Nonlinear Functional Analysis and Applications Vol. 23, No. 4 (2018), pp. 673-681 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2018 Kyungnam University Press

FIXED POINT THEOREMS FOR A PAIR OF NON-SELF MAPPINGS UNDER WEAKLY CONTRACTIVE MAPS IN METRICALLY CONVEX SPACES

Ladlay Khan

Department of Mathematics, Mewat Engineering College (Waqf), Palla, Nuh, Mewat, India e-mail: kladlay@gmail.com

Abstract. Using the idea of weak contractive condition due to Rhoades [17], we prove some coincidence and common fixed point theorems for a pair of non-self mappings which generalize earlier results due to Khan and Imdad [15], Rhoades [17], Alber and Guerre-Delabriere [2], Beg and Abbas [5], Pant [16] and others. An illustrative example is discussed besides an application.

1. INTRODUCTION

In 1997, Alber and Guerre-Delabriere [2] initiated the study of weakly contractive map and utilized the same to certain fixed point results in Hilbert spaces. Rhoades [17] extended some of their results in Banach spaces under similar setting.

Recently, Khan and Imdad [15] utilized this new concept of weakly contractive map in non-self setting of Rhoades type (e.g. [17]) and proved a fixed point theorem in complete metric spaces.

The aim of this paper is to extend and generalize a fixed point theorem due to Khan and Imdad [15] to a pair of coincidentally commuting mappings as well as weakly compatible mappings which either partially or completely generalized the corresponding results due to Khan and Imdad [15], Rhoades [17], Alber and Guerre-Delabriere [2], Beg and Abbas [5], Pant [16] and others.

 $^{^0\}mathrm{Received}$ March 1, 2018. Revised September 26, 2018.

 $^{^{0}2010}$ Mathematics Subject Classification: 49J40, 47H10, 47H17.

⁰Keywords: Fixed point, metrically convex metric space, coincidence point, non-self mapping, weakly contractive mappings.

Here for the sake of completeness, we state the result due to Khan and Imdad [15] which runs as follows:

Theorem 1.1. Let (X, d) be a complete metrically convex metric space and K be a nonempty closed subset of X. Let $T : K \to X$ satisfying:

(i) for each $x \in \delta K$ (The boundary of K), $Tx \in K$, and

$$d(Tx, Ty) \le d(x, y) - \phi(d(x, y)) \tag{1.1}$$

where $\phi : [0, \infty) \to [0, \infty)$ is continuous and nondecreasing function with $\phi(t) = 0$ for t = 0. Then T has a unique fixed point in K.

Before proving our results, we collect the relevant definitions for our future use.

Definition 1.2. Let (X, d) be a metric space and K be a nonempty subset of X. Let $F, T : K \to X$ mappings, F is said to be generalized T weakly contractive on K, if $Fx, Tx \in K$ and

$$d(Fx, Fy) \le d(Tx, Ty) - \phi(d(Tx, Ty))$$

for all $x, y \in K$ and $\phi : [0, \infty) \to [0, \infty)$ is continuous and nondecreasing function with $\phi(t) = 0$ for t = 0.

Definition 1.3. A pair of non-self mapping (F, T) defined on a nonempty subset K of a metric space (X, d) is said to be coincidentally commuting if $Tx, Fx \in K$ and $Tx = Fx \Rightarrow FTx = TFx$.

Definition 1.4. A pair of non-self mapping (F, T) defined on a nonempty subset K of a metric space (X, d) is said to be weakly compatible if for every sequence $\{x_n\}$ in K and from the relation $\lim_{n\to\infty} d(Fx_n, Tx_n) = 0$ and $Tx_n \in K$ $(n \in N)$, it follows that $\lim_{n\to\infty} d(Ty_n, FTx_n) = 0$ for every $y_n \in K$ with $y_n = Fx_n \in K, n \in N$.

Definition 1.5. A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$d(x,z) + d(z,y) = d(x,y).$$

Definition 1.6. Let K be a non-empty subset of a Banach Space X. Let F be a weakly contractive mapping with respect to $T, TK \subset FK$, and FK is a convex subset of X. Define a sequence $\{y_n\}$ in FK as:

$$y_n = T(x_{n+1}) = (1 - \alpha_n)Tx_n + \alpha_n Fx_n, n \ge 0,$$

where $0 \le \alpha_n \le 1$ for each *n*. The sequence is called modified Mann iterative scheme for non-self mappings.

Fixed point theorems for weakly contractive maps in metrically convex spaces 675

2. MAIN RESULT

Our main result runs as follows:

Theorem 2.1. Let (X, d) be a complete metrically convex metric space and K be a nonempty closed subset of X. Let $F, T : K \to X$ such that F is a generalized T weakly contractive mapping of K into X and

- (ii) $\delta K \subset TK, FK \cap K \subset TK$,
- (iii) $Tx \in \delta K \Rightarrow Fx \in K$ and
- (iv) TK is closed in X.

