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Abstract. In this paper, we investigate the dependence of

{
2π∫
0

|P (Reiθ)− βP (reiθ)|qdθ

} 1
q

on

{
2π∫
0

|P (eiθ)|qdθ

} 1
q

for each real or complex number β with β ≤ 1, R > r ≥ 1 and q > 0

and present compact generalizations of some well-known polynomial inequalities.

1. Introduction

Let Pn be the class of polynomials P (z) =
n∑

j=0
ajz

j of degree at most n.

Then { 2π∫

0

|P ′
(eiθ)|qdθ

} 1
q

≤ n

{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

, q ≥ 1 (1)

and
{ 2π∫

0

|P (Reiθ)|qdθ

} 1
q

≤ Rn

{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

, R ≥ 1, q > 0. (2)
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Inequality (1) is due to Zygmund [17], whereas inequality (2) is a simple con-
sequence of a result due to Hardy [7]. Arestove [2] verified that (1) remains
true for 0 < q < 1 as well. If we make q →∞ in inequalities (1) and (2) and
note that

lim
q→∞

{
1
2π

2π∫

0

|P (eiθ)|qdθ

} 1
q

= max
|z|=1

|P (z)|,

we get

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)| (3)

and

max
|z|=R>1

|P (z)| ≤ Rn max
|z|=1

|P (z)|. (4)

Inequality (3) is an immediate consequence of a famous results due to Bern-
stein on the derivative of a trigonometric polynomial (for reference see [9,
p.531], [10], [16]), whereas inequality (4) is a simple deduction from the max-
imum modulus principle (see [9, p. 346], [11] or [13, p. 158 problem 269]).

Inequalities (1) and (2) can be sharpened, if we restrict ourselves to the
class of polynomials having no zeros in |z| < 1. In such a case, we have

{
1
2π

2π∫

0

|P ′
(eiθ)|qdθ

} 1
q

≤ n Aq

{
1
2π

2π∫

0

|P (eiθ)|qdθ

} 1
q

, q ≥ 1 (5)

where

Aq =
{

1
2π

2π∫

0

|1 + eiα|qdα

}−1
q

,

and
{

1
2π

2π∫

0

|P (Reiθ)|qdθ

} 1
q

≤ Bq

{
1
2π

2π∫

0

|P (eiθ)|qdθ

} 1
q

, q ≥ 1, (6)

where

Bq =
{

1
2π

2π∫

0

|1 + Rneiα|qdα

} 1
q

/

{
1
2π

2π∫

0

|1 + eiα|qdα

} 1
q

.

Inequality (5) is due to deBrujin [6, Theorem 13], whereas inequality (6) was
proved by Boas and Rahman [5]. Both these inequalities were latter extended
by Rahman and Schmeisser [14] for 0 < q < 1 as well.
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Aziz and Rather [3] investigated the dependence of
{ 2π∫

0

|P (Reiθ)− βP (eiθ)|qdθ

} 1
q

on
{

2π∫
0

|P (eiθ)|qdθ

} 1
q

for q ≥ 0 and proved the following compact generaliza-

tion of (1) and (2).

Theorem A. If P ∈ Pn, then for every real or complex number β with
|β| ≤ 1, R ≥ 1 and q > 0,

{ 2π∫

0

|P (Reiθ)− βP (eiθ)|qdθ

} 1
q

≤ |Rn − β|
{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

. (7)

In this paper, we first prove the following more general result which also
yields a compact generalization of inequalities (1) and (2).

Theorem 1. If P ∈ Pn, then for every real or complex number β with
|β| ≤ 1, R ≥ r ≥ 1 and q > 0,

{ 2π∫

0

|P (Reiθ)− βP (reiθ)|qdθ

} 1
q

≤ |Rn − βrn|
{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

. (8)

The result is best possible and equality in (8) holds for P (z) = αzn, α 6= 0.

