n(12)

For $r = 1$, Theorem 2 reduces to a result earlier proved by Aziz and Rather [3, Theorem 4].

Again, by making $q \to \infty$ in (11), we immediately get the following:

Corollary 5. If $P \in P_n$ and $P(z)$ does not vanish in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$ and $R \geq r \geq 1$,

$$
\max_{|z|=1} |P(Rz) - \beta P(rz)| \le \frac{|(R^n - \beta r^n) + (1 - \beta)|}{2} \max_{|z|=1} |P(z)|. \tag{13}
$$

The result is sharp and equality in (13) holds for $P(z) = zⁿ + 1$.

Taking $\beta = 1$ and dividing the two sides of inequality (13) by $R - r$ and letting $R \to r$, we get

$$
\max_{|z|=1} |P'(rz)| \le \frac{nr^{n-1}}{2} \max_{|z|=1} |P(z)|, \ r \ge 1.
$$
 (14)

For $r = 1$, inequality (14) was conjectured by Erdös and later verified by Lax [8]. Also, if we take $\beta = 0$ in (13), we get a result proved by Ankeny and Rivilin [1].

2. Lemmas

For the proofs of these theorems, we need the following lemmas:

The first lemma is based on a result of Arestov, which we shall describe first.

For
$$
\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n) \in C^{n+1}
$$
 and $P(z) = \sum_{j=0}^n a_j z^j$, we define

$$
\Lambda_{\gamma} P(z) = \sum_{j=0}^n \gamma_j a_j z^j.
$$

The operator Λ_{γ} is said to be admissible if it preserves one of the following properties :

- (i) $P(z)$ has all its zeros in $\{z \in C : |z| \leq 1\},\$
- (ii) $P(z)$ has all its zeros in $\{z \in C : |z| \geq 1\}.$

The result of Arestov [2, Theorem 4] may now be stated as follows:

Lemma 1. For polynomials $P(z)$ of degree at most n and each admissible operator Λ_{γ} ,

$$
\bigg\{\int_0^{2\pi}\left|\Lambda_\gamma P(e^{i\theta})\right|^q d\theta\bigg\}^{\frac{1}{q}}\leq C(\gamma,n)\bigg\{\int_0^{2\pi}\left|P(e^{i\theta})\right|^q d\theta\bigg\}^{\frac{1}{q}},\ 0
$$

where $C(\gamma, n) = \max(|\gamma_0|, |\gamma_n|)$.

Lemma 2. If $P \in P_n$ and $P(z)$ has all zeros in $|z| \leq 1$, then for $R > r \geq 1$, $|P(Rz)| > |P(rz)|$ for $|z| > 1$. (15)

The above Lemma is a special case of a result due to Aziz and Zargar [4, Lemma 3].

Lemma 3. If $P \in P_n$ and $P(z)$ does not vanish in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$,

$$
|P(Rz) - \beta P(rz)| \le |Q(Rz) - \beta Q(rz)|, \text{ for } |z| \ge 1 \text{ and } R \ge r \ge 1,
$$
 (16)
where $Q(z) = z^n \overline{P(1/\overline{z})}$.

Proof. For $R = r > 1$, the result follows by observing that $|P(z)| \leq |Q(z)|$ for $|z| \geq 1$. Henceforth, we assume that $R > r \geq 1$. Since the polynomial $P(z)$ has all its zeros in $|z| \geq 1$, therefore for every real or complex number α with $|\alpha| > 1$, the polynomial $F(z) = P(z) - \alpha Q(z)$ where $Q(z) = z^n \overline{P(1/\overline{z})}$ has all its zeros in $|z| \leq 1$. Applying Lemma 2 to the polynomial $F(z)$, we get

$$
|F(rz)| < |F(Rz)| \text{ for } |z| = 1 \text{ and } R > r \ge 1.
$$

Using Rouche's theorem and noting that all the zeros of $F(Rz)$ lie in $|z| \leq$ $(1/R)$ < 1, we conclude that for every real or complex number β with $|\beta| \leq 1$, the polynomial $G(z) = F(Rz) - \beta F(rz)$ has all its zeros in $|z| < 1$. Replacing $F(z)$ by $P(z) - \alpha Q(z)$, it follows that all the zeros of the polynomial

$$
G(z) = (P(Rz) - \beta P(rz)) - \alpha(Q(Rz) - \beta Q(rz))
$$
\n(17)

lie in $|z| < 1$ for every α, β with $|\alpha| > 1$, $|\beta| \leq 1$ and $R > r \geq 1$. This implies

$$
|P(Rz) - \beta P(rz)| \le |Q(Rz) - \beta Q(rz)| \text{ for } |z| \ge 1 \text{ and } R > r \ge 1. \tag{18}
$$

