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Abstract. In this paper we prove common fixed point theorems for two mappings under

the condition of R-weakly commuting completeM−fuzzy metric spaces. A lot of fixed point

theorems on ordinary metric spaces are special cases of our main result.

1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh ([23]) in 1965.
Since then, to use this concept in topology and analysis many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani ([7]) and Kramosil and Michalek ([9]) have introduced the concept
of fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics particularly in connections with both
string and E-infinity theory which were given and studied by El Naschie [3,
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6, 22]. Many authors [8, 11, 14, 15] have proved fixed point theorem in fuzzy
(probabilistic) metric spaces. One should there exists a space between spaces.

2. Preliminaries

Definition 2.1. ([7]) A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a con-
tinuous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b =
min(a, b).

Definition 2.2. ([19]) Let X be a nonempty set. A function S : X3 → [0,∞)
is said to be an S-metric on X, if for each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Example 2.3. ([19]) We can easily check that the following examples are
S-metric spaces.

(1) Let X = Rn and ‖.‖ a norm on X . Then S(x, y, z) = ‖y + z − 2x‖+
‖y − z‖ is an S−metric on X.
In general, if X is a vector space over R and ‖.‖ a norm on X. Then
it is easy to see that

S(x, y, z) = ‖αy + βz + λx‖+ ‖y − z‖,
where α+ β = λ for every α, β ≥ 1, is an S-metric on X.

(2) Let X be a nonempty set and d1, d2 be two ordinary metrics on X.
Then

S(x, y, z) = d1(x, z) + d2(y, z),

is an S-metric on X.

Here we introduce a M-fuzzy metric. We describe the space along with
some associated concepts in the following.

Definition 2.4. A 3-tuple (X,M, ∗) is called aM-fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm, and M is a fuzzy set
on X3 × (0,∞), satisfying the following conditions for each x, y, z, a ∈ X and
t, s, r > 0,
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(1) M(x, y, z, t) > 0,
(2) M(x, y, z, t) = 1 if and only if x = y = z,
(3) M(x, y, z,∨{t, r, s}) ≥M(x, x, a, t) ∗M(y, y, a, s) ∗M(z, z, a, r)

where ∨{t, s, r} = max{t, s, r},
(4) M(x, y, z, .) : (0,∞) −→ [0, 1] is continuous.

Example 2.5. Let a ∗ b = ab for all a, b ∈ [0, 1] we define

M(x, y, z, t) = exp
−S(x,y,z)

t

where S is an S−metric on set X. Then (X,M, ∗) is aM-fuzzy metric space.

Proof. (i) M(x, y, z, t) > 0 for all x, y, z ∈ X and t > 0 is trivial.
(ii)

M(x, y, z, t) = 1 ⇐⇒ S(x, y, z) = 0

⇐⇒ x = y = z.

(iii) Since S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a),

S(x, y, z)

t ∨ s ∨ r
≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

t ∨ s ∨ r

≤ S(x, x, a)

t
+
S(y, y, a)

s
+
S(z, z, a)

r
.

Thus

M(x, y, z,∨{t, r, s}) = exp
−S(x,y,z)

t∨s∨r

≥ exp−
S(x,x,a)

t
−S(y,y,a)

s
−S(z,z,a)

r

= exp
−S(x,x,a)

t .exp
−S(y,y,a)

s .exp
−S(z,z,a)

r

= M(x, x, a, t).M(y, y, a, s).M(z, z, a, r)

= M(x, x, a, t) ∗M(y, y, a, s) ∗M(z, z, a, r).

Hence (X,M, ∗) is a M-fuzzy metric space. �

A sequence {xn} in X is said to be convergent to x ifM(xn, xn, x, t) −→ 1 as
n −→ ∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1
and t > 0, there exist n0 ∈ N such that M(xn, xn, xm, t) > 1 − ε for each
n,m ≥ n0. The M-fuzzy metric space (X,M, ∗) is said to be complete if
every Cauchy sequence is convergent.

The following properties of M noted in the theorem below are easy conse-
quences of the definition.

