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Abstract. In this paper we prove common fixed point theorems for two mappings under
the condition of R-weakly commuting complete M—fuzzy metric spaces. A lot of fixed point

theorems on ordinary metric spaces are special cases of our main result.

1. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh ([23]) in 1965.
Since then, to use this concept in topology and analysis many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani ([7]) and Kramosil and Michalek ([9]) have introduced the concept
of fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics particularly in connections with both
string and E-infinity theory which were given and studied by El Naschie [3,
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6, 22]. Many authors [8, 11, 14, 15] have proved fixed point theorem in fuzzy
(probabilistic) metric spaces. One should there exists a space between spaces.

2. PRELIMINARIES

Definition 2.1. ([7]) A binary operation x* : [0,1] x [0,1] — [0, 1] is a con-
tinuous t-norm if it satisfies the following conditions:

(1) * is associative and commutative,

(2) * is continuous,

(3) ax1l=aforallac|0,1],

(4) a*b < cxd whenever a < c and b < d, for each a,b,c,d € [0, 1].

Two typical examples of continuous t-norm are a xb = ab and a x b =
min(a, b).

Definition 2.2. ([19]) Let X be a nonempty set. A function S : X3 — [0, 00)
is said to be an S-metric on X, if for each x,y, z,a € X,
(1) S(z,y,2) >
(2) S(z,y,z )—01fandonly1f:v—y—z
(3) S(x,y,2) < S(z,z,a) + S(y,y,a) + S(z,z2,a).
The pair (X, S) is called an S-metric space.

Example 2.3. ([19]) We can easily check that the following examples are
S-metric spaces.
(1) Let X =R"™ and ||.|| a norm on X . Then S(z,y,2) = ||y + 2z — 2z| +
|ly — #|| is an S—metric on X.
In general, if X is a vector space over R and ||.|| a norm on X. Then
it is easy to see that

S(x,y,2) = llay + Bz + Az| + [ly — 2|,

where o + 8 = A for every «, 8 > 1, is an S-metric on X.
(2) Let X be a nonempty set and dj,ds be two ordinary metrics on X.
Then

S($7y72) = dl(.f,Z) + dg(@/,Z),
is an S-metric on X.

Here we introduce a M-fuzzy metric. We describe the space along with
some associated concepts in the following.

Definition 2.4. A 3-tuple (X, M, %) is called a M-fuzzy metric space if X is
an arbitrary (non-empty) set, % is a continuous ¢t-norm, and M is a fuzzy set
on X3 x (0,00), satisfying the following conditions for each z,y, z,a € X and
t,s, 7 >0,
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(1)

1) M(z,y,z,t) >0,
(2) M(z,y,2z,t) =1ifand only if v =y = 2,
(3) M(z,y,z,V{t,r,s}) > M(z,z,a,t) * M(y,y,a,s) * M(z,z,a,r)
where V{t,s,r} = max{t,s,r},
(4) M(z,y,z2,.):(0,00) — [0, 1] is continuous.
Example 2.5. Let ax b= ab for all a,b € [0, 1] we define

—S5(2,y,2)

M(z,y,2,t) =exp ¢
where S is an S—metric on set X. Then (X, M, %) is a M-fuzzy metric space.

Proof. (i) M(z,y,z,t) >0 for all z,y,z € X and ¢t > 0 is trivial.
(i)
M(z,y,z,t) =1 <= S(z,y,2)=0
= r=y=2=z
(iii) Since S(z,y,z) < S(z,z,a) + S(y,y,a) + S(z, z,a),
S(z,y,2) < S(z,x,a)+ S(y,y,a) + S(z, z,a)

tVsVvr T tVsVr
S(z,z,a S(y,y,a S(z,z,a
< ( ) n (y,y,a) n ( )
t S r
Thus
=S(z,y,2)
M(z,y,z,V{t,r,s}) = exp tvsvr
_ S(=z,xz,a)  S(y,y,a)  S(z,z,a)
> exp t s r
—S(z,z,a) —S(y,y,a) —S(z,2z,a)
= exp t .exp s .exp -
= M(z,z,a,t).M(y,y,a,s).M(z,z,a,1)
= M(z,z,a,t) « M(y,y,a,s) x M(z,z,a,r).
Hence (X, M, %) is a M-fuzzy metric space. O

A sequence {z,} in X is said to be convergent to = if M(x,,, zp, x,t) — 1 as
n —» 0o, for each ¢ > 0. It is called a Cauchy sequence if for each 0 < e < 1
and t > 0, there exist ng € N such that M(zy, xn, Tm,t) > 1 — ¢ for each
n,m > ng. The M-fuzzy metric space (X, M, x) is said to be complete if
every Cauchy sequence is convergent.

