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Abstract. The aim of this paper is to develop a new common fixed point theorem of L-fuzzy

mappings under generalized Θ-contraction in the context of complete metric space. We also

provide an example to show the significance of the investigation of this paper.

1. Introduction and Preliminaries

Solving real-world problems becomes apparently easier with the introduc-
tion of fuzzy set theory in 1965 by Zadeh [32], as it helps in making the
description of vagueness and imprecision clear and more precise. Later in
1967, Goguen [16] extended this idea to L-fuzzy set theory by replacing the
interval [0, 1]. There are basically two understandings of the meaning of L,
one is when L is a complete lattice equipped with a multiplication ∗ operator
satisfying certain conditions as shown in the initial paper [16] and the sec-
ond understanding of the meaning of L is that L is a completely distributive
complete lattice with an order-reversing involution.

In 2014, Rashid et al. [25] introduced the notion of βFL-admissible for a pair
of L-fuzzy mappings and utilized it to proved a common L-fuzzy fixed point
theorem. For more details on this direction, we refer the reader to [1, 9, 26].
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Let (X, d) be a metric space and CB(X) be the family of nonempty, closed
and bounded subsets of X. For A,B ∈ CB(X), define

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where
d(x,A) = inf

y∈A
d(x, y).

Definition 1.1. ([16]) A partially ordered set (L,-L) is called

(i) a lattice, if a ∨ b ∈ L, a ∧ b ∈ L for any a, b ∈ L.
(ii) a complete lattice, if ∨A ∈ L, ∧A ∈ L for any A ⊆ L.

(iii) distributive if a∨ (b∧ c) = (a∨ b)∧ (a∨ c), a∧ (b∨ c) = (a∧ b)∨ (a∧ c)
for any a, b, c ∈ L.

Definition 1.2. ([16]) Let L be a lattice with top element 1L and bottom
element 0L and let a, b ∈ L. Then b is called a complement of a, if a ∨ b = 1L,
and a ∧ b = 0L.

If a ∈ L has a complement element, then it is unique. It is denoted by á.

Definition 1.3. ([16]) A L−fuzzy set A on a nonempty set X is a function
A : X → L, where L is complete distributive lattice with 1L and 0L.

Remark 1.4. The class of L−fuzzy sets is larger than the class of fuzzy sets
as an L−fuzzy set is a fuzzy set if L = [0, 1].

The αL-level set of L−fuzzy set A, is denoted by AαL , and is defined as
follows

AαL = {x : αL-LA(x)} if αL ∈ L\{0L},
A0L = {x : 0L-LA(x)}.

Here cl(B) and =L(Y ) denote the closure of the set B and L-fuzzy set on Y ,
respectively.

We denote and define the characteristic function χLA of a L-fuzzy set A as
follows:

χLA :=

{
0L if x /∈ A
1L if x ∈ A .

Definition 1.5. Let X be an arbitrary set and Y be a metric space. A
mapping T is called L−fuzzy mapping if T is a mapping from X into =L(Y ).
A L−fuzzy mapping T is a L−fuzzy subset on X×Y with membership function
T (x)(y). The function T (x)(y) is the grade of membership of y in T (x).

Definition 1.6. Let (X, d) be a metric space and S, T be L−fuzzy mappings
from X into =L(X). A point z ∈ X is called a L−fuzzy fixed point of T if
z ∈ [Tz]αL

, where αL ∈ L\{0L}. The point z ∈ X is called a common L−fuzzy
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fixed point of S and T if z ∈ [Sz]αL
∩ [Tz]αL

. When αL = 1L, it is called a
common fixed point of L−fuzzy mappings.

Very recently, Jleli and Samet [20] introduced a new type of contraction
called Θ-contraction and established some new fixed point theorems for such
contraction in the context of generalized metric spaces.

Definition 1.7. Let Θ : (0,∞)→ (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;
(Θ2) for each sequence {αn} ⊆ R+, limn→∞Θ(αn) = 1 if and only if

limn→∞ αn = 0;

(Θ3) there exists 0 < h < 1 and l ∈ (0,∞] such that limα→0+
Θ(α)−1
αh

= l.