Lemma 2.6. Let (X,M, ∗) be an M-fuzzy metric space. Then

(i) M(x, x, y, t) =M(y, y, x, t).
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(ii) M(x, x, y, t) is nondecreasing with respect to t for each x, y ∈ X.

Proof. (i) For every t ∈ (0,∞), we have

M(x, x, y, t) = M(x, x, y, t ∨ t ∨ t)
≥ M(x, x, x, t) ∗M(x, x, x, t) ∗M(y, y, x, t)

= M(y, y, x, t).

Similarly, we can show that M(y, y, x, t) ≥M(x, x, y, t). Hence, we have

M(x, x, y, t) =M(y, y, x, t).

(ii) For every t, s ∈ (0,∞), let t ≥ s, we have

M(x, x, y, t) = M(x, x, y, t ∨ s ∨ s)
≥ M(x, x, x, t) ∗M(x, x, x, s) ∗M(y, y, x, s)

= M(y, y, x, s)

= M(x, x, y, s).

This completes the proof. �

Example 2.7. Let a ∗ b = ab for all a, b ∈ [0, 1] and M1 and M2 be two fuzzy
sets on X ×X × (0,∞) define by

M(x, y, z, t) = M1(x, z, t) ∗M2(y, z, t),

for all x, y, z ∈ X. Then (X,M, ∗) is a M-fuzzy metric space.

Proof. (i) M(x, y, z, t) > 0 for all x, y, z ∈ X and t > 0 is trivial.
(ii)

M(x, y, z, t) = 1 ⇐⇒ M1(x, z, t) = M2(y, z, t) = 1

⇐⇒ x = y = z.

(iii) Let t ≥ s ≥ r, it follows that,

M(x, y, z, t ∨ s ∨ r) = M(x, y, z, t)

= M1(x, z, t) ∗M2(y, z, t)

≥ M1(x, a, t) ∗M1(a, z, t) ∗M2(y, a, t) ∗M2(a, z, t)

≥ M1(x, a, t) ∗M2(x, a, t) ∗M1(y, a, t)

∗M2(y, a, t) ∗M1(z, a, t) ∗M2(z, a, t)

= M(x, x, a, t) ∗M(y, y, a, t)M(z, z, a, t)

≥ M(x, x, a, t) ∗M(y, y, a, s)M(z, z, a, r).

Hence (X,M, ∗) is a M-fuzzy metric space. �

Lemma 2.8. Let (X,M, ∗) be a M-fuzzy metric space. If sequence {xn} in
X converges to x then x is unique.
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Proof. Let {xn} converges to x and y. Then for each 0 < ε < 1 there exist
n1, n2 ∈ N such that

∀n ≥ n1 =⇒M(xn, xn, x, t) > 1− ε,

and

n ≥ n2 =⇒M(xn, xn, y, t) > 1− ε.

If set n0 = max{n1, n2}, then for every n,m ≥ n0 we have

M(x, x, y, t) ≥ M(x, x, xn, t) ∗M(x, x, xn, t) ∗M(y, y, xn, t)

> (1− ε) ∗ (1− ε) ∗ (1− ε).

By taking the limit ε −→ 0 in above inequality we getM(x, x, y, t) ≥ 1. Hence
M(x, x, y, t) = 1 so x = y. �

Lemma 2.9. Let (X,M, ∗) be a M-fuzzy metric space. Then the convergent
sequence {xn} in X is Cauchy.

Proof. Since limn→∞ xn = x, for each 0 < ε < 1 there exist n1, n2 ∈ N such
that

n ≥ n1 =⇒M(xn, xn, x, t) > 1− ε,

and

m ≥ n2 =⇒M(xm, xm, x, t) > 1− ε.

If set n0 = max{n1, n2} , then for every n,m ≥ n0 we have

M(xn, xn, xm, t) ≥ M(xn, xn, x, t) ∗M(xn, xn, x, t) ∗M(xm, xm, x, t)

> (1− ε) ∗ (1− ε) ∗ (1− ε).

