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Abstract. In this paper, we investigate the dependence of { [ |1P(Re) — ﬁP(r629)|qd9}
0

1
27 . q
on { I |P(e’9)|qd0} " for each real or complex number 8 with <1, R>r>1and g >0
0

and present compact generalizations of some well-known polynomial inequalities.

1. INTRODUCTION

n .
Let P, be the class of polynomials P(z) = )" a;2z7 of degree at most n.
7=0

{ZP’(WW&}; <n {Zme”we};, g>1 1)

2T 1 2w 1
{/|P(Rei9)|qd0}q <R {/|P(ei9)‘qd9}q, R>1,¢>0.  (2)
0 0
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Then

and
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Inequality (1) is due to Zygmund [17], whereas inequality (2) is a simple con-
sequence of a result due to Hardy [7]. Arestove [2] verified that (1) remains
true for 0 < ¢ < 1 as well. If we make ¢ — oo in inequalities (1) and (2) and
note that

q—00

21
lim { /\P(ei")\qde : max |P(z)|
1 -— = X
27 |2|=1 ’
0

we get
max |P'(2)] < nmax|P(z)] (3)
|z|=1 |z]=1
and
max |P(z)| < R"max|P(2)|. (4)
|z|=R>1 |z|=1

Inequality (3) is an immediate consequence of a famous results due to Bern-
stein on the derivative of a trigonometric polynomial (for reference see [9,
p.531], [10], [16]), whereas inequality (4) is a simple deduction from the max-
imum modulus principle (see [9, p. 346], [11] or [13, p. 158 problem 269]).

Inequalities (1) and (2) can be sharpened, if we restrict ourselves to the
class of polynomials having no zeros in |z| < 1. In such a case, we have

1 27 1 1 27 1
_ / 10 q q< _ 19 q a >
{5 1P @iman} <y [ipeopan}’ a=1 o)
0 0

where
2m —1
1 | q 1
A, = o |1+ e'*|%da ,
0
and
1 2w 1 1 2 1
- 0\ |9 a4 < - 0\ |q ? >
{5 [ienyan}” < 5] 5 [1peopan’ a=1, o)
0 0
where

27 27
1 n  io|q % 1 o |q %
B, = 7 |1+ R"e"|%da /ﬂ 11+ €e“|%ap .
0 0

Inequality (5) is due to deBrujin [6, Theorem 13|, whereas inequality (6) was
proved by Boas and Rahman [5]. Both these inequalities were latter extended
by Rahman and Schmeisser [14] for 0 < ¢ < 1 as well.
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Aziz and Rather [3] investigated the dependence of

2 1
{ 0/ |P(Re'?) —ﬁP(e“’)|qd0}

27 L

on { J \P(ew)\qde} ! for ¢ > 0 and proved the following compact generaliza-
0

tion of (1) and (2).

Theorem A. If P € P,, then for every real or complex number § with
8] <1, R>1and ¢ >0,

r 1 2 .
{(/U%Re“’) —ﬁP(eW”qu} < |R" —5|{0/!P(e’9)|‘1d9} ' (7

In this paper, we first prove the following more general result which also
yields a compact generalization of inequalities (1) and (2).

Theorem 1. If P € P,, then for every real or complex number § with
Bl <1, R>r>1and q>0,

’r 1 2 .
{O/‘P(Rew) —ﬂP(rele)‘qu} < |R" _ﬂrn’{O/‘P(ew)‘qde} C®)

The result is best possible and equality in (8) holds for P(z) = az”, a # 0.

Remark. For » = 1, Theorem 1 reduces to Theorem A, for 8 = 0, it reduces
to inequality (2) and for § = 1, we get the following:

Corollary 1. If P € P,,, then for R>r > 1 and g > 0,
2 1 2w 1
{/|P(Rei9) —P(rei9)|qd0}q < |R" —rny{/w(ei")wde)}q. (9)
0 0

For r = 1, Corollary 1 reduces to a result proved by Aziz and Rather [3,
inequality (8)].

If we divide the two sides of (8) by R — r and make R — r, we get the
following:

Corollary 2. If P € P,, then for r > 1 and ¢ > 0,

27 2T
/ P/ (rei®)[9d6 < nrn=! / 1P(ci%)[1d0.
0 0

By taking r = 1 in Corollary 2, we get Zygmund’s inequality for every ¢ > 0.
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If we let ¢ — oo in (8), we immediately get the following result which is a
compact generalization of inequalities (3) and (4).