If inequality (18) is not true, then there is a point $z = z_0$ with $|z_0| \ge 1$ such that

$$
|P(Rz_0) - \beta P(rz_0)| > |Q(Rz_0) - \beta Q(rz_0)|.
$$

Since all the zeros of $Q(rz)$ lie in $|z| \leq 1$, it follows that all the zeros of $Q(Rz) - \beta Q(rz)$ lie in $|z| < 1$ for every real or complex number β with $|\beta| \leq 1$ and $R > 1$. Hence $Q(Rz_0) - \beta Q(rz_0) \neq 0$ with $|z_0| \geq 1$. We choose

$$
\alpha = P(Rz_0) - \beta P(rz_0)/Q(Rz_0) - \beta Q(rz_0),\tag{19}
$$

so that α is well-defined real or complex number with $|\alpha| > 1$ and with this choice of α , from (17) we get

$$
G(z_0) = 0 \,\, with \,\, |z_0| \geq 1.
$$

This is clearly a contradiction to the fact that all the zeros of $G(z)$ lie in $|z|$ < 1. Thus for every β with $|\beta| \leq 1$,

$$
|P(Rz) - \beta P(rz)| \le |Q(Rz) - \beta Q(rz)| \text{ for } |z| \ge 1 \text{ and } R > r \ge 1.
$$

This proves Lemma 3.

Next, we use Lemma 1 to prove the following result:

Lemma 4. If $P \in P_n$ and $P(z)$ does not vanish in $|z| < 1$, then for every real or complex number β with $|\beta| \leq 1$, $R \geq r \geq 1$, $q > 0$ and α real

$$
\int_{0}^{2\pi} \left| \left(P(Re^{i\theta}) - \beta P(re^{i\theta}) \right) + e^{i\alpha} \left(R^n P(e^{i\theta}/R) - \bar{\beta}r^n P(e^{i\theta}/r) \right) \right|^q d\theta
$$

$$
\leq \left| (R^n - \bar{\beta}r^n)e^{i\alpha} + (1 - \beta) \right|^q \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta. \tag{20}
$$

Proof. If $Q(z) = z^n \overline{P(1/\overline{z})}$, where $R \ge r \ge 1$, then we have by Lemma 3

$$
|P(Rz) - \beta P(rz)| \le |Q(Rz) - \beta Q(rz)|, \text{ for } |z| \ge 1
$$

and

$$
|P(Rz) - \beta P(rz)| = \left| R^n P(z/R) - \overline{\beta}r^n P(z/r) \right|, \text{ for } |z| = 1.
$$

Now if $H(z) = Q(Rz) - \beta Q(rz)$, then $H(z)$ has all its zeros in $|z| < 1$ for every real or complex number β with $|\beta| \leq 1$ and $R \geq r \geq 1$. Therefore, it follows that the polynomial $z^n \overline{H(1/\bar{z})} = R^n P(z/R) - \bar{\beta}r^n P(z/r)$ has all its zeros in $|z| > 1$. Hence $G(z) = \frac{P(Rz) - \beta P(rz)}{R^n P(z/R) - \beta r^n P(z/r)}$ is analytic in $|z| \leq 1$ and $|G(z)| \leq 1$ for $|z| = 1$. Since $G(z)$ is not constant, it follows by maximum modulus principle that $|G(z)| < 1$ for $|z| < 1$. Equivalently,

$$
|P(Rz) - \beta P(rz)| < \left| R^n P(z/R) - \bar{\beta}r^n P(z/r) \right|, \text{ for } |z| < 1. \tag{21}
$$