A mapping S : X → X is said to be Θ-contraction if there exist the function
Θ satisfying (Θ1)-(Θ3) and a constant k ∈ (0, 1) such that for all x, y ∈ X,

d(Sx, Sy) > 0 =⇒ Θ(d(Sx, Sy)) ≤ [Θ(d(x, y))]k. (1.1)

Theorem 1.8. ([20]) Let (X, d) be a complete metric space and S : X → X
be a Θ-contraction, Then S has a unique fixed point.

They showed that any Banach contraction is a particular case of Θ-contraction
while there are Θ-contractions which are not Banach contractions. To be
consistent with Samet et al. [20], we denote by the Ψ set of all functions
Θ : (0,∞)→ (1,∞) satisfying the above conditions (Θ1)-(Θ3).

Later on Altune et al. [17] modified the above definitions by adding a
general condition (Θ4) which is given in this way:

(Θ4) Θ(inf A) = inf Θ(A) for all A ⊂ (0,∞) with inf A > 0.

Following Altune et al. [17], we represent the set of all continuous functions
Θ : R+ → R satisfying (Θ1)− (Θ4) conditions by Ω.

For more details on Θ-contraction, we refer the reader to [3, 4, 19, 21, 23, 30].

In this paper, we use a generalized Θ-contraction to obtain common fixed
points for L- fuzzy mappings in the setting of metric spaces.

For the sake of convenience, we first state some known results for subsequent
use in the next section.

Lemma 1.9. Let (X, d) be a metric space and A,B ∈ CB(X). Then for each
a ∈ A, we have

d(a,B) ≤ H(A,B).
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2. Main Results

In this way, we state and prove a common fixed point theorem for L-fuzzy
mappings.

Theorem 2.1. Let (X, d) be a complete metric space, S, T be L-fuzzy map-
pings from X into =L(X), and for each αL ∈ L\{0L}, [Sx]αL(x) , [Ty]αL(y)

be nonempty closed bounded subsets of X. If there exist some Θ ∈ Ω and
k ∈ (0, 1) such that

Θ
(
H
(

[Sx]αL(x) , [Ty]αL(y)

))
≤ Θ(M(x, y))k (2.1)

for all x, y ∈ X with H
(

[Sx]αL(x) , [Ty]αL(y)

)
> 0, where

M(x, y) = max
{
d(x, y), d

(
x, [Sx]αL(x)

)
, d
(
y, [Ty]αL(y)

)
,

1

2

[
d(x, [Ty]αL(y) + d(y, [Sx]αL(x))

]}
.

(2.2)

Then S and T have a common L-fuzzy fixed point.

Proof. Let x0 be an arbitrary point in X, then by hypotheses there exists
αL(x0) ∈ L\{0L} such that [Sx0]αL(x0) is a nonempty closed bounded subset

of X and let x1 ∈ [Sx0]αL(x0) . For this x1, there exists αL(x1) ∈ L\{0L} such

that [Tx1]αL(x1) is a nonempty, closed and bounded subset of X. By Lemma

1.9, (Θ1) and (2.1), we have

Θ(d
(
x1, [Tx1]αL(x1)

)
≤ Θ

(
H
(

[Sx0]αL(x0) , [Tx1]αL(x1)

))
≤ Θ(M(x0, x1))k

=

Θ

max

 d(x0, x1), d
(
x0, [Sx0]αL(x0)

)
, d
(
x1, [Tx1]αL(x1)

)
,

1
2 [d
(
x0, [Tx1]αL(x1)

)
+ d

(
x1, [Sx0]αL(x0)

)
]


k

=

Θ

max

 d(x0, x1), d
(
x0, [Sx0]αL(x0)

)
, d
(
x1, [Tx1]αL(x1)

)
,

1
2d
(
x0, [Tx1]αL(x1)

) 
k .