Corollary 3. If P € P,, then for every real or complex number 5 with || < 1
and R > r > 1, we have
‘m|ax |P(Rz) — BP(rz)| < |R" — pr"| lmla)1< |P(2)]- (10)
z|=1 z|=
The result is sharp and equality in (10) holds for P(z) = az™, a # 0.
For polynomials P € P, having no zeros in |z| < 1, we next prove the follow-
ing interesting result which among other things includes deBruijn’s theorem

(inequality (5)) and a result of Boas and Rahman (inequality (6)) as special
cases.

Theorem 2. If P € P, and P(z) does not vanish in |z| < 1, then for every
real or complex number § with || <1, R>r>1and g > 0,

{ 7|P(Rei9) — ﬁP(rew)|qd0};
0

{ 2f7r|(R" — Brm)et® + (1 — ﬁ)\qcza} o )

<=0 |P(ei9)|qd9}q. (11)

2w ] %
R
0

For # = 0, Theorem 2 reduces to a result due to Boas and Rahman (inequal-
ity (6)) for each ¢ > 1. A variety of interesting results can be easily deduced
from Theorem 2. For example the following Corollary which is an improve-
ment of inequality (8) for polynomials P € P, having no zeros in |z| < 1,
immediately follows from Theorem 2 by taking g = 1.

Corollary 4. If P € P, and P(z) does not vanish in |z| < 1, then for
R>r>1and q > 0, we have

27 1

{7\13(362‘0)—13(746%‘9)\%9}; < R = 1{/|P(ei9)|qd0} .
0

2 i
{;ﬂ n —i—em\qda}q 0
0
(12)
For r = 1, Theorem 2 reduces to a result earlier proved by Aziz and Rather

[3, Theorem 4].
Again, by making ¢ — oo in (11), we immediately get the following:
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Corollary 5. If P € P, and P(z) does not vanish in |z| < 1, then for every
real or complex number § with || <1and R >r > 1,

[(R" = Br™) + (1 = B)|
5 ﬁg{lP(Z)!- (13)

max[P(Rz) ~ BP(r2)] <

The result is sharp and equality in (13) holds for P(z) = 2" + 1.
Taking # = 1 and dividing the two sides of inequality (13) by R — r and
letting R — r, we get
n—1

max |P(rz)] < - max |P(z)], r > 1. (14)

|z|=1 2 |z]=1

For r = 1, inequality (14) was conjectured by Erdos and later verified by Lax
[8]. Also, if we take § = 0 in (13), we get a result proved by Ankeny and
Rivilin [1].

2. LEMMAS

For the proofs of these theorems, we need the following lemmas:
The first lemma is based on a result of Arestov, which we shall describe
first.

n .
For v = (70,71, , ) € O™ and P(z) = 3 a;27, we define
j=0

A P(z) = Z'yjajzj.
j=0

The operator A, is said to be admissible if it preserves one of the following
properties :

(i) P(z) has all its zeros in {z € C : |2| < 1},
(ii) P(z) has all its zeros in {z € C': |z] > 1}.

The result of Arestov [2, Theorem 4] may now be stated as follows:

Lemma 1. For polynomials P(z) of degree at most n and each admissible
operator A,

{/02” AVP(e“’)‘qde}; SC(%"){/O%

where C(y,n) = max (|70, [val)-
Lemma 2. If P € P, and P(z) has all zeros in |z| < 1, then for R > r > 1,
|P(Rz)| > |P(rz)| for |z| > 1. (15)

i0y | :
P(e )‘ o , 0<q < oo,
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The above Lemma is a special case of a result due to Aziz and Zargar [4,
Lemma 3.

Lemma 3. If P € P, and P(z) does not vanish in |z| < 1, then for every real
or complex number § with |3| <1,

|P(Rz) — BP(rz)| < |Q(Rz) — BQ(rz)|, for|z|>1and R>r>1, (16)

where Q(z) = 2"P(1/%).

Proof. For R =r > 1, the result follows by observing that |P(z)| < |Q(z)| for
|z| > 1. Henceforth, we assume that R > r > 1. Since the polynomial P(z)
has all its zeros in |z| > 1, therefore for every real or complex number a with
|a| > 1, the polynomial F(z) = P(z) — aQ(z) where Q(z) = 2"P(1/Z) has all
its zeros in |z| < 1. Applying Lemma 2 to the polynomial F(z), we get

|F(rz)| < |F(Rz)| for |z]=1and R >r > 1.