Remark. For r = 1, Theorem 1 reduces to Theorem A, for β = 0, it reduces
to inequality (2) and for β = 1, we get the following:

Corollary 1. If P ∈ Pn, then for R ≥ r ≥ 1 and q > 0,
{ 2π∫

0

|P (Reiθ)− P (reiθ)|qdθ

} 1
q

≤ |Rn − rn|
{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

. (9)

For r = 1, Corollary 1 reduces to a result proved by Aziz and Rather [3,
inequality (8)].

If we divide the two sides of (8) by R − r and make R → r, we get the
following:

Corollary 2. If P ∈ Pn, then for r ≥ 1 and q > 0,
2π∫

0

|P ′(reiθ)|qdθ ≤ nrn−1

2π∫

0

|P (eiθ)|qdθ.

By taking r = 1 in Corollary 2, we get Zygmund’s inequality for every q > 0.
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If we let q → ∞ in (8), we immediately get the following result which is a
compact generalization of inequalities (3) and (4).

Corollary 3. If P ∈ Pn, then for every real or complex number β with |β| ≤ 1
and R ≥ r ≥ 1, we have

max
|z|=1

|P (Rz)− βP (rz)| ≤ |Rn − βrn|max
|z|=1

|P (z)|. (10)

The result is sharp and equality in (10) holds for P (z) = αzn, α 6= 0.
For polynomials P ∈ Pn having no zeros in |z| < 1, we next prove the follow-

ing interesting result which among other things includes deBruijn’s theorem
(inequality (5)) and a result of Boas and Rahman (inequality (6)) as special
cases.

Theorem 2. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
real or complex number β with |β| ≤ 1, R ≥ r ≥ 1 and q > 0,

{ 2π∫

0

|P (Reiθ)− βP (reiθ)|qdθ

} 1
q

≤

{
2π∫
0

|(Rn − βrn)eiα + (1− β)|qdα

} 1
q

{
2π∫
0

|1 + eiα|qdα

} 1
q

{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

. (11)

For β = 0, Theorem 2 reduces to a result due to Boas and Rahman (inequal-
ity (6)) for each q > 1. A variety of interesting results can be easily deduced
from Theorem 2. For example the following Corollary which is an improve-
ment of inequality (8) for polynomials P ∈ Pn having no zeros in |z| < 1,
immediately follows from Theorem 2 by taking β = 1.

Corollary 4. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for
R ≥ r ≥ 1 and q > 0, we have

{ 2π∫

0

|P (Reiθ)− P (reiθ)|qdθ

} 1
q

≤ Rn − rn

{
1
2π

2π∫
0

|1 + eiα|qdα

} 1
q

{ 2π∫

0

|P (eiθ)|qdθ

} 1
q

.

(12)
For r = 1, Theorem 2 reduces to a result earlier proved by Aziz and Rather
[3, Theorem 4].

Again, by making q →∞ in (11), we immediately get the following:
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Corollary 5. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every
real or complex number β with |β| ≤ 1 and R ≥ r ≥ 1,

max
|z|=1

|P (Rz)− βP (rz)| ≤ |(Rn − βrn) + (1− β)|
2

max
|z|=1

|P (z)|. (13)

The result is sharp and equality in (13) holds for P (z) = zn + 1.
Taking β = 1 and dividing the two sides of inequality (13) by R − r and

letting R → r, we get

max
|z|=1

|P ′(rz)| ≤ nrn−1

2
max
|z|=1

|P (z)|, r ≥ 1. (14)

For r = 1, inequality (14) was conjectured by Erdös and later verified by Lax
[8]. Also, if we take β = 0 in (13), we get a result proved by Ankeny and
Rivilin [1].

2. Lemmas

For the proofs of these theorems, we need the following lemmas:
The first lemma is based on a result of Arestov, which we shall describe

first.
For γ = (γ0, γ1, · · · , γn) ∈ Cn+1 and P (z) =

n∑
j=0

ajz
j , we define

ΛγP (z) =
n∑

j=0

γjajz
j .