By taking the limit ε −→ 0 in above inequality we get M(xn, xn, xm, t) ≥ 1.
Hence {xn} is a Cauchy sequence. �

Lemma 2.10. Let (X,M, ∗) be a M-fuzzy metric space. If there exist se-
quences {xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

M(xn, xn, yn, t) =M(x, x, y, t).

Proof. Since limn→∞ xn = x and limn→∞ yn = y, for each 0 < ε < 1 there
exist n1, n2 ∈ N such that

n ≥ n1 ⇒M(xn, xn, x, t) > 1− ε

and

n ≥ n2 ⇒M(yn, yn, y, t) > 1− ε.
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If set n0 = max{n1, n2}, then for every n ≥ n0 we have

M(xn, xn, yn, t) ≥M(xn, xn, x, t) ∗M(xn, xn, x, t) ∗M(yn, yn, x, t)

≥M(xn, xn, x, t) ∗M(xn, xn, x, t)

∗M(yn, yn, y, t) ∗M(yn, yn, y, t) ∗M(x, x, y, t)

> (1− ε ) ∗ (1− ε ) ∗ (1− ε ) ∗M(x, x, y, t).

By taking the limit when ε→ 0 in above inequality we get

M(xn, xn, yn, t) ≥M(x, x, y, t) (2.1)

On the other hand , we have

M(x, x, y, t) ≥M(x, x, xn, t) ∗M(y, y, xn, t) ∗M(y, y, xn, t)

≥M(x, x, xn, t) ∗M(x, x, xn, t)

∗M(y, y, yn, t) ∗M(y, y, yn, t) ∗M(x, x, y, t)

> (1− ε ) ∗ (1− ε ) ∗ (1− ε ) ∗M(x, x, y, t),

as ε→ 0 we have
M(x, x, y, t) >M(xn, xn, yn, t) (2.2)

Therefore, by (2.1) and (2.2) we have

lim
n→∞

M(xn, xn, yn, t) =M(x, x, y, t).

This completes the proof. �

Definition 2.11. Let (X,M1, ∗) and (Y,M2, ∗) be twoM-fuzzy metric spaces
and T : X −→ Y be a map. T is called sequentially convergent if {xn} isM1-
convergent in X provided {Txn} is M2-convergent in Y .

Definition 2.12. Let (X,M, ∗) be anM-fuzzy metric space and let f and g
be maps from X into itself. The maps f and g are said to be weakly commuting
if

M(fgx, fgx, gfx, t) ≥M(fx, fx, gx, t)

for each x ∈ X.

Definition 2.13. Let (X,M, ∗) be an M-fuzzy metric space and f and g
be maps from X into itself. The maps f and g are said to be R−weakly
commuting if there exist a positive real number R such that

M(fgx, fgx, gfx, t) ≥M(fx, fx, gx,
t

R
)

for each x ∈ X and t > 0.

Weak commutativity implies R−weak commutivity in an M-fuzzy metric
space. However, R−weak commutativity implies weak commutativity only
when R ≤ 1.
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Example 2.14. Let X = R2 and M be the M-fuzzy metric on X3 defined
by

M(x, y, z, t) = e
−{‖x−y‖+‖y−z‖}

t .

Then (X,M, ∗) is an M-fuzzy metric space. Define f(x, y) = (x2, sin y) and
g(x, y) = (2x− 1, sin y). Then, we have

M(fg(x, y), fg(x, y), gf(x, y), t) = M(((2x− 1)2, sin(sin y)), ((2x− 1)2,

sin(sin y)), (2x2 − 1, sin(sin y)), t)

= e
−
√

(2(x−1)2)2

t = e
−2(x−1)2

t

= M(f(x, y), f(x, y), g(x, y),
t

2
)

< M(f(x, y), f(x, y), g(x, y), t)

Therefore, for R = 2, f and g are R-weakly commuting. But f and g are not
weakly commuting.

Now we introduce and prove the main theorem in this paper.