The following properties of M noted in the theorem below are easy conse-
quences of the definition.

Lemma 2.6. Let (X, M, %) be an M-fuzzy metric space. Then
(i) M(z,z,y,t) = M(y,y,z,1).
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(ii) M(x,z,y,t) is nondecreasing with respect to t for each z,y € X.
Proof. (i) For every t € (0,00), we have
Mz, z,y,t) = M(z,z,y,tVtVi)
> M(z,z,z,t) « M(z,x,2,t) * M(y,y,z,t)
= M(y,y,z,t).
Similarly, we can show that M(y,y,z,t) > M(x,z,y,t). Hence, we have
M(z,z,y,t) = M(y,y,x,t).
(ii) For every t,s € (0,00), let t > s, we have
M(z,z,y,t) = M(z,z,y,tVsVs)
M(z,z,z,t) *« M(x,x,z,5) * M(y,y,,s)
= M(y,y,z,s)
= M(z,x,y,s).
This completes the proof. O

Y

Example 2.7. Let a b = ab for all a,b € [0,1] and M; and My be two fuzzy
sets on X x X x (0,00) define by

M(z,y,z,t) = Mi(z,z,t) x Ma(y, z,t),
for all z,y,z € X. Then (X, M, *) is a M-fuzzy metric space.
Proof. (i) M(z,y,z,t) >0 for all z,y,z € X and ¢t > 0 is trivial.
(i)
M(z,y,2,t) =1 <= M(z,2,t) = Ma(y, z,t) =1
= r=y==z

(iii) Let t > s > r, it follows that,

M(z,y,z,tVsVr) = M(z,y,zt)

M (z, z,t) x Ma(y, 2, t)
> Mi(z,a,t)* Mi(a,z,t) * Ma(y,a,t) * Ma(a, z,t)
> Mi(z,a,t) * My(z,a,t) « Mq(y,a,t)
« Ma(y,a,t) « Mi(z,a,t) % Ma(z,a,t)
= M(z,z,a,t) « M(y,y,a,t)M(z, z,a,t)
> Mz, z,a,t) * M(y,y,a,8)M(z,z,a,r1).
Hence (X, M, *) is a M-fuzzy metric space. O

Lemma 2.8. Let (X, M, x*) be a M-fuzzy metric space. If sequence {x,} in
X converges to x then x is unique.
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Proof. Let {x,} converges to  and y. Then for each 0 < & < 1 there exist
ni,ny € N such that

Vn > ny = M(xp, xn,z,t) > 1 —¢,
and
n>ng = M(xp,xn,y,t) >1—c.
If set ng = max{ni,na}, then for every n,m > ny we have
M(z,z,y,t) > M(z,z,2p,t) x M(2, 2,20, 1) * M(y,y, T, t)
> (I1—¢g)x(1—¢e)*(1—¢e).

By taking the limit ¢ — 0 in above inequality we get M(z, x,y,t) > 1. Hence
M(z,x,y,t) =1s0 x =y. O

Lemma 2.9. Let (X, M, x) be a M-fuzzy metric space. Then the convergent
sequence {x,} in X is Cauchy.

Proof. Since lim,, o x, = z, for each 0 < € < 1 there exist ni,n9 € N such
that

n>ny = M(xp,xn,x,t) >1—¢,
and
m > ng = M(Zp, Tm,x,t) > 1 —¢.
If set ng = max{ni,na} , then for every n,m > ng we have
M(Zp, Tyy Ty t) > Mz, 2, 2, t) * M(2p, Tp, 2, t) * M(Tpy, Ty T, 1)
> (1—g)x(1—¢e)*(1—e).