By Rouche's theorem

$$
\Lambda_{\gamma}P(z) = \left(P(Re^{i\theta}) - \beta P(re^{i\theta})\right) + e^{i\alpha}\left(R^n P(z/R) - \bar{\beta}r^n P(z/r)\right)
$$

$$
= \left((R^n - \beta r^n) + e^{i\alpha}(1 - \bar{\beta})\right)a_n z^n + \dots + \left((1 - \beta) + e^{i\alpha}(R^n - \bar{\beta}r^n)\right)a_0
$$

does not vanish in $|z| < 1$, for every real or complex number β with $|\beta| < 1$, $R \ge r \ge 1$ and α real. Therefore Λ_{γ} is an admissible operator and hence by Lemma 1, we have for $q > 0$,

$$
\bigg\{\int_0^{2\pi}\left|\Lambda_\gamma P(e^{i\theta})\right|^q d\theta\bigg\}^{\frac{1}{q}}\leq C(\gamma,n)\bigg\{\int_0^{2\pi}\left|P(e^{i\theta})\right|^q d\theta\bigg\}^{\frac{1}{q}}.
$$

where $C(\gamma, n) = \max(|\gamma_0|, |\gamma_n|)$. This implies

$$
\int_{0}^{2\pi} \left| \left(P(Re^{i\theta}) - \beta P(re^{i\theta}) \right) + e^{i\alpha} \left(R^n P(e^{i\theta}/R) - \bar{\beta}r^n P(e^{i\theta}/r) \right) \right|^q d\theta
$$

$$
\leq \left| (R^n - \bar{\beta}r^n)e^{i\alpha} + (1 - \beta) \right|^q \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta,
$$

which is inequality (20) and this proves Lemma 4. \Box

Lemma 5. If $P \in P_n$ then for every real or complex number β with $|\beta| \leq 1$, $R\geq r\geq 1,\,q>0$ and α real

$$
\int_{0}^{2\pi} \left| \left(P(Re^{i\theta}) - \beta P(re^{i\theta}) \right) + e^{i\alpha} \left(R^n P(e^{i\theta}/R) - \bar{\beta}r^n P(e^{i\theta}/r) \right) \right|^q d\theta
$$

$$
\leq \left| (R^n - \bar{\beta}r^n)e^{i\alpha} + (1 - \beta) \right|^q \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta.
$$
 (22)

Proof. The result is trivial for $R = r = 1$. Henceforth, we assume $R > r \geq 1$. Since $P(z)$ is a polynomial of degree at most n, we can write

$$
P(z) = P_1(z)P_2(z) = \prod_{j=1}^{k} (z - z_j) \prod_{j=k+1}^{n} (z - z_j), \ k \ge 0
$$

where all the zeros of $P_1(z)$ lie in $|z| \geq 1$ and all the zeros of $P_2(z)$ lie in $|z| < 1$. First we suppose that $P_1(z)$ has no zero on $|z|=1$ so that all the zeros of $P_1(z)$ lie in $|z| > 1$. Let $Q_2(z) = z^{n-k} \overline{P_2(1/\overline{z})}$. Then all the zeros of $Q_2(z)$ lie in $|z| > 1$ and $|Q_2(z)| = |P_2(z)|$ for $|z| = 1$. Now consider the polynomial

$$
F(z) = P_1(z)Q_2(z) = \prod_{j=1}^{k} (z - z_j) \prod_{j=k+1}^{n} (1 - z\overline{z_j}).
$$

Then all the zeros of $F(z)$ lie in $|z| > 1$ and for $|z| = 1$,

$$
|F(z)| = |P_1(z)||Q_2(z)| = |P_1(z)||P_2(z)| = |P(z)|.
$$
 (23)

Since $P(z)/F(z)$ is not a constant by the maximum modulus principle

$$
|P(z)| < |F(z)| \text{ for } |z| \le 1.
$$

Using Rouche's theorem, it follows that the polynomial $G(z) = P(z) + \lambda F(z)$ does not vanish in $|z| \leq t$, $t > 1$ and for every real or complex number λ with