The operator Λγ is said to be admissible if it preserves one of the following
properties :

(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1},

(ii) P (z) has all its zeros in {z ∈ C : |z| ≥ 1}.

The result of Arestov [2, Theorem 4] may now be stated as follows:

Lemma 1. For polynomials P (z) of degree at most n and each admissible
operator Λγ ,

{ ∫ 2π

0

∣∣∣ΛγP (eiθ)
∣∣∣
q
dθ

} 1
q

≤ C(γ, n)
{ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣
q
dθ

} 1
q

, 0 < q < ∞,

where C(γ, n) = max (|γ0|, |γn|) .

Lemma 2. If P ∈ Pn and P (z) has all zeros in |z| ≤ 1, then for R > r ≥ 1,

|P (Rz)| > |P (rz)| for |z| ≥ 1. (15)
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The above Lemma is a special case of a result due to Aziz and Zargar [4,
Lemma 3].

Lemma 3. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every real
or complex number β with |β| ≤ 1,

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)|, for |z| ≥ 1 and R ≥ r ≥ 1, (16)

where Q(z) = znP (1/z̄).

Proof. For R = r > 1, the result follows by observing that |P (z)| ≤ |Q(z)| for
|z| ≥ 1. Henceforth, we assume that R > r ≥ 1. Since the polynomial P (z)
has all its zeros in |z| ≥ 1, therefore for every real or complex number α with
|α| > 1, the polynomial F (z) = P (z)− αQ(z) where Q(z) = znP (1/z̄) has all
its zeros in |z| ≤ 1. Applying Lemma 2 to the polynomial F (z), we get

|F (rz)| < |F (Rz)| for |z| = 1 and R > r ≥ 1.

Using Rouche’s theorem and noting that all the zeros of F (Rz) lie in |z| ≤
(1/R) < 1, we conclude that for every real or complex number β with |β| ≤ 1,
the polynomial G(z) = F (Rz)− βF (rz) has all its zeros in |z| < 1. Replacing
F (z) by P (z)− αQ(z), it follows that all the zeros of the polynomial

G(z) = (P (Rz)− βP (rz))− α(Q(Rz)− βQ(rz)) (17)

lie in |z| < 1 for every α, β with |α| > 1, |β| ≤ 1 and R > r ≥ 1. This implies

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| for |z| ≥ 1 and R > r ≥ 1. (18)

If inequality (18) is not true, then there is a point z = z0 with |z0| ≥ 1 such
that

|P (Rz0)− βP (rz0)| > |Q(Rz0)− βQ(rz0)|.
Since all the zeros of Q(rz) lie in |z| ≤ 1, it follows that all the zeros of
Q(Rz)−βQ(rz) lie in |z| < 1 for every real or complex number β with |β| ≤ 1
and R > 1. Hence Q(Rz0)− βQ(rz0) 6= 0 with |z0| ≥ 1. We choose

α = P (Rz0)− βP (rz0)/Q(Rz0)− βQ(rz0), (19)

so that α is well-defined real or complex number with |α| > 1 and with this
choice of α, from (17) we get

G(z0) = 0 with |z0| ≥ 1.

This is clearly a contradiction to the fact that all the zeros of G(z) lie in
|z| < 1. Thus for every β with |β| ≤ 1,

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)| for |z| ≥ 1 and R > r ≥ 1.

This proves Lemma 3. ¤
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Next, we use Lemma 1 to prove the following result:

Lemma 4. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every real
or complex number β with |β| ≤ 1, R ≥ r ≥ 1, q > 0 and α real

2π∫

0

∣∣∣∣
(

P (Reiθ)− βP (reiθ)
)

+ eiα

(
RnP (eiθ/R)− β̄rnP (eiθ/r)

)∣∣∣∣
q

dθ

≤
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|P (eiθ)|qdθ. (20)

Proof. If Q(z) = znP (1/z̄), where R ≥ r ≥ 1, then we have by Lemma 3

|P (Rz)− βP (rz)| ≤ |Q(Rz)− βQ(rz)|, for |z| ≥ 1

and

|P (Rz)− βP (rz)| =
∣∣∣∣RnP (z/R)− β̄rnP (z/r)

∣∣∣∣, for |z| = 1.