By taking the limit ¢ — 0 in above inequality we get M (zp, Ty, Tm,t) > 1.
Hence {z,} is a Cauchy sequence. O

Lemma 2.10. Let (X, M, %) be a M-fuzzy metric space. If there exist se-
quences {x,} and {yn} such that im,_,oc x, = x and lim,_~ Yy =y, then

im M(zn, Tn, yn, t) = M(z,2,y,t).

n—oo

Proof. Since lim,, o0 T, = = and lim, .oy, = ¥y, for each 0 < ¢ < 1 there
exist n1,n9 € N such that

n>n = M(xp, xn,x,t) >1—¢
and

nZnQ :M(ynaynayvt) > 1—e.
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If set ng = max{ny, ne}, then for every n > ng we have
M(Zp, Ty Yy ) > M(Xgyy Ty T, ) % M(Xyy Ty 2, 8) % MYy Yy T, T)
> M(zp, p, x,t) * M(2p, T, 2, 1)
* M(Yn, Yn, Y, 1) * M(Yn, Yn, Y, t) * M(z, 2,9, 1)
> (1—e)x (1—e)*x (1—¢)xM(z,z,y,t).
By taking the limit when € — 0 in above inequality we get
M(Zp, Ty Yy t) > M(z, 2,9, t) (2.1)
On the other hand , we have
Mz, z,y,t) > M(z, 2,20, t) * M(y,y, 2p,t) * M(y,y, zp,t)
> M(x,z,xp,,t) * M(2, 2,2, t)
* MY, s Y, 1) * MY, Y, Y, 1) * M(z, 2,9, 1)
> (1—e)x (1—e)*x (1—¢)xM(x,x,y,t),
as € — 0 we have
Mz, z,y,t) > M(xn, Tn, Yn, t) (2.2)
Therefore, by (2.1) and (2.2) we have

lim M(zp, T, Yn, t) = M(z,x,y,1).

n—o0

This completes the proof. O

Definition 2.11. Let (X, M1, *) and (Y, Ma, x) be two M-fuzzy metric spaces
and T : X — Y be a map. T is called sequentially convergent if {x,} is M-
convergent in X provided {Tx,} is Ma-convergent in Y.

Definition 2.12. Let (X, M, *) be an M-fuzzy metric space and let f and g
be maps from X into itself. The maps f and g are said to be weakly commuting
if

M(fgx, fgz, gfx,t) > M(fz, fx,gz,t)
for each = € X.

Definition 2.13. Let (X, M, %) be an M-fuzzy metric space and f and g
be maps from X into itself. The maps f and g are said to be R—weakly
commuting if there exist a positive real number R such that
t
M(fgx, fgxa gfﬂf, t) 2 M(f-’lf, fxa gz, E)
for each z € X and ¢t > 0.

Weak commutativity implies R—weak commutivity in an M-fuzzy metric
space. However, R—weak commutativity implies weak commutativity only
when R < 1.
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Example 2.14. Let X = R? and M be the M-fuzzy metric on X3 defined
by

—{llz—yll+lly—=I1}
t .

M(x7 y? Z? t) =€

Then (X, M, ) is an M-fuzzy metric space. Define f(x,y) = (22, siny) and
g(x,y) = (2x — 1,siny). Then, we have

M(fg(x,y),fg(x,y),gf(x,y),t) = M(((Qx - 1)27Sin<Siny))7 ((Q‘T - 1)27
sin(siny)), (222 — 1,sin(siny)), t)
—\/m —z(xt—n?

= M(f(@9), f.). 92,), 5)
< M(f(z,y), f(z,y),9(x,y),1)

Therefore, for R = 2, f and g are R-weakly commuting. But f and g are not
weakly commuting.

Now we introduce and prove the main theorem in this paper.

3. MAIN RESULTS

Theorem 3.1. Let (X, My, %) be an M— fuzzy metric space, (Y, Ma, *) be a
complete M— fuzzy metric space such that axb = a.b for every a,b € [0,1]. Let
f and g be R-weakly commuting self mappings of X satisfying the following
conditions:

(a) f(X)C g(X);

(b) f or g is continuous;

(¢) My(Ffa,Ffx,Ffy,t) > Ma(Fga, Fgz, Fgy,t)*,
where 0 < k < 1 and FF : X — Y 1is one-to-one, continuous and
sequentially convergent.

Then there exist a unique common fized point z € X of f and g.

Proof. Let x¢ be an arbitrary point in X. By (a), there exist a point z; in
X such that fxg = gz;. Continuing in this process, we can choose x,4+1 such
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that fz, = grn41. Set y, = F fz,. Then

Mo (Yns Yns Ynt1,t) = Mao(F fan, Ffry, Ffrng,t)
> My(Fgzp, Fgrn, Fgzni1,t)*
= Mo(Ffap 1, Ffan 1, Ffr,t)F
= Mo(Yn-1,Yn—1,Yn )"
> Mo (Yn-2,Yn-2,Yn-1, )"
> Ma(yo,yo, y1,1)*".