 $|\lambda| > 1$. Hence for every $t > 1$, all the zeros of $G(tz)$ lie in $|z| \geq 1$. Applying (21) to the polynomial $G(tz)$, we get

$$
\left|G(Rtz) - \beta G(rtz)\right| < \left|R^n G(tz/R) - \bar{\beta}r^n G(tz/r)\right| \text{ for } |z| < 1.
$$

Taking $z = e^{i\theta}/t$, $0 \le \theta < 2\pi$, then $|z| < 1/t < 1$ and we get \overline{a} \overline{a} −
⊤

$$
\left| G(Re^{i\theta}) - \beta G(re^{i\theta}) \right| < \left| R^n G(e^{i\theta}/R) - \bar{\beta}r^n G(e^{i\theta}/r) \right|,
$$

for each θ , $0 \le \theta < 2\pi$, $R > r \ge 1$ and β with $|\beta| \le 1$. This implies \overline{a} \overline{a} \overline{a} \overline{a}

$$
\left|G(Rz) - \beta G(rz)\right| < \left|R^n G(z/R) - \bar{\beta}r^n G(z/r)\right|, \text{ for } |z| = 1.
$$

Since $R^nG(z/R) - \bar{\beta}r^nG(z/r)$ does not vanish in $|z| \leq 1$, therefore an application of Rouche's theorem shows that the polynomial

$$
T(z) = \left(G(Rz) - \beta G(rz)\right) + e^{i\alpha} \left(R^n G(z/R) - \bar{\beta}r^n G(z/r)\right)
$$

does not vanish in $|z| \leq 1$, for every real or complex number β with $|\beta| \leq 1$, $R \ge r \ge 1$ and α real. Replacing $G(z)$ by $P(z) + \lambda F(z)$, it follows that the polynomial

$$
T(z) = \left(P(Rz) - \beta P(rz)\right) + e^{i\alpha} \left(R^n P(z/R) - \bar{\beta}r^n P(z/r)\right)
$$

$$
+ \lambda \left[\left(F(Rz) - \beta F(rz)\right) + e^{i\alpha} \left(R^n F(z/R) - \bar{\beta}r^n F(z/r)\right)\right],
$$

does not vanish in $|z| \leq 1$, for every β , λ with $|\beta| \leq 1$, $|\lambda| > 1$. This implies by the similar argument as in the proof of Lemma 3 that

$$
\left| \left(P(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^n P(z/R) - \bar{\beta}r^n P(z/r) \right) \right|
$$

$$
\leq \left| \left(F(Rz) - \beta F(rz) \right) + e^{i\alpha} \left(R^n F(z/R) - \bar{\beta}r^n F(z/r) \right) \right|, \tag{24}
$$

for $|z| \leq 1$, which in particular gives for $R > r \geq 1$, $|\beta| \leq 1$ and $|z| = 1$

$$
\left| \left(P(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^n P(z/R) - \bar{\beta} r^n P(z/r) \right) \right|
$$

$$
\leq \left| \left(F(Rz) - \beta F(rz) \right) + e^{i\alpha} \left(R^n F(z/R) - \bar{\beta} r^n F(z/r) \right) \right|.
$$

Hence for each $q > 0$ and $0 \le \theta < 2\pi$, we obtain

$$
\int_{0}^{2\pi} \left| \left(P(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^{n} P(z/R) - \bar{\beta} r^{n} P(z/r) \right) \right|^{q} d\theta
$$

$$
\leq \int_{0}^{2\pi} \left| \left(F(Rz) - \beta F(rz) \right) + e^{i\alpha} \left(R^{n} F(z/R) - \bar{\beta} r^{n} F(z/r) \right) \right|^{q} d\theta.
$$