Now if H(z) = Q(Rz) − βQ(rz), then H(z) has all its zeros in |z| < 1 for
every real or complex number β with |β| ≤ 1 and R ≥ r ≥ 1. Therefore, it
follows that the polynomial znH(1/z̄) = RnP (z/R) − β̄rnP (z/r) has all its
zeros in |z| > 1. Hence G(z) = P (Rz)−βP (rz)

RnP (z/R)−β̄rnP (z/r)
is analytic in |z| ≤ 1 and

|G(z)| ≤ 1 for |z| = 1. Since G(z) is not constant, it follows by maximum
modulus principle that |G(z)| < 1 for |z| < 1.
Equivalently,

|P (Rz)− βP (rz)| <
∣∣∣∣RnP (z/R)− β̄rnP (z/r)

∣∣∣∣, for |z| < 1. (21)

By Rouche’s theorem

ΛγP (z) =
(

P (Reiθ)− βP (reiθ)
)

+ eiα

(
RnP (z/R)− β̄rnP (z/r)

)

=
(

(Rn − βrn) + eiα(1− β̄)
)

anzn + · · ·+
(

(1− β) + eiα(Rn − β̄rn)
)

a0

does not vanish in |z| < 1, for every real or complex number β with |β| ≤ 1,
R ≥ r ≥ 1 and α real. Therefore Λγ is an admissible operator and hence by
Lemma 1, we have for q > 0,

{ ∫ 2π

0

∣∣∣ΛγP (eiθ)
∣∣∣
q
dθ

} 1
q

≤ C(γ, n)
{ ∫ 2π

0

∣∣∣P (eiθ)
∣∣∣
q
dθ

} 1
q

.
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where C(γ, n) = max (|γ0|, |γn|) .
This implies

2π∫

0

∣∣∣∣
(

P (Reiθ)− βP (reiθ)
)

+ eiα

(
RnP (eiθ/R)− β̄rnP (eiθ/r)

)∣∣∣∣
q

dθ

≤
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|P (eiθ)|qdθ,

which is inequality (20) and this proves Lemma 4. ¤

Lemma 5. If P ∈ Pn then for every real or complex number β with |β| ≤ 1,
R ≥ r ≥ 1, q > 0 and α real

2π∫

0

∣∣∣∣
(

P (Reiθ)− βP (reiθ)
)

+ eiα

(
RnP (eiθ/R)− β̄rnP (eiθ/r)

)∣∣∣∣
q

dθ

≤
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|P (eiθ)|qdθ. (22)

Proof. The result is trivial for R = r = 1. Henceforth, we assume R > r ≥ 1.
Since P (z) is a polynomial of degree at most n, we can write

P (z) = P1(z)P2(z) =
k∏

j=1

(z − zj)
n∏

j=k+1

(z − zj), k ≥ 0

where all the zeros of P1(z) lie in |z| ≥ 1 and all the zeros of P2(z) lie in |z| < 1.
First we suppose that P1(z) has no zero on |z| = 1 so that all the zeros of
P1(z) lie in |z| > 1. Let Q2(z) = zn−kP2(1/z̄). Then all the zeros of Q2(z) lie
in |z| > 1 and |Q2(z)| = |P2(z)| for |z| = 1. Now consider the polynomial

F (z) = P1(z)Q2(z) =
k∏

j=1

(z − zj)
n∏

j=k+1

(1− zz̄j).

Then all the zeros of F (z) lie in |z| > 1 and for |z| = 1,

|F (z)| = |P1(z)||Q2(z)| = |P1(z)||P2(z)| = |P (z)|. (23)

Since P (z)/F (z) is not a constant by the maximum modulus principle

|P (z)| < |F (z)| for |z| ≤ 1.