Then there exists coincidence point in K. Moreover, if (F, T) is coincidentally commuting then the coincidence point of K remains a unique common fixed point of F and T.

Proof. First, we proceed to construct two sequences $\{x_n\}$ and $\{y_n\}$ in the following way. Let $x \in \delta K$. Then (due to $\delta K \subseteq TK$) there exists a point $x_0 \in K$ such that $x = Tx_0$. Since $Tx_0 \in \delta K$ and $Tx \in \delta K \Rightarrow Fx \in K$, we conclude that $Fx_0 \in FK \cap K \subset TK$. Let $x_1 \in K$ be such that $y_1 = Tx_1 = Fx_0 \in K$. Let $y_2 = Fx_1$. Suppose $y_2 \in K$, then $y_2 \in FK \cap K \subseteq TK$, which implies that there exists a point $x_2 \in K$ such that $y_2 = Tx_2$. Suppose $y_2 \notin K$. Then there exists a point $p \in \delta K$ such that

$$d(Tx_1, p) + d(p, y_2) = d(Tx_1, y_2).$$
(2.1)

Since $p \in \delta K \subseteq TK$, there exists a point $x_2 \in K$ with $p = Tx_2$ so that the equation (2.1) becomes

$$d(Tx_1, Tx_2) + d(Tx_2, y_2) = d(Tx_1, y_2).$$

Let $y_3 = Fx_2$. Thus, repeating the foregoing arguments, we obtain two sequences $\{x_n\}$ and $\{y_n\}$ such that

(v)
$$y_{n+1} = Fx_n$$
,
(vi) $y_n \in K \Rightarrow y_n = Tx_n$,
(vii) $y_n \notin K \Rightarrow Tx_n \in \delta K$, and

$$d(Tx_{n-1}, Tx_n) + d(Tx_n, y_n) = d(Tx_{n-1}, y_n).$$

We denote

$$P = \{Tx_i \in \{Tx_n\} : Tx_i = y_i\}$$

and

$$Q = \{Tx_i \in \{Tx_n\} : Tx_i \neq y_i\}.$$

Obviously, two consecutive terms cannot lie in Q. Now, we distinguish the following three cases:

Case 1. If Tx_n and $Tx_{n+1} \in P$, then, by using monotone property of ϕ ,

$$d(Tx_n, Tx_{n+1}) = d(y_n, y_{n+1}) = d(Fx_{n-1}, Fx_n) \leq d(Tx_{n-1}, Tx_n) - \phi(d(Tx_{n-1}, Tx_n)) \leq d(Tx_{n-1}, Tx_n).$$

Case 2. If $Tx_n \in P$ and $Tx_{n+1} \in Q$, then

$$d(Tx_n, Tx_{n+1}) + d(Tx_{n+1}, y_{n+1}) = d(Tx_n, y_{n+1}).$$

Therefore, we have

$$d(Tx_n, Tx_{n+1}) \le d(Tx_n, y_{n+1}) = d(Fx_{n-1}, Fx_n) \le d(Tx_{n-1}, Tx_n) - \phi(d(Tx_{n-1}, Tx_n)) \le d(Tx_{n-1}, Tx_n).$$

Case 3. Let $Tx_n \in Q$ and $Tx_{n+1} \in P$. Since Tx_n is a convex linear combination of Tx_{n-1} and y_n , it follows that

$$d(Tx_n, Tx_{n+1}) \le \max\{d(Tx_{n-1}, Tx_{n+1}), d(y_n, Tx_{n+1})\}.$$

If $d(Tx_{n-1}, Tx_{n+1}) \leq d(Tx_{n+1}, y_n)$, then, by using monotone property of ϕ ,

$$d(Tx_n, Tx_{n+1}) \le d(Tx_{n+1}, y_n) = d(Fx_{n-1}, Fx_n) \le d(Tx_{n-1}, Tx_n) - \phi(d(Tx_{n-1}, Tx_n)) \le d(Tx_{n-1}, Tx_n).$$

Otherwise if $d(Tx_{n+1}, y_n) \le d(Tx_{n-1}, Tx_{n+1})$, then $d(Tx_n, Tx_{n+1}) \le d(Tx_{n-1}, Tx_{n+1}) = d(Fx_{n-2}, Fx_n).$

Therefore

$$d(Fx_{n-2}, Fx_n) \le d(Tx_{n-2}, Tx_n) - \phi(d(Tx_{n-2}, Tx_n)) \le d(Tx_{n-2}, Tx_n).$$
(2.2)