3. Main Results

Theorem 3.1. Let (X,M1, ∗) be an M− fuzzy metric space, (Y,M2, ∗) be a
completeM−fuzzy metric space such that a∗b = a.b for every a, b ∈ [0, 1]. Let
f and g be R-weakly commuting self mappings of X satisfying the following
conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) M1(Ffx, Ffx, Ffy, t) ≥M2(Fgx, Fgx, Fgy, t)

k,
where 0 < k < 1 and F : X −→ Y is one-to-one, continuous and
sequentially convergent.

Then there exist a unique common fixed point z ∈ X of f and g.

Proof. Let x0 be an arbitrary point in X. By (a), there exist a point x1 in
X such that fx0 = gx1. Continuing in this process, we can choose xn+1 such
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that fxn = gxn+1. Set yn = Ffxn. Then

M2(yn, yn, yn+1, t) = M2(Ffxn, Ffxn, Ffxn+1, t)

≥ M2(Fgxn, Fgxn, Fgxn+1, t)
k

= M2(Ffxn−1, Ffxn−1, Ffxn, t)
k

= M2(yn−1, yn−1, yn, t)
k

≥ M2(yn−2, yn−2, yn−1, t)
k2

...

≥ M2(y0, y0, y1, t)
kn .

Thus for all m > n, we have

M2(yn, yn, ym, t) =M2(yn, yn, yn+1, t ∨ t ∨ t)
≥M2(yn, yn, yn+1, t) ∗M2(yn, yn, yn+1, t)

∗M2(ym, ym, yn+1, t)

=M2(yn, yn, yn+1, t).M2(yn, yn, yn+1, t).M2(yn+1, yn+1, ym, t)

≥M2(y0, y0, y1, t)
kn .M2(y0, y0, y1, t)

kn .M2(ym, ym, yn+1, t)

=M2(y0, y0, y1, t)
kn .M2(y0, y0, y1, t)

kn .M2(yn+1, yn+1, ym, t)

...

≥M2(y0, y0, y1, t)
2[kn+kn+1+...+km−1]

≥M2(y0, y0, y1, t)
2kn

1−k .

Taking the limit as n,m −→ ∞, we get M2(yn, yn, ym, t) −→ 1. This means
that {yn} is a Cauchy sequence. Since (Y,M2, ∗) is complete, the sequence
{yn} converges to some y ∈ Y . Since F is sequentially convergent, {fxn}
converges to some z ∈ X and also from the continuity of F , {Ffxn} converges
to Fz. Note that {yn} converges to y, then yn = Ffxn = Fgxn+1 → Fz = y.
Also gxn converges to z inX. Let us suppose that the mapping f is continuous.
Then limn−→∞ ffxn = fz and limn−→∞ fgxn = fz. Further, since f and g
are R-weakly commuting, we have

M1(fgxn, fgxn, gfxn, t) ≥M1(fxn, fxn, gxn,
t

R
).
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Taking the limit as n −→∞ in the above inequality, we have

M1(fz, fz, lim
n−→∞

gfxn, t) = lim
n−→∞

M1(fgxn, fgxn, gfxn, t)

≥ lim
n−→∞

M1(fxn, fxn, gxn,
t

R
)

= M1(z, z, z,
t

R
)

= 1.

Hence, we get limn−→∞ gfxn = fz. We now prove that z = fz. By (c)

M2(Ffz, Ffz, Fz, t) = lim
n−→∞

M2(Fffxn, Fffxn, Ffxn, t)

≥ lim
n−→∞

M2(Fgfxn, Fgfxn, Fgxn, t)
k

= M2(Ffz, Ffz, Fz, t)
k.

By the above inequality, we get Ffz = Fz. Since F is one-to-one, it follows
that fz = z. Since f(X) ⊆ g(X), we can fined z1 ∈ X such that z = fz = gz1.
Now,

M2(Fffxn, Fffxn, Ffz1, t) ≥M2(Fgfxn, Fgfxn, Fgz1, t)
k.