Using Rouche’s theorem, it follows that the polynomial G(z) = P (z) + λF (z)
does not vanish in |z| ≤ t, t > 1 and for every real or complex number λ with
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|λ| > 1. Hence for every t > 1, all the zeros of G(tz) lie in |z| ≥ 1. Applying
(21) to the polynomial G(tz), we get

∣∣∣∣G(Rtz)− βG(rtz)
∣∣∣∣ <

∣∣∣∣RnG(tz/R)− β̄rnG(tz/r)
∣∣∣∣ for |z| < 1.

Taking z = eiθ/t, 0 ≤ θ < 2π, then |z| < 1/t < 1 and we get
∣∣∣∣G(Reiθ)− βG(reiθ)

∣∣∣∣ <

∣∣∣∣RnG(eiθ/R)− β̄rnG(eiθ/r)
∣∣∣∣,

for each θ, 0 ≤ θ < 2π, R > r ≥ 1 and β with |β| ≤ 1. This implies
∣∣∣∣G(Rz)− βG(rz)

∣∣∣∣ <

∣∣∣∣RnG(z/R)− β̄rnG(z/r)
∣∣∣∣, for |z| = 1.

Since RnG(z/R) − β̄rnG(z/r) does not vanish in |z| ≤ 1, therefore an appli-
cation of Rouche’s theorem shows that the polynomial

T (z) =
(

G(Rz)− βG(rz)
)

+ eiα

(
RnG(z/R)− β̄rnG(z/r)

)

does not vanish in |z| ≤ 1, for every real or complex number β with |β| ≤ 1,
R ≥ r ≥ 1 and α real. Replacing G(z) by P (z) + λF (z), it follows that the
polynomial

T (z) =
(

P (Rz)− βP (rz)
)

+ eiα

(
RnP (z/R)− β̄rnP (z/r)

)

+λ

[(
F (Rz)− βF (rz)

)
+ eiα

(
RnF (z/R)− β̄rnF (z/r)

)]
,

does not vanish in |z| ≤ 1, for every β, λ with |β| ≤ 1, |λ| > 1. This implies
by the similar argument as in the proof of Lemma 3 that

∣∣∣∣
(

P (Rz)− βP (rz)
)

+ eiα

(
RnP (z/R)− β̄rnP (z/r)

)∣∣∣∣

≤
∣∣∣∣
(

F (Rz)− βF (rz)
)

+ eiα

(
RnF (z/R)− β̄rnF (z/r)

)∣∣∣∣, (24)

for |z| ≤ 1, which in particular gives for R > r ≥ 1, |β| ≤ 1 and |z| = 1
∣∣∣∣
(

P (Rz)− βP (rz)
)

+ eiα

(
RnP (z/R)− β̄rnP (z/r)

)∣∣∣∣

≤
∣∣∣∣
(

F (Rz)− βF (rz)
)

+ eiα

(
RnF (z/R)− β̄rnF (z/r)

)∣∣∣∣.
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Hence for each q > 0 and 0 ≤ θ < 2π, we obtain
2π∫

0

∣∣∣∣
(

P (Rz)− βP (rz)
)

+ eiα

(
RnP (z/R)− β̄rnP (z/r)

)∣∣∣∣
q

dθ

≤
2π∫

0

∣∣∣∣
(

F (Rz)− βF (rz)
)

+ eiα

(
RnF (z/R)− β̄rnF (z/r)

)∣∣∣∣
q

dθ.