Using Rouche’s theorem and noting that all the zeros of F'(Rz) lie in |z| <

(1/R) < 1, we conclude that for every real or complex number 3 with |3| < 1,

the polynomial G(z) = F(Rz) — fF(rz) has all its zeros in |z| < 1. Replacing
F(2) by P(z) — aQ(z), it follows that all the zeros of the polynomial

G(2) = (P(Rz) = P(rz)) — a(Q(Rz) — fQ(rz)) (17)

lie in |z| < 1 for every a, 8 with |a| > 1, |#| <1 and R > r > 1. This implies

|P(Rz) — BP(rz)| < |Q(Rz) — pQ(rz)| for |z| >1and R>r>1. (18)

If inequality (18) is not true, then there is a point z = z¢ with |z9| > 1 such
that

|P(Rzy) — BP(rz0)| > |Q(Rzo) — BQ(rz0)].
Since all the zeros of Q(rz) lie in |z| < 1, it follows that all the zeros of

Q(Rz)— fQ(rz) lie in |z| < 1 for every real or complex number g with |5 <1
and R > 1. Hence Q(Rzp) — BQ(rzp) # 0 with |z9| > 1. We choose

a = P(Rz) — BP(rz0)/Q(Rz) — 8Q(rz0), (19)

so that « is well-defined real or complex number with |o| > 1 and with this
choice of «, from (17) we get

G(Zo) = 0 with |Zo‘ > 1.

This is clearly a contradiction to the fact that all the zeros of G(z) lie in
|z| < 1. Thus for every 8 with |5] <1,

|P(Rz) — BP(rz)| < |Q(Rz) — BQ(rz)| for |z| > 1 and R >r > 1.

This proves Lemma 3. O
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Next, we use Lemma 1 to prove the following result:

Lemma 4. If P € P, and P(z) does not vanish in |z| < 1, then for every real
or complex number § with || <1, R>r >1, ¢ > 0 and « real

27
0/ ’ <P<Re”> - 6P<fre”>> + et <R"P(e’9/R) - 67“"P(e’9/r)> do
27
< ‘(Rn — pr)e + (1 -p) O/ |P(e)|7d. (20)

Proof. If Q(z) = 2"P(1/z), where R > r > 1, then we have by Lemma 3
|P(Rz) — fP(rz)| < |Q(Rz) — 8Q(rz)], for |z =1
and

|P(Rz) — BP(rz)| = ‘R"P(Z/R) — Br"P(z/r)|, for |z| = 1.

Now if H(z) = Q(Rz) — fQ(rz), then H(z) has all its zeros in |z| < 1 for
every real or complex number § with |3 < 1 and R > r > 1. Therefore, it

follows that the polynomial 2"H(1/z) = R"P(z/R) — pr"P(z/r) has all its
P(Rz)—pBP(rz)

zeros in |z| > 1. Hence G(z) = RPG /R P(a/r)

is analytic in |z| < 1 and

|G(2)| < 1 for |z| = 1. Since G(z) is not constant, it follows by maximum
modulus principle that |G(z)| < 1 for |z| < 1.
Equivalently,

|P(Rz) — P(rz)| < ‘R”P(Z/R) — Br*P(z/r)

, for |z] < 1. (21)
By Rouche’s theorem

A P(2) = (P(Rew) - ﬁP(rei9)> + €™ (R”P(z/R) - Br”P(z/r)>

= (= m) e 5) Yt (L 8) 4 (R = ™) )
does not vanish in |z| < 1, for every real or complex number £ with |5] < 1,
R > 7 > 1 and o real. Therefore A, is an admissible operator and hence by
Lemma 1, we have for ¢ > 0,

{/O% AWP(ew)‘qu}; §C(’y,n){/02ﬂ

1
P(ei‘")‘qde} "
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where C(v,n) = max (|v], |[vnl])-
This implies

2m
/ ’ <P(Re“9) - ﬁP(Teze)> + e (R"P(ew/R) - ﬂr"P(ew/r)> do
0
q 27
< |t =i - [P,
0
which is inequality (20) and this proves Lemma 4. O

Lemma 5. If P € P, then for every real or complex number § with |5] < 1,
R>r>1,¢g>0and « real

q
do

2m
O/ ’ <P(Re’9) — ﬂP(re“")> + i@ (R"P(e’e /R) — Br"P(e'? /7«)>

< \(R" B 4 (1 8)

21
/ |P(ci%)[2d0. (22)
0

Proof. The result is trivial for R = r = 1. Henceforth, we assume R > r > 1.
Since P(z) is a polynomial of degree at most n, we can write

k n
P(z) =Pi(2)P(2) = [[(z = 2) [] (z—2), k=0
j=1 j=k+1

where all the zeros of P;(z) lie in |z| > 1 and all the zeros of P»(z) liein |z| < 1.
First we suppose that P;(z) has no zero on |z| = 1 so that all the zeros of
Pi(2) lie in |z| > 1. Let Q2(2) = 2" *Py(1/%). Then all the zeros of Q2(z) lie
in |z| > 1 and |Q2(2)| = |P2(z)] for |z| = 1. Now consider the polynomial

n

(z=2z) ] @ —=22).

j=1 j=k+1
Then all the zeros of F(z) lie in |z| > 1 and for |z| =1,
[F(2)] = [PL(2)]|Q2(2)] = [ P1(2)[[ P2(2)] = [P(2)]- (23)
Since P(z)/F(z) is not a constant by the maximum modulus principle
[P(2)] < [F(2)] for |2[ < 1.