(2.3)
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By triangle inequality and (Θ1), we get

Θ(d
(
x1, [Tx1]αL(x1)

)
≤

Θ

max

 d(x0, x1), d
(
x0, [Sx0]αL(x0)

)
, d
(
x1, [Tx1]αL(x1)

)
,

1
2

(
d(x0, x1) + d(x1, [Tx1]αL(x1))

) 
k

≤
[
Θ
(

max
{
d(x0, x1), d

(
x1, [Tx1]αL(x1)

)})]k
.

If max
{
d(x0, x1), d

(
x1, [Tx1]αL(x1)

)}
= d

(
x1, [Tx1]αL(x1)

)
. Then from (2.3),

we get

Θ
(
d
(
x1, [Tx1]αL(x1)

))
≤

[
Θ
(
d
(
x1, [Tx1]αL(x1)

))]k
≤

[
Θ
(
d
(
x1, [Tx1]αL(x1)

))]
,

which is a contradiction. So, max
{
d(x0, x1), d

(
x1, [Tx1]αL(x1)

)}
= d(x0, x1).

Then

Θ
(
d
(
x1, [Tx1]αL(x1)

))
≤ [Θ(d(x0, x1)]k. (2.4)

From (Θ4), we know that

Θ
(
d
(
x1, [Tx1]αT (x1)

))
= inf

y∈[Tx1]αL(x1)

Θ(d(x1, y)).

Thus, from (2.4), we get

inf
y∈[Tx1]αL(x1)

Θ(d(x1, y)) ≤ [Θ(d(x0, x1)]k. (2.5)

Then, from (2.5), there exists x2 ∈ [Tx1]αL(x1) such that

Θ(d(x1, x2)) ≤ [Θ(d(x0, x1)]k. (2.6)
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For this x2, there exists αL(x2) ∈ L\{0L} such that [Sx2]αL(x2) is a nonempty

closed bounded subset of X. By Lemma 1.9, (Θ1) and (2.1), we have

Θ
(
d
(
x2, [Sx2]αL(x2)

))
≤ Θ(H

(
[Tx1]αL(x1) , [Sx2]αL(x2)

)
= Θ(H

(
[Sx2]αL(x2) , [Tx1]αL(x1)

)
≤ Θ(M(x2, x1))k

=

Θ

max

 d(x2, x1), d
(
x2, [Sx2]αL(x2)

)
, d
(
x1, [Tx1]αL(x1)

)
,

1
2 [d
(
x2, [Tx1]αL(x1)

)
+ d

(
x1, [Sx2]αL(x2)

)
]


k

=

Θ

max

 d(x2, x1), d
(
x2, [Sx2]αL(x2)

)
, d (x1, x2) ,

1
2d
(
x1, [Sx2]αL(x2)

) 
k .

By triangle inequality and (Θ1), we get

Θ
(
d
(
x2, [Sx2]αL(x2)

))
≤

Θ

max

 d (x1, x2) , d
(
x2, [Sx2]αL(x2)

)
,

1
2

(
d (x1, x2) + d

(
x2, [Sx2]αL(x2)

))
,


k ,

which further implies that

Θ
(
d
(
x2, [Sx2]αL(x2)

))
≤
[
Θ
(

max
{
d(x1, x2), d

(
x2, [Sx2]αL(x2)

)})]k
. (2.7)

If max
{
d(x1, x2), d

(
x2, [Sx2]αL(x2)

)}
= d

(
x2, [Sx2]αL(x2)

)
. Then from (2.7),

we get

Θ
[
d
(
x2, [Sx2]αL(x2)

)]
≤ Θ

[
d
(
x2, [Sx2]αL(x2)

)]k
≤ Θ

[
d
(
x2, [Sx2]αL(x2)

)]
which is a contradiction. So, max

{
d(x1, x2), d

(
x2, [Sx2]αL(x2)

)}
= d(x1, x2).

Then

Θ
[
d
(
x2, [Sx2]αL(x2)

)]
≤ Θ [d(x1, x2)]k . (2.8)

From (Θ4), we know that

Θ
[
d
(
x2, [Sx2]αL(x2)

)]
= inf

y1∈[Sx2]αL(x2)

Θ(d(x2, y1)).