Since F (z) does not vanish in |z| < 1, therefore using Lemma 4 and (23), it
follows that for every β with |β| ≤ 1, R ≥ r ≥ 1, q > 0 and α real,

2π∫

0

∣∣∣∣
(

P (Rz)− βP (rz)
)

+ eiα

(
RnP (z/R)− β̄rnP (z/r)

)∣∣∣∣
q

dθ

≤
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|F (eiθ)|qdθ

=
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|P (eiθ)|qdθ. (25)

Now if P1(z) has a zero on |z| = 1, then the polynomial P ∗(z) = P1(uz)P2(z)
where u < 1, does not vanish in |z| < 1. Therefore, applying (25), we get for
every β with |β| ≤ 1, R ≥ r ≥ 1, q > 0 and α real,
2π∫

0

∣∣∣∣
(

P ∗(Rz)−βP (rz)
)

+eiα

(
RnP ∗(z/R)− β̄rnP ∗(z/r)

)∣∣∣∣
q

dθ

≤
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|P ∗(eiθ)|qdθ. (26)

Letting u → 1 in (26) so that P ∗ → P and using continuity, the desired result
follows immediately and this proves Lemma 5. ¤

3. Proofs of the theorems

Proof of Theorem 1. The result is trivial for R = r = 1. Henceforth, we
assume R > r ≥ 1. Since P (z) is a polynomial of degree atmost n, we can
write

P (z) = P1(z)P2(z) =
k∏

j=1

(z − zj)
n∏

j=k+1

(z − zj), k ≥ 0
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where all the zeros of P1(z) lie in |z| ≤ 1 and all the zeros of P2(z) lie in |z| > 1.
First we suppose that P1(z) has no zero on |z| = 1 so that all the zeros of
P1(z) lie in |z| < 1. Let Q2(z) = zn−kP2(1/z̄). Then all the zeros of Q2(z) lie
in |z| < 1 and |Q2(z)| = |P2(z)| for |z| = 1. Now consider the polynomial

f(z) = P1(z)Q2(z) =
k∏

j=1

(z − zj)
n∏

j=k+1

(1− z̄j), k ≥ 0,

then all the zeros of f(z) =
n∑

j=0
bjz

j lie in |z| < 1 and for |z| = 1,

|f(z)| = |P1(z)||Q2(z)| = |P1(z)||P2(z)| = |P (z)|.
Since P (z)/f(z) is not a constant by the maximum modulus principle

|P (z)| < |f(z)| for |z| > 1.

Using Rouche’s theorem, it follows that the polynomial g(z) = P (z) + λf(z)
has all its zeros in |z| < 1 and for every real or complex number λ with |λ| > 1.
Hence by Lemma 1, we have

|g(rz)| < |g(Rz)| for |z| = 1 and R > r ≥ 1.

Since all the zeros of g(Rz) lie in |z| < (1/R) < 1, we conclude that for every
β with |β| ≤ 1, all the zeros of h(z) = g(Rz)− βg(rz) = (P (Rz)− βP (rz)) +
λ(f(Rz)− βf(rz)) lie in |z| < 1. This implies (as in the case of Lemma 5)

|P (Rz)− βP (rz)| ≤ |f(Rz)− βf(rz)| for |z| ≥ 1 and R > r ≥ 1.

This in particular gives for each R > r ≥ 1 and q > 0,

2π∫

0

∣∣∣∣P (Reiθ)− βP (reiθ)
∣∣∣∣
q

dθ ≤
2π∫

0

∣∣∣∣f(Reiθ)− βf(reiθ)
∣∣∣∣
q

dθ. (27)

Again, since all the zeros of f(z) lie in |z| < 1, therefore as before f(Rz) −
βf(rz) has all its zeros in |z| < 1 for every real or complex number β with
|β| ≤ 1 and hence the operator Λγ defined by

Λγf(z) = P (Rz)− βf(rz) = (Rn − βrn)bnzn + · · ·+ (1− β)b0

is admissible. Thus by Lemma 1, for each q > 0, we have

{ 2π∫

0

∣∣∣∣f(Reiθ)−βf(reiθ)
∣∣∣∣
q

dθ

} 1
q

≤ max
(
|Rn−βrn|, |1−β|

){ 2π∫

0

∣∣∣∣f(eiθ)
∣∣∣∣
q

dθ

} 1
q

.