Using Rouche’s theorem, it follows that the polynomial G(z) = P(z) + AF(z)
does not vanish in |z| < ¢, ¢t > 1 and for every real or complex number A with

:w

F(2) = Pi(2)Qa2(2) =
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|A| > 1. Hence for every t > 1, all the zeros of G(tz) lie in |z| > 1. Applying
(21) to the polynomial G(tz), we get

‘G(th) — BG(rtz)| < |R"G(tz/R) — Br"G(tz/r)| for |z| < 1.

Taking z = € /t, 0 < 0 < 2m, then |z| < 1/t < 1 and we get

I

‘G(Rew) — BG(re®)

< ‘R”G(ew/R) — BrG (e /r)

for each 0, 0 < 6 <27, R>r > 1 and 8 with |3| < 1. This implies

’G(Rz) — BG(rz)| < |R"G(z/R) — Br"G(z/r)|, for |z| = 1.

Since R"G(z/R) — Br"G(z/r) does not vanish in |z| < 1, therefore an appli-
cation of Rouche’s theorem shows that the polynomial

T(z) = (G(Rz) - ﬂG(rz)) + et <R”G(z/R) - Br”G(z/r))

does not vanish in |z| < 1, for every real or complex number § with |5] < 1,
R > r > 1 and a real. Replacing G(z) by P(z) + AF(2), it follows that the
polynomial

T(z) = <P(Rz) — ﬁP(rz)) + e (R”P(z/R) - BT”P(Z/T))

[ (F(re) - 97r)) e (ReE /)~ e |

does not vanish in |z|] < 1, for every 5, A with |3| < 1, |A] > 1. This implies
by the similar argument as in the proof of Lemma 3 that

‘ <P<Rz> - 6P<rz>> T éio (R”P(z/R) - ﬁr"P(z/r)) ‘

(24)

)

< ‘ (F(Rz) _ 5}7(7«2)) + et (R”F(Z/R) - BT”F(z/T)>

for |z| <1, which in particular gives for R >r > 1, |f| <1 and |z| =1

(PR - p2)) e (Rpeim) - o))

< ‘ <F(Rz) - 5F(m)> + el (R"F(z/R) - 6r”F(z/r)> ’
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Hence for each ¢ > 0 and 0 < 6 < 27, we obtain

q
dé

2T
O/ ’ <P(Rz) - ﬁP(rz)) + el (R”P(Z/R) - ﬂr"P(z/T))

i o n z — 77’” z/r !
go/'(F(Rz)—ﬁF(rz)) te (R F(z/R) — Br"F(z/ )) do.

Since F'(z) does not vanish in |z| < 1, therefore using Lemma 4 and (23), it
follows that for every g with |5| <1, R>r > 1, ¢ > 0 and « real,

7’ <P(Rz) — ﬂP(rz)) + el <R”P(z/R) — Br"P(z/r)) qde
0
<[ i - | 7|F<ei">\qde
0
= ‘(R” — Br)e® + (1 —p) ! 7|P(ew)|qd0. (25)
0

Now if P;(z) has a zero on |z| = 1, then the polynomial P*(z) = P;(uz)Pa(z)
where u < 1, does not vanish in |z| < 1. Therefore, applying (25), we get for
every  with [5] <1, R>r >1, ¢ > 0 and « real,

i P*(Rz)—fP(rz) | + €| R"P*(z/R) — Br"P*(z/r) qd@
/I IR )
< '(R” — e (- )| 7!P*<ei9>rqd9. (26)
0

Letting w — 1 in (26) so that P* — P and using continuity, the desired result
follows immediately and this proves Lemma 5. U