Since $F(z)$ does not vanish in $|z| < 1$, therefore using Lemma 4 and (23), it follows that for every β with $|\beta| \leq 1$, $R \geq r \geq 1$, $q > 0$ and α real,

$$
\int_{0}^{2\pi} \left| \left(P(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^{n} P(z/R) - \bar{\beta} r^{n} P(z/r) \right) \right|^{q} d\theta
$$
\n
$$
\leq \left| (R^{n} - \bar{\beta} r^{n}) e^{i\alpha} + (1 - \beta) \right|_{0}^{q} \int_{0}^{2\pi} |F(e^{i\theta})|^{q} d\theta
$$
\n
$$
= \left| (R^{n} - \bar{\beta} r^{n}) e^{i\alpha} + (1 - \beta) \right|_{0}^{q} \int_{0}^{2\pi} |P(e^{i\theta})|^{q} d\theta. \tag{25}
$$

Now if $P_1(z)$ has a zero on $|z|=1$, then the polynomial $P^*(z) = P_1(uz)P_2(z)$ where $u < 1$, does not vanish in $|z| < 1$. Therefore, applying (25), we get for every β with $|\beta| \leq 1$, $R \geq r \geq 1$, $q > 0$ and α real,

$$
\int_{0}^{2\pi} \left| \left(P^{*}(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^{n} P^{*}(z/R) - \bar{\beta}r^{n} P^{*}(z/r) \right) \right|^{q} d\theta
$$
\n
$$
\leq \left| (R^{n} - \bar{\beta}r^{n})e^{i\alpha} + (1 - \beta) \right|^{q} \int_{0}^{2\pi} |P^{*}(e^{i\theta})|^{q} d\theta. \tag{26}
$$

Letting $u \to 1$ in (26) so that $P^* \to P$ and using continuity, the desired result follows immediately and this proves Lemma 5. \Box

3. Proofs of the theorems

Proof of Theorem 1. The result is trivial for $R = r = 1$. Henceforth, we assume $R > r \ge 1$. Since $P(z)$ is a polynomial of degree atmost n, we can write

$$
P(z) = P_1(z)P_2(z) = \prod_{j=1}^{k} (z - z_j) \prod_{j=k+1}^{n} (z - z_j), \ k \ge 0
$$

where all the zeros of $P_1(z)$ lie in $|z| \leq 1$ and all the zeros of $P_2(z)$ lie in $|z| > 1$. First we suppose that $P_1(z)$ has no zero on $|z|=1$ so that all the zeros of $P_1(z)$ lie in $|z| < 1$. Let $Q_2(z) = z^{n-k} \overline{P_2(1/\bar{z})}$. Then all the zeros of $Q_2(z)$ lie in $|z| < 1$ and $|Q_2(z)| = |P_2(z)|$ for $|z| = 1$. Now consider the polynomial

$$
f(z) = P_1(z)Q_2(z) = \prod_{j=1}^k (z - z_j) \prod_{j=k+1}^n (1 - \bar{z}_j), \ k \ge 0,
$$

then all the zeros of $f(z) = \sum_{n=1}^{\infty}$ $j=0$ $b_j z^j$ lie in $|z| < 1$ and for $|z| = 1$,

$$
|f(z)| = |P_1(z)||Q_2(z)| = |P_1(z)||P_2(z)| = |P(z)|.
$$

Since $P(z)/f(z)$ is not a constant by the maximum modulus principle

$$
|P(z)| < |f(z)| \text{ for } |z| > 1.
$$

Using Rouche's theorem, it follows that the polynomial $q(z) = P(z) + \lambda f(z)$ has all its zeros in $|z| < 1$ and for every real or complex number λ with $|\lambda| > 1$. Hence by Lemma 1, we have

$$
|g(rz)| < |g(Rz)|
$$
 for $|z| = 1$ and $R > r \ge 1$.

Since all the zeros of $q(Rz)$ lie in $|z| < (1/R) < 1$, we conclude that for every β with $|\beta| \leq 1$, all the zeros of $h(z) = g(Rz) - \beta g(rz) = (P(Rz) - \beta P(rz)) +$ $\lambda(f(Rz) - \beta f(rz))$ lie in $|z| < 1$. This implies (as in the case of Lemma 5)

$$
|P(Rz) - \beta P(rz)| \le |f(Rz) - \beta f(rz)| \text{ for } |z| \ge 1 \text{ and } R > r \ge 1.
$$