Notice that

$$d(Tx_{n-2}, Tx_n) \le d(Tx_{n-2}, Tx_{n-1}) + d(Tx_{n-1}, Tx_n)$$

$$\le \max\{d(Tx_{n-2}, Tx_{n-1}), d(Tx_{n-1}, Tx_n)\}.$$

Here, if $d(Tx_{n-2}, Tx_{n-1}) \leq d(Tx_{n-1}, Tx_n)$, then from (2.2) we have $d(Tx_n, Tx_{n+1}) \leq d(Tx_{n-1}, Tx_n)$. Otherwise, if $d(Tx_{n-1}, Tx_n) \leq d(Tx_{n-2}, Tx_{n-1})$, then $(Tx_n, Tx_{n+1}) \leq d(Tx_{n-2}, Tx_{n-1})$.

Thus in all the cases, we have

$$d(Tx_n, Tx_{n+1}) \le \max\{d(Tx_{n-1}, Tx_n), d(Tx_{n-2}, Tx_{n-1})\}.$$

It follows that the sequence $\{d(Tx_n, Tx_{n+1})\}$ is monotonically decreasing. Therefore it leads to a limit $l \ge 0$. If l > 0 then we have

$$d(Tx_n, Tx_{n+1}) \le d(Tx_{n-1}, Tx_n) - \phi(l)$$

or

$$d(Tx_n, Tx_{n+1}) \le d(Tx_{n-2}, Tx_{n-1}) - \phi(l).$$

Also

$$d(Tx_n, Tx_{n+N}) \le d(Tx_{n-1}, Tx_n) - N\phi(l)$$

or

$$d(Tx_n, Tx_{n+N}) \le d(Tx_{n-2}, Tx_{n-1}) - N\phi(l)$$

which is a contradiction for N large enough. Therefore

$$\lim_{n \to \infty} d(Tx_n, Tx_{n+1}) = 0.$$

Now, for m, n > N with n < m, we have

$$d(Tx_n, Tx_m) \le d(Tx_n, Tx_{n+1}) + d(Tx_{n+1}, Tx_{n+2}) + d(Tx_{n+2}, Tx_{n+3}) + \dots + d(Tx_{m-1}, Tx_m).$$
(2.3)

Using (2.3) and $\lim_{n\to\infty} d(Tx_n, Tx_{n+1}) = 0$, along with weak contractivity of T with respect to F, we obtain $d(Tx_n, Tx_m) \to 0$ as $m, n \to \infty$, which shows that $\{Tx_n\}$ is Cauchy. First suppose that there exists a subsequence $\{Tx_{n_k}\}$ is Cauchy in TK, it converges to a point $u \in TK$. Let $v \in T^{-1}(u)$. Then u = Tv. Here, one also needs to note that $\{Fx_{n_k-1}\}$ also converges to u. Using contraction condition, we can write

$$d(Fv, Fx_{n_k-1}) \le d(Tv, Tx_{n_k-1}) - \phi(d(Tv, Tx_{n_k-1})) \le d(Tv, Tx_{n_k-1}).$$

Hence, we have

$$d(Fv, u) \le d(Tv, u),$$

it implies that Fv = Tv. This means that v is a coincidence point of (F, T). Since the pair (F, T) is coincidentally commuting, therefore

$$u = Fv = Tv \Rightarrow Fu = FTv = TFv = Tu.$$

To prove that u is a fixed point of F, let on contrary that $Fu \neq u$. Then

$$d(Fu, u) = d(Fu, Fv)$$

$$\leq d(Tu, Tv) - \phi(d(Tu, Tv))$$

$$\leq d(Tu, Tv) = d(Fu, u).$$

Hence we have u = Fu, which shows that u is a fixed point of F. Also, we can show that u is a fixed point of T. Thus u is a common fixed point of F and T. The uniqueness of common fixed point follows easily. This completes the proof.

Remark 2.2. Theorem 2.1 remains true if closedness of TK is replaced by closedness of FK.

Remark 2.3. By setting $F = I_K$ in Theorem 2.1, we obtain a result due to Khan and Imdad [15].

Remark 2.4. By setting $F = I_K$ and K = X in Theorem 2.1, we obtain a result due to Rhoades [17].

Remark 2.5. By setting $F = I_K$ and K = X in Theorem 2.1, one deduces a partial generalization of theorem due to Alber and Guerre-Delabriere [2].

Remark 2.6. By setting K = X in Theorem 2.1, we obtain a result due to Beg and Abbas [5].

Remark 2.7. By setting K = X and $\phi(t) = t - r(t)$ in Theorem 2.1, we obtain a result due to Pant [16].

In the next theorem, we utilize the idea of weakly compatible mappings in place of closedness of TK or FK.