Thus for all m > n, we have

Mao(Yns Yns Yms t) = Ma(Yn, Yn, Ynt1, LV EV 1)
> Mo (Yns Yns Ynt1,t) * M2(Yn, Yn, Yn+1, 1)
*M2(ym7ym7yn+l’t)
= Ma(Yns Yns Ynt1,1)-M2(Yn, Yn, Ynt1, £) - Ma(Ynt1, Y1, Ym, t)
> Mo (Y0, Y0, y1, 1) - Ma (Yo, ¥0, y1, )" Mo (Y, Y, Ynt1, 1)
= Mo (50,50, y1.t)*" - Ma(yo, 50, y1. t)*" Mo (Y1, Ynit, Ym, 1)

n_ pn+l I
Z MQ(y()ayO)ylyt)Z[k +k +...+k ]

2k™

> Ma(yo, Yo, y1,t)1-F.

Taking the limit as n,m — oo, we get Ma(Yn, Yn, Ym,t) — 1. This means
that {y,} is a Cauchy sequence. Since (Y, Ma,x*) is complete, the sequence
{yn} converges to some y € Y. Since F is sequentially convergent, {fz,}
converges to some z € X and also from the continuity of F', {F fz,,} converges
to Fz. Note that {y,} converges to y, then y, = F fx, = Fgx,11 — Fz=1y.
Also gx, converges to z in X. Let us suppose that the mapping f is continuous.
Then lim,, .o ffz, = fz and lim,,__, fgx, = fz. Further, since f and ¢
are R-weakly commuting, we have

t
Ml(fgxna fgxn; gfxn; t) Z Ml(flinv fxn)gxn) E)
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Taking the limit as n — oo in the above inequality, we have

Mi(fz, fz, im gfan,t) = lim Mi(fgxn, fg2n, 9fTn,t)
. t
> ngnoo/\/ll(f-%mfxmgxmﬁ)
t
= Ml(z,z,z,ﬁ)
= 1.

Hence, we get lim,,— o gfx, = fz. We now prove that z = fz. By (c)
Mo(Ffz, Ffz,Fz,t) = lm Mo(Fffay, Fffen, Ffn,t)
n—-=o0
> lim My(Fgfan, Fgftn, Fgen,t)"
n——oo
= My(Ffz,Ffz Fz t)~.
By the above inequality, we get F fz = Fz. Since F' is one-to-one, it follows
that fz = z. Since f(X) C ¢g(X), we can fined z; € X such that z = fz = gz;.
Now,
MQ(Fff$n7Fffxn7Ffz1>t) > M2(Fgfxn7Fgfxn>nglat)k
Taking the limit as n — oo, we get
MQ(FfZ7FfZ7FfZ17t> = 1141’)11 MQ(FfffEn,Fffxn,Ftht)
n o0
> lim My(Fgfan, Fgfe,, Fgz,t)k
n——ao0

= My(Ffz,Ffz, Fgz,t)*
= 1

)

which implies that Ffz = Ffz, i.e., z = fz = fz1 = gz1. Also, we have

t
Ml(fz7fzvgz7t) = Ml(fgzlafgzlagleat) 2 Ml(fzhlevgzla E) = 17

which implies that fz = gz. Thus z is a common fixed point of f and g.
Now in order to prove the uniquenees, let 2 # z be another common fixed
point of f and g. Then
MQ(FZ,FZ,FZ/,t) Mz(Ffz,Ffz,Ffz/,t)
M2(ngang7 ng,at)k
= My(Fz, Fz, Fz/, t)k

> MQ(FZ,FZ,FZ/,t),

AV

which is a contradiction. Therefore, Fz = Fz', i.e., z = 2 is unique common
fixed point of f and ¢. This completes the proof. O



638 Z. Hassanzadeh, S. Sedghi and J. K. Kim

—maz{|z—y|,|y—z|}

Example 3.2. Let X = [1,00), Y = R? and M1 (z,y,2,t) = e 7 )
Mo(z,y, z,t) = ei{HzintJr”yﬁH} . Then (X, My, ) is an M—fuzzy metric space.
Define f(x) =2z — 1 and g(x) = 2% on X. It is evident that f(X) C g(X), f
is continuous,