Thus

inf
y1∈[Sx2]αL(x2)

Θ(d(x2, y1)) ≤ Θ [d(x1, x2)]k . (2.9)
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Then, from (2.9), there exists x3 ∈ [Sx2]αL(x2) such that

Θ(d(x2, x3)) ≤ [Θ(d(x1, x2)]k. (2.10)

So, continuing recursively, we obtain a sequence {xn} in X such that x2n+1 ∈
[Sx2n]αL(x2n) and x2n+2 ∈ [Tx2n+1]αL(x2n+1) , and

Θ(d(x2n+1, x2n+2)) ≤ [Θ(d(x2n, x2n+1)]k (2.11)

and

Θ(d(x2n+2, x2n+3)) ≤ [Θ(d(x2n+1, x2n+2)]k (2.12)

for all n ∈ N. From (2.11) and (2.12), we have

Θ(d(xn, xn+1)) ≤ [Θ(d(xn−1, xn)]k, (2.13)

which further implies that

Θ(d(xn, xn+1)) ≤ [Θ(d(xn−1, xn)]k

≤ [Θ(d(xn−2, xn−1)]k
2

(2.14)

...

≤ [Θ(d(x0, x1)]k
n
.

for all n ∈ N. Since Θ ∈ Ω, so by taking limit as n→∞ in (2.14) we have,

lim
n→∞

Θ(d(xn, xn+1)) = 1 (2.15)

which implies that

lim
n→∞

d(xn, xn+1) = 0 (2.16)

by (Θ2). From the condition (Θ3), there exist 0 < r < 1 and l ∈ (0,∞] such
that

lim
n→∞

Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
= l. (2.17)

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the

limit, there exists n0 ∈ N such that

|Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
− l| ≤ B

for all n > n0. This implies that

Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
≥ l −B =

l

2
= B

for all n > n0. Then

nd(xn, xn+1)r ≤ An[Θ(d(xn, xn+1))− 1] (2.18)
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for all n > n0, where A = 1
B . Now we suppose that l = ∞. Let B > 0 be

an arbitrary positive number. From the definition of the limit, there exists
n0 ∈ N such that

B ≤ Θ(d(xn, xn+1))− 1

d(xn, xn+1)r

for all n > n0. This implies that

nd(xn, xn+1)r ≤ An[Θ(d(xn, xn+1))− 1]

for all n > n0, where A = 1
B . Thus, in all cases, there exist A > 0 and n0 ∈ N

such that

nd(xn, xn+1)r ≤ An[Θ(d(xn, xn+1))− 1] (2.19)

for all n > n0. Thus by (2.14) and (2.19), we get

nd(xn, xn+1)r ≤ An([(Θd(x0, x1))]r
n − 1). (2.20)

Letting n→∞ in the above inequality, we obtain

lim
n→∞

nd(xn, xn+1)r = 0.

Thus, there exists n1 ∈ N such that

d(xn, xn+1) ≤ 1

n1/r
(2.21)

for all n > n1.
Now we prove that {xn} is a Cauchy sequence. For m > n > n1 we have,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1

i1/r
≤
∞∑
i=1

1

i1/r
. (2.22)

Since, 0 < r < 1,
∑∞

i=1
1
i1/r

is convergent. Therefore, d(xn, xm) → 0 as

m,n → ∞. Thus we proved that {xn} is a Cauchy sequence in (X, d). The
completeness of (X, d) ensures that there exists u ∈ X such that, limn→∞ xn =
u. Now, we prove that u ∈ [Tu]αL(u) . We suppose on the contrary that u 6∈
[Tu]αL(u), then there exist a n0 ∈ N and a subsequence {xnk} of {xn} such

that d(x2nk+1, [Tu]αL(u)) > 0 for all nk ≥ n0. Since d(x2nk+1, [Tu]αL(u)) > 0
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for all nk ≥ n0, by (Θ1), we have

Θ
[
d(x2nk+1, [Tu]αL(u))

]
≤ Θ

[
H([Sx2nk ]αL(x2nk ) , [Tu]αL(u))

]
≤ [Θ(M(x2nk , u))]k

=

Θ
max

 d(x2nk , u), d
(
x2nk , [Sx2nk ]αL(x2nk )

)
, d
(
u, [Tu]αL(u)

)
,

1
2 [d
(
x2nk , [Tu]αL(u)

)
+ d

(
u, [Sx2nk ]αL(x2nk )

)
]


k

≤

Θ

max

 d(x2nk , u), d (x2nk , x2nk+1) , d
(
u, [Tu]αL(u)

)
,

1
2 [d
(
x2nk , [Tu]αL(u)

)
+ d (u, x2nk+1)]


k .