This in particular gives for each $R > r \geq 1$ and $q > 0$,

$$
\int_{0}^{2\pi} \left| P(Re^{i\theta}) - \beta P(re^{i\theta}) \right|^q d\theta \le \int_{0}^{2\pi} \left| f(Re^{i\theta}) - \beta f(re^{i\theta}) \right|^q d\theta. \tag{27}
$$

Again, since all the zeros of $f(z)$ lie in $|z| < 1$, therefore as before $f(Rz)$ – $\beta f(rz)$ has all its zeros in $|z| < 1$ for every real or complex number β with $|\beta| \leq 1$ and hence the operator Λ_{γ} defined by

$$
\Lambda_{\gamma}f(z) = P(Rz) - \beta f(rz) = (R^n - \beta r^n)b_n z^n + \dots + (1 - \beta)b_0
$$

is admissible. Thus by Lemma 1, for each $q > 0$, we have

$$
\left\{\int\limits_{0}^{2\pi} \left|f(Re^{i\theta}) - \beta f(re^{i\theta})\right|^{q} d\theta\right\}^{\frac{1}{q}} \leq \max\left(|R^{n} - \beta r^{n}|, |1 - \beta|\right) \left\{\int\limits_{0}^{2\pi} \left|f(e^{i\theta})\right|^{q} d\theta\right\}^{\frac{1}{q}}.
$$
\n(28)

Combining inequality (28) with (27) and noting that $|f(e^{i\theta})| = |P(e^{i\theta})|$, we get

$$
\bigg\{\int\limits_0^{2\pi}\bigg|P(Re^{i\theta})-\beta P(re^{i\theta})\bigg|^q d\theta\bigg\}^{\frac{1}{q}}\leq |R^n-\beta r^n|\bigg\{\int\limits_0^{2\pi}\bigg|P(e^{i\theta})\bigg|^q d\theta\bigg\}^{\frac{1}{q}}.
$$

In case $P_1(z)$ has a zero on $|z|=1$, the inequality (28) follows by using similar argument as in the case of Lemma 5. This completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis $P \in P_n$ and $P(z)$ does not vanish in $|z|$ < 1, therefore by Lemma 3, for every real or complex number β with $|\beta| \leq 1$, and θ , $0 < \theta \leq 2\pi$,

$$
\left| P(Re^{i\theta}) - \beta P(re^{i\theta}) \right| \le \left| R^n P(e^{i\theta}/R) - \bar{\beta}r^n P(e^{i\theta}/r) \right|, \ R \ge r \ge 1. \tag{29}
$$

Also by Lemma 5

0

$$
\int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^q d\theta \le \left| (R^n - \bar{\beta}r^n) e^{i\alpha} + (1 - \beta) \right|^q \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta \tag{30}
$$

where

$$
F(\theta) = P(Re^{i\theta}) - \beta P(re^{i\theta}) \text{ and } G(\theta) = R^n P(e^{i\theta}/R) - \overline{\beta}r^n P(e^{i\theta}/r).
$$

Integrating both sides of (30) with respect to α from 0 to 2π , we get for each $q > 0$, $R \ge r \ge 1$ and α real,

$$
\int_{0}^{2\pi} \int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^q d\theta d\alpha
$$
\n
$$
\leq \left\{ \int_{0}^{2\pi} \left| (R^n - \bar{\beta}r^n)e^{i\alpha} + (1 - \beta) \right|^q d\alpha \right\} \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta \right\}. \tag{31}
$$

0

If $F(\theta) \neq 0$, then by (29), $G(\theta)/F(\theta)$ $\Big\vert \geq 1$ and therefore, we have

$$
\int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^{q} d\alpha \leq |F(\theta)|^{q} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \frac{G(\theta)}{F(\theta)} \right|^{q} d\alpha
$$

$$
= |F(\theta)|^{q} \int_{0}^{2\pi} \left| \left| \frac{G(\theta)}{F(\theta)} \right| + e^{i\alpha} \right|^{q} d\alpha
$$

$$
\leq |F(\theta)|^{q} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{q} d\alpha
$$

$$
= \left| P(Re^{i\theta}) - \beta P(re^{i\theta}) \right|^{q} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{q} d\alpha.
$$