2(x—1)2

Mi(fgz, fgr,gf2,0) = e = Mi(fz, fr,g2,7)

for all x € X. It is easy to see that f and g are R-weakly commuting for

R = 2. If define F : X — Y by F(x) = (%,IT_I), then F is one-to-one,

continuous and sequentially convergent. Also, we have
MQ(Ffl',ny,FfZ,t)
20 —1 22 -2, 2y—1 2y—2,  2z—1 2z2—-2
= ) ) ) ) ) ?t>
Me((F—= =5, (= 20 (=)
—{\/(z—y>2+<z—y>2t+x/<y—z>2+<y—z>2}

= €
—{V2(lz—yD+ly—=[}
€ t

and

My (Fgz, Fgy, Fgz,t)
22 22 —1. y? -1, 2% 22-1
= a0 a U ayT o o\l a0 7t)
M2<(2 ; ) )G

~ (V@2 —y)?+ @222 V(2 =22) 2+ (v 2 —22)?)
t

e

—{V2(|lz—yllz+yD+|ly—=|ly+=|}
t

—{2v2(Jlz—yD+|y—=|}
7

IN

e

Mo(Ffz, Ffy, Ffzt)%

Therefore

MQ(fo>ny7Ffz7t) > M?(Fgfxangang7t)k

for k£ = % Thus all the conditions of Theorem 3.1 are satisfied and 1 is a

common fixed point of f and g.

Corollary 3.3. Let (X, M, %) be an M—fuzzy metric space and let f and g be
R-weakly commuting self mappings of X satisfying the following conditions:

(a) f(X)Cg(X);

(b) f or g is continuous;

(c) M(Ffx,Ffx,Ffyt) > M(Fgx, Fgx, Fgy,t)* where 0 < k < 1 and

F: X —Y 1is one-to-one, continuous and sequentially convergent.

Then f and g have a unique common fized point z € X. Moreover, if Ff = fF
and Fg = gF then F and g have a unique common fixed point z € X.
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Proof. By Theorem 3.1, f and g have a unique common fixed point z € X.
Now we show that Fz = z.

M(Fz,Fz,FFz,t) = M(Ffz,Ffz,FFfz1)

(
= M(Ffz,Ffz,FfFz,t)
> M(Fgz,Fgz, FgFz,t)
= M(Fz,Fz FFzt)k,
it followes that F'Fz = Fz, hence Fz = z from the injectivity of F. O

Corollary 3.4. Let (X, My,x*) be an M—fuzzy metric space, (Y, Mg, *) be a
complete M—fuzzy metric space and let f be a self-mapping of X satisfying
the following conditions:

(a) f is continuous;
(b) M(F fx, Ffx,Ffy,t) > M(Ffx,Ffa,F fy,t)* where 0 < k <1 and

F: X —Y is one-to-one, continuous and sequentially convergent.

Then f has a unique common fized point z € X.

Corollary 3.5. Let (X, M,x*) be a complete M—fuzzy metric space and let
f and g be R-weakly commuting self-mapping of X satisfying the following
conditions:

(a) f(X) Cg(X);
(b) f or g is continuous;
(c) eM(fx, fx, fy,t) > M(gz, gz, gy, t)* where 0 < k < 1 .

Then f and g have a unique common fized point z € X.

Proof. 1f set F' = I identity map then by Corollary 3.3 follows that f and g
have a unique common fixed point z € X. O

Corollary 3.6. Let (X, M, x*) be a complete M— fuzzy metric space, F', f and
g be self-mappings of X and let Ff and Fg be R-weakly commuting satisfying
the following conditions:

(a) Ff(X)C Fg(X);
(b) F'f or Fg is continuous;
(c) M(Ffx,Ffx,Ffyt) > M(Fgx, Fgx, Fgy,t)* where 0 < k < 1.

If Ff = fF and Fg = gF then F, f and g have a unique common fized point
z e X.
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Proof. By Corollary 3.5, F'f and F'g have a unique common fixed point z € X.
That is F fz = Fgz = z. Now we show that fz = z.

M(Fz,Fz,2,t) = M(FFfz,FFfz Ffz,t)
FfFz,FfFz Ffz1)

v

M(
M(FgFz FgFz, Fgz,t)*
= M(FFgz FFgz Fgz,t)*
M(Fz,Fz, z,t),

it follows that F'z = z, hence z = Ffz = fFz = fz. Similarly we can show
that gz = z. This completes the proof. O
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