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. The result is trivial for R = r = 1. Henceforth, we
assume R > r > 1. Since P(z) is a polynomial of degree atmost n, we can

write
n

k
P(z) = Pi(2)Pa(2) = [ [ (= = =) H (z—2), k=0

j=1 j=k+1
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where all the zeros of P;(z) lie in |z| < 1 and all the zeros of P»(z) liein |z| > 1.
First we suppose that P;(z) has no zero on |z| = 1 so that all the zeros of
Pyi(2) lie in |z] < 1. Let Q2(2) = 2" *P»(1/%). Then all the zeros of Q2(z) lie
in |z] <1 and |Q2(2)| = |P2(2)| for |z| = 1. Now consider the polynomial

k n
f(2) = Pi(2)Q(2) = [[(z—2) [] (1=2), k>0,
J=1 j=k+1

then all the zeros of f(2) = Y b;z? lie in |2| < 1 and for |2| =1,
j=0

1f(2)] = [PL()|Q2(2)| = [P1(2)[| Pa(2)] = [P(2)].
Since P(z)/f(z) is not a constant by the maximum modulus principle
[P(2)| < |f(2)] for |2] > 1.

Using Rouche’s theorem, it follows that the polynomial g(z) = P(z) + \f(2)
has all its zeros in |z| < 1 and for every real or complex number A with [A| > 1.
Hence by Lemma 1, we have

lg(rz)| < |g(Rz)| for |z| =1and R>r > 1.

Since all the zeros of g(Rz) lie in |z| < (1/R) < 1, we conclude that for every
B with |5] < 1, all the zeros of h(z) = g(Rz) — Bg(rz) = (P(Rz) — BP(rz)) +
A f(Rz) — Bf(rz)) lie in |z| < 1. This implies (as in the case of Lemma 5)

|P(Rz) — BP(rz)| < |f(Rz) — Bf(rz)| for |z]| >1and R >r > 1.
This in particular gives for each R > r > 1 and ¢ > 0,

q

q 27
do < / ‘ F(RE®) — Bf(re®)| do.  (27)
0

2m
0/ ‘P(Re’e) — BP(re')

Again, since all the zeros of f(z) lie in |z| < 1, therefore as before f(Rz) —
Bf(rz) has all its zeros in |z| < 1 for every real or complex number § with
|6] <1 and hence the operator A, defined by

A, f(z) = P(Rz) = Bf(rz) = (R" — Br")by2" 4+ -+ -+ (1 — B)bo

is admissible. Thus by Lemma 1, for each ¢ > 0, we have

‘ ATNIRY
de} < max <\R”—ﬁr”\,\1—m>{/‘f(e’e) d@} .
0

(28)

{ O/ ‘f(Re”)—ﬁf(re*’)
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Combining inequality (28) with (27) and noting that |f(e¥)| = |P(e®)|, we

get
27 1 27 1
) |4 q |4 q
{/‘P(Rew)—ﬁP(mw) dG} < |R"—ﬁr"]{/'P(ew) d@} .
0 0

In case Pj(z) has a zero on |z| = 1, the inequality (28) follows by using similar
argument as in the case of Lemma 5. This completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis P € P, and P(z) does not vanish
in |z| < 1, therefore by Lemma 3, for every real or complex number 3 with
|| <1,and 0, 0 < 6 < 2,

‘P(Rew) — BP(re®)| < |R"P(e” /R) — Br"P(e? /r)|, R>r>1.  (29)

Also by Lemma 5

21

/‘F(G) + G ()

0

< (- g+ (-

/ |P(e)|9d0  (30)

where
F(0) = P(Rew) — ﬁP(Tew) and G(0) = R”P(eie/R) — BT”P(em/r).

Integrating both sides of (30) with respect to a from 0 to 2w, we get for each
q>0, R>r>1and « real,

21 2w

//‘F(Q)—i—emG(H)
0 0
{/‘ _ Brmeie 4+ (1- )

If F(0) # 0, then by (29),

q
dfdo

da}{/yP oy |qd9}. (31)

G(Q)/F(H)‘ > 1 and therefore, we have
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IN

27
Fo) [

[F(0)]

o

2

Fo) [

0

‘P(Rew)

259

GO
1+6 W dCY
G(e) 1" I
‘F(Q) ‘ + e do
g
14+ e do
e g
— BP(re®) 1+ e do.

For F(6) = 0, this inequality is trivially true. Using this in (31), we conclude
that for every real or complex number § with || <1, R > 1, ¢ > 0 and «

real,

{/|1+em|qda}{/,p Reze) 8P(e 29)|qd0}

<{ / \ ~ it (1- )| da } / LI S
And also, we have %
{ { (R" — Brjeio + da}
- {{Fuz ~Brmle + 11— 5l da
_ {{W(R — gl + |1 g d a} (33)
_ { 0/ (B" — By da}.

Combining (32) and (33), we get the desired result.
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