Letting n→∞, in above inequality and using the continuity of Θ, we have

Θ
[
d(u, [Tu]αL(u))

]
≤
[
Θ(d(u, [Tu]αL(u)))

]k
which is a conradiction because k ∈ (0, 1). Hence u ∈ [Tu]αL(u) . Similarly, we

can easily prove that u ∈ [Su]αL(u) . Thus u ∈ [Su]αL(u) ∩ [Tu]αL(u) . �

The following result is a direct consequence of Theorem 2.1.

Theorem 2.2. Let (X, d) be a complete metric space, S be an L-fuzzy map-
ping from X into =L(X), and for each αL ∈ L\{0L}, [Sx]αL(x) , [Sy]αL(y)

are nonempty closed bounded subsets of X. If there exist some Θ ∈ Ω and
k ∈ (0, 1) such that

Θ
(
H
(

[Sx]αL(x) , [Sy]αL(y)

))
≤ Θ(M(x, y))k

for all x, y ∈ X with H
(

[Sx]αL(x) , [Sy]αL(y)

)
> 0, where

M(x, y) = max
{
d(x, y), d

(
x, [Sx]αL(x)

)
, d
(
y, [Sy]αL(y)

)
,

1

2

[
d(x, [Sy]αL(y) + d(y, [Sx]αL(x))

]}
.

Then S has an L-fuzzy fixed point.

Corollary 2.3. Let (X, d) be a complete metric space, S, T be fuzzy mappings
from X into =(X), and for each α(x) ∈ (0 , 1 ], [Sx]α(x) , [Ty]α(y) are nonempty

closed bounded subsets of X. If there exist some Θ ∈ Ω and k ∈ (0, 1) such
that

Θ
(
H
(

[Sx]α(x) , [Ty]α(y)

))
≤ Θ(M(x, y))k
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for all x, y ∈ X with H
(

[Sx]α(x) , [Ty]α(y)

)
> 0, where

M(x, y) = max
{
d(x, y), d

(
x, [Sx]α(x)

)
, d
(
y, [Ty]α(y

)
,

1

2

[
d(x, [Ty]α(y) + d(y, [Sx]α(x))

]}
.

Then S and T have a common fuzzy fixed point.

Proof. Consider an L-fuzzy mapping A : X → =L(X) defined by

Ax = χLS(x) .

Then for αL ∈ L\{0L} , we have

[Ax]αL(x) = Sx.

Hence, by Theorem 2.1 we follow the result. �

Example 2.4. Let X = [0, 1], d(x, y) = |x − y|, for x, y ∈ X. Then (X, d)
is a complete metric space. Let L = {η, ω, τ, κ} with η �L ω �L κ and
η �L τ �L κ, where ω and τ are not comparable. Then (L,�L) is a complete
distributive lattice. Define a pair of mappings S, T : X → =L(X) as follows:

S(x)(t) =


κ if 0 ≤ t ≤ x

6
ω if x

6 < t ≤ x
3

τ if x
3 < t ≤ x

2
η if x

2 < t ≤ 1

,

T (x)(t) =


κ if 0 ≤ t ≤ x

12
η if x

12 < t ≤ x
8

ω if x
8 < t ≤ x

4
τ if x

4 < t ≤ 1

.

Let Θ(t) = e
√
t ∈ Ω for t > 0. And for all x ∈ X, there exists αL (x) = κ, such

that

[Sx]αL(x) =
[
0,
x

6

]
, [Tx]αL(x) =

[
0,
x

12

]
.

and all conditions of Theorem 2.1 are satisfied. And 0 is a common fixed point
of S and T .
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