For $F(\theta) = 0$, this inequality is trivially true. Using this in (31), we conclude that for every real or complex number β with $|\beta| \leq 1$, $R \geq 1$, $q > 0$ and α real,

$$
\left\{\int_{0}^{2\pi} |1+e^{i\alpha}|^q d\alpha\right\} \left\{\int_{0}^{2\pi} |P(Re^{i\theta}) - \beta P(e^{i\theta})|^q d\theta\right\}
$$

$$
\leq \left\{\int_{0}^{2\pi} \left| (R^n - \bar{\beta}r^n)e^{i\alpha} + (1-\beta) \right|^q d\alpha\right\} \left\{\int_{0}^{2\pi} |P(e^{i\theta})|^q d\theta\right\}. \tag{32}
$$

And also, we have

$$
\left\{\int_{0}^{2\pi} \left| (R^n - \bar{\beta}r^n)e^{i\alpha} + (1 - \beta) \right|^q d\alpha \right\}
$$

=
$$
\left\{\int_{0}^{2\pi} \left| |(R^n - \bar{\beta}r^n)|e^{i\alpha} + |1 - \beta| \right|^q d\alpha \right\}
$$

=
$$
\left\{\int_{0}^{2\pi} \left| |(R^n - \beta r^n)|e^{i\alpha} + |1 - \beta| \right|^q d\alpha \right\}
$$

=
$$
\left\{\int_{0}^{2\pi} \left| (R^n - \beta r^n)e^{i\alpha} + (1 - \beta) \right|^q d\alpha \right\}.
$$
 (33)

Combining (32) and (33), we get the desired result.

REFERENCES

- [1] N. C.Ankeny and T. J. Rivlin, On a theorem of S.Bernstein, Pacific J.Math., 5 (1955), 849-852.
- [2] V. V. Arestov, On inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 3-22.
- [3] A. Aziz and N. A. Rather, Some compact generalizations of Zygmund type inequalities for polynomials, Nonlinear Studies, 6 (2), (1999), 241-255.
- [4] A. Aziz and B. A. Zargar, Inequalities for a polynomial and its derivatives, Math. Inequal. and Appl., 1(4), (1998), 543=550.
- [5] R. P Boas, Jr. and Q. I. Rahman, Lp inequalities for polynomials and entire functions, Arch Rational Mech. Anal., II (1962), 34-39.
- [6] N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. Ser. A, 50 (1947,) 1265-1272; Indag. Math. 9 (1947) 591-598.
- [7] G. H. Hardy, *The mean value of the modulus of an analytic function*, Proc. London. Math. Soc., 14 (1915), 269-277.
- [8] P. D. Lax, *Proof of a conjucture of P. Erdös on the derivative of a polynomial*, Bull. Amer. Math. Soc. (N.S), 50 (1944), 509-513.
- [9] G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in polynomials extremal properties,inequalities,zeros, World Scientific Publishing Co., Singapore, 1994.
- [10] G. V. Milovanovic and Th. M. Rassias, New developments on Turan's extremal problems for polynomials, Approx. Theory, Marcel and Dekker, Inc., New York, 1998, 433-447.
- [11] G. V. Milovanovic and Th. M. Rassias, *Inequalities for polynomial zeros, Survey on* classical inequalities, Kluwer Academic Publishers, Dorderecht, 2000, 165-202.
- [12] G. V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, On some extremal problems for algebraic polynomials in Lr norm, Generalised functions and convergence, World Scientific Publishing Co., New jersy, London, 1990, 343-354.
- [13] G. Polya and G. Szego, Problems and Theorems in Analysis, Vol I. Springer Verlag, New York, 1972.
- [14] Q. I. Rahman and G. Schmeisser, L^p inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
- [15] Th. M. Rassias, H. M. Srivastava and A. Yanushauskas, Topics in polynomials in one and several variables and their applications, World Scientific Publishing Co., Singapore, New Jersy, London, 1993.
- [16] A. C. Schaeffer, Inequalities of A.Markoff and S.Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565-579.
- [17] A. Zygmund, A remark on Canjugate series, Proc London. Math., Soc., 34 (2) (1932), 392-400.