(28)
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Combining inequality (28) with (27) and noting that |f(eiθ)| = |P (eiθ)|, we
get

{ 2π∫

0

∣∣∣∣P (Reiθ)− βP (reiθ)
∣∣∣∣
q

dθ

} 1
q

≤ |Rn − βrn|
{ 2π∫

0

∣∣∣∣P (eiθ)
∣∣∣∣
q

dθ

} 1
q

.

In case P1(z) has a zero on |z| = 1, the inequality (28) follows by using similar
argument as in the case of Lemma 5. This completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis P ∈ Pn and P (z) does not vanish
in |z| < 1, therefore by Lemma 3, for every real or complex number β with
|β| ≤ 1, and θ, 0 < θ ≤ 2π,

∣∣∣∣P (Reiθ)− βP (reiθ)
∣∣∣∣ ≤

∣∣∣∣RnP (eiθ/R)− β̄rnP (eiθ/r)
∣∣∣∣, R ≥ r ≥ 1. (29)

Also by Lemma 5

2π∫

0

∣∣∣∣F (θ) + eiαG(θ)
∣∣∣∣
q

dθ ≤
∣∣∣∣(Rn − β̄rn)eiα + (1− β)

∣∣∣∣
q

2π∫

0

|P (eiθ)|qdθ (30)

where

F (θ) = P (Reiθ)− βP (reiθ) and G(θ) = RnP (eiθ/R)− β̄rnP (eiθ/r).

Integrating both sides of (30) with respect to α from 0 to 2π, we get for each
q > 0, R ≥ r ≥ 1 and α real,

2π∫

0

2π∫

0

∣∣∣∣F (θ) + eiαG(θ)
∣∣∣∣
q

dθdα

≤
{ 2π∫

0

∣∣∣∣(Rn − β̄rn)eiα + (1− β)
∣∣∣∣
q

dα

}{ 2π∫

0

|P (eiθ)|qdθ

}
. (31)

If F (θ) 6= 0, then by (29),
∣∣∣∣G(θ)/F (θ)

∣∣∣∣ ≥ 1 and therefore, we have
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2π∫

0

∣∣∣∣F (θ) + eiαG(θ)
∣∣∣∣
q

dα ≤ |F (θ)|q
2π∫

0

∣∣∣∣1 + eiα G(θ)
F (θ)

∣∣∣∣
q

dα

= |F (θ)|q
2π∫

0

∣∣∣∣
∣∣∣∣
G(θ)
F (θ)

∣∣∣∣ + eiα

∣∣∣∣
q

dα

≤ |F (θ)|q
2π∫

0

∣∣∣∣1 + eiα

∣∣∣∣
q

dα

=
∣∣∣∣P (Reiθ)− βP (reiθ)

∣∣∣∣
q

2π∫

0

∣∣∣∣1 + eiα

∣∣∣∣
q

dα.

For F (θ) = 0, this inequality is trivially true. Using this in (31), we conclude
that for every real or complex number β with |β| ≤ 1, R ≥ 1, q > 0 and α
real,
{ 2π∫

0

|1+ eiα|qdα

}{ 2π∫

0

|P (Reiθ)−βP (eiθ)|qdθ

}

≤
{ 2π∫

0

∣∣∣∣(Rn − β̄rn)eiα + (1− β)
∣∣∣∣
q

dα

}{ 2π∫

0

|P (eiθ)|qdθ

}
. (32)

And also, we have
{ 2π∫

0

∣∣∣∣(Rn − β̄rn)eiα + (1− β)
∣∣∣∣
q

dα

}

=
{ 2π∫

0

∣∣∣∣|(Rn − β̄rn)|eiα + |1− β|
∣∣∣∣
q

dα

}

=
{ 2π∫

0

∣∣∣∣|(Rn − βrn)|eiα + |1− β|
∣∣∣∣
q

dα

}
(33)

=
{ 2π∫

0

∣∣∣∣(Rn − βrn)eiα + (1− β)
∣∣∣∣
q

dα

}
.

Combining (32) and (33), we get the desired result.
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