Taking the limit as n −→∞, we get

M2(Ffz, Ffz, Ffz1, t) = lim
n−→∞

M2(Fffxn, Fffxn, Ffz1, t)

≥ lim
n−→∞

M2(Fgfxn, Fgfxn, Fgz1, t)
k

= M2(Ffz, Ffz, Fgz1, t)
k

= 1,

which implies that Ffz = Ffz1, i.e., z = fz = fz1 = gz1. Also, we have

M1(fz, fz, gz, t) =M1(fgz1, fgz1, gfz1, t) ≥M1(fz1, fz1, gz1,
t

R
) = 1,

which implies that fz = gz. Thus z is a common fixed point of f and g.
Now in order to prove the uniquenees, let z

′ 6= z be another common fixed
point of f and g. Then

M2(Fz, Fz, Fz
′
, t) = M2(Ffz, Ffz, Ffz

′
, t)

≥ M2(Fgz, Fgz, Fgz
′
, t)k

= M2(Fz, Fz, Fz
′
, t)k

> M2(Fz, Fz, Fz
′
, t),

which is a contradiction. Therefore, Fz = Fz
′
, i.e., z = z

′
is unique common

fixed point of f and g. This completes the proof. �
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Example 3.2. Let X = [1,∞) , Y = R2 andM1(x, y, z, t) = e
−max{|x−y|,|y−z|}

t ,

M2(x, y, z, t) = e
−{‖x−y‖+‖y−z‖}

t . Then (X,M1, ∗) is anM−fuzzy metric space.
Define f(x) = 2x− 1 and g(x) = x2 on X. It is evident that f(X) ⊆ g(X), f
is continuous,

M1(fgx, fgx, gfx, t) = e
−2(x−1)2

t =M1(fx, fx, gx,
t

2
)

for all x ∈ X. It is easy to see that f and g are R-weakly commuting for
R = 2. If define F : X −→ Y by F (x) = (x2 ,

x−1
2 ), then F is one-to-one,

continuous and sequentially convergent. Also, we have

M2(Ffx, Ffy, Ffz, t)

= M2

(
(
2x− 1

2
,
2x− 2

2
), (

2y − 1

2
,
2y − 2

2
), (

2z − 1

2
,
2z − 2

2
), t

)
= e

−{
√

(x−y)2+(x−y)2+
√

(y−z)2+(y−z)2}
t

= e
−{
√

2(|x−y|)+|y−z|}
t

and

M2(Fgx, Fgy, Fgz, t)

= M2

(
(
x2

2
,
x2 − 1

2
), (

y2

2
,
y2 − 1

2
), (

z2

2
,
z2 − 1

2
), t

)
= e

−{
√

(x2−y2)2+(x2−y2)2+
√

(y2−z2)2+(y2−z2)2}
t

= e
−{
√
2(|x−y||x+y|)+|y−z||y+z|}

t

≤ e
−{2
√
2(|x−y|)+|y−z|}

t

= M2(Ffx, Ffy, Ffz, t)
2.

Therefore

M2(Ffx, Ffy, Ffz, t) ≥M2(Fgfx, Fgy, Fgz, t)
k

for k = 1
2 . Thus all the conditions of Theorem 3.1 are satisfied and 1 is a

common fixed point of f and g.

Corollary 3.3. Let (X,M, ∗) be anM−fuzzy metric space and let f and g be
R-weakly commuting self mappings of X satisfying the following conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) M(Ffx, Ffx, Ffy, t) ≥ M(Fgx, Fgx, Fgy, t)k where 0 < k < 1 and

F : X −→ Y is one-to-one, continuous and sequentially convergent.

Then f and g have a unique common fixed point z ∈ X. Moreover, if Ff = fF
and Fg = gF then F and g have a unique common fixed point z ∈ X.
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Proof. By Theorem 3.1, f and g have a unique common fixed point z ∈ X.
Now we show that Fz = z.

M(Fz, Fz, FFz, t) = M(Ffz, Ffz, FFfz, t)

= M(Ffz, Ffz, FfFz, t)

≥ M(Fgz, Fgz, FgFz, t)

= M(Fz, Fz, FFz, t)k,

it followes that FFz = Fz, hence Fz = z from the injectivity of F . �

Corollary 3.4. Let (X,M1, ∗) be an M−fuzzy metric space, (Y,M2, ∗) be a
complete M−fuzzy metric space and let f be a self-mapping of X satisfying
the following conditions:

(a) f is continuous;
(b) M(Ffx, Ffx, Ffy, t) ≥ M(Ffx, Ffx, Ffy, t)k where 0 < k < 1 and

F : X −→ Y is one-to-one, continuous and sequentially convergent.

Then f has a unique common fixed point z ∈ X.

Corollary 3.5. Let (X,M, ∗) be a complete M−fuzzy metric space and let
f and g be R-weakly commuting self-mapping of X satisfying the following
conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) cM(fx, fx, fy, t) ≥M(gx, gx, gy, t)k where 0 < k < 1 .

Then f and g have a unique common fixed point z ∈ X.

Proof. If set F = I identity map then by Corollary 3.3 follows that f and g
have a unique common fixed point z ∈ X. �

Corollary 3.6. Let (X,M, ∗) be a completeM−fuzzy metric space, F , f and
g be self-mappings of X and let Ff and Fg be R-weakly commuting satisfying
the following conditions:

(a) Ff(X) ⊆ Fg(X);
(b) Ff or Fg is continuous;
(c) M(Ffx, Ffx, Ffy, t) ≥M(Fgx, Fgx, Fgy, t)k where 0 < k < 1.

If Ff = fF and Fg = gF then F , f and g have a unique common fixed point
z ∈ X.
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Proof. By Corollary 3.5, Ff and Fg have a unique common fixed point z ∈ X.
That is Ffz = Fgz = z. Now we show that fz = z.

M(Fz, Fz, z, t) = M(FFfz, FFfz, Ffz, t)

= M(FfFz, FfFz, Ffz, t)

≥ M(FgFz, FgFz, Fgz, t)k

= M(FFgz, FFgz, Fgz, t)k

= M(Fz, Fz, z, t)k,

it follows that Fz = z, hence z = Ffz = fFz = fz. Similarly we can show
that gz = z. This completes the proof. �
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[11] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst, 144
(2004), 431–439.

[12] S. Moradi and M. Omid, A fixed point theorem for integral type inequality depending
on another function, Int. J. Math. Anal., 4(30) (2010), 1491 –1499.

[13] IL. Reilly, PV. Subrahmanyam and MK. Vamanamurthy, Cauchy sequences in
quasipseudo- metric spaces. Monatsh Math., 93 (1982), 127–40.

[14] R. Saadati and GH. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons
and Fractals, 27 (2006), 331-44.



Common fixed point theorem in M−fuzzy metric spaces 641

[15] B. Schweizer, H. Sherwood and R.M. Tardiff, Contractions on PM-space examples and
counterexamples, Stochastica, 1 (1988), 5–17.

[16] S. Sedghi and N. Shobe, Common fixed point theorem in b-fuzzy metric space, Nonlinear
Funct. Anal. and Appl., 17(3) (2012), 349–359.

[17] S. Sedghi and N. Shobe, Common fixed point theorem for R-weakly commuting maps
in b-fuzzy metric space, Nonlinear Funct. Anal. and Appl., 19(2) (2014), 285–295.

[18] S. Sedghi, N. Shobe, D. Tatjana and Atena Javaheri, Coupled fixed point theorem in
b-fuzzy metric spaces, submitted.

[19] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-
metric spaces, Mat. Vanik, 64 (2012), 258–266.

[20] S. Sedghi, N. Shobe and M.A. Selahshoor, A common fixed point theorem for Four
mappings in two complete fuzzy metric spaces, Advances in Fuzzy Math., 1(1) (2006).

[21] S. Sedghi, D. Turkoglu and N. Shobe, Generalization common fixed point theorem in
complete fuzzy metric spaces, J. of Comput. Anal. and Appl., 3(9) (2007), 337–348 .

[22] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos,
Solitons and Fractals, 24(2) (2005), 407–422.

[23] L.A. Zadeh, Fuzzy sets, Inform and Control, 8 (1965), 338–353.