Theorem 2.8. Let K be a non-empty closed subset of a complete metrically convex metric space X. Let T be a weakly contractive mapping with respect to F. If T and F are weakly compatible and $TK \subset FK$ with the conditions (ii) and (iii) are holds, then F and T have a common fixed point.

Proof. On the lines of the proof of Theorem 2.1, we obtain a point $v \in K$ such that Tv = Fv = u which further implies that TFv = FTv. Obviously Tu = Fu. Now, we have to show that Fu = u. If it is not so, then consider

$$d(Tu, u) = d(Fu, Fv) \le d(Tu, Tv) - \phi(d(Tu, Tv) < d(Tu, Tv) < d(Tu, u),$$

whis is a contradiction. Therefore Tu = u. This implies that Fu = u. Hence u is a common fixed point of F and T. This completes the proof.

Fixed point theorems for weakly contractive maps in metrically convex spaces 679

3. AN APPLICATION

As an application of Theorem 2.8, we prove the following theorem.

Theorem 3.1. Let K be a non-empty closed subset of a normed space X. Let T be a weakly contractive mapping with respect to F. Let T and F be weakly compatible with $TK \subset FK$ and FK be a complete subspace of X. If $\sum_{n=0}^{\infty} \alpha_n = \infty$, then the modified Mann iterative scheme is convergent to a common fixed point of F and T.

Proof. On the lines of the Theorem 2.1 and Theorem 2.8, we obtain a common fixed point u of the mappings F and T. Now, we consider

$$|y_n - u|| = ||(1 - \alpha_n)Fx_n + \alpha_nTx_n - Fu||$$

= $||(1 - \alpha_n)(Fx_n - Fu) + \alpha_n(Tx_n - Tu)||$
 $\leq (1 - \alpha_n)||(Fx_n - Fu)|| + \alpha_n||(Tx_n - Tu)||$
 $\leq ||(Fx_n - Fu)|| - \alpha_n\phi(||(Fx_n - Fu)||))$
 $\leq ||y_{n-1} - u||.$

On letting $n \to \infty$, then $\lim_{n \to \infty} ||y_{n-1} - u|| = p \ge 0$. If p > 0, then for any positive integer N, we have

$$\sum_{n=N}^{\infty} \alpha_n \phi(p) \le \sum_{n=N}^{\infty} \alpha_n \phi(\|y_n - u\|)$$
$$\le \sum_{n=N}^{\infty} (\|y_{n-1} - u\| - \|y_n - u\|)$$
$$< \|y_N - u\|,$$

which is a contradiction for the selection of α_n . Hence modified Mann iterative scheme is convergent to a common fixed point of the mappings F and T. This completes the proof.

4. AN ILLUSTRATIVE EXAMPLE

Finally, we furnish an example to establish the utility of our result.

Example 4.1. Let X = R with Euclidean metric and K = [0, 1]. Define $F, T : K \to X$ and $\phi : [0, \infty) \to [0, \infty)$ as:

$$Tx = (2x - 1), \ 0 \le x \le 1, \ Fx = x, \ 0 \le x \le 1 \text{ and } \phi(t) = \frac{t}{3}.$$

Since $\delta K = \{0,1\}$ and TK = [-1,1], $\delta K \subset TK$. Further $FK = [0,1] \cap K = [0,1] \subset TK$. Also $T(\frac{1}{2}) = 0 \in \delta K$. Hence $F(\frac{1}{2}) = \frac{1}{2} \in K$ and $T(1) = 1 \in \delta K$

implies $F(1) = 1 \in K$, whereas the pair (F,T) is coincidentally commuting as FT1 = 1 = TF1. Moreover, for the verification of contraction condition, if $0 \le x, y \le 1$, then

$$d(Fx, Fy) = |x - y|$$

$$\leq \frac{4}{3}|x - y|$$

$$= d(Tx, Ty) - \phi(d(Tx, Ty)).$$

Thus the contraction condition and all other conditions of Theorem 2.1 are satisfied. Notice that 1 is a common fixed point of F and T.

References

- A.D. Arvanitakis, A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc., 131(12) (2003), 3647-3656.
- [2] Ya.I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in new results in Operator theory, Advances and Applications (Ed. by I. Gohberg and Y. Lyubich), Birkhauser Verlag Basel, 98 (1997), 7-22.
- M.A. Ahmed, Common fixed point theorems for weakly compatible mappings, The Rocky Mount. J. Math., 33(4) (2003), 1189-1203.
- [4] N.A. Assad and W.A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43(3) (1972), 553-562.
- [5] I. Beg and M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory and Appl. 2006 (2006), Article ID (74503), 1-7.
- [6] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458-464.
- [7] C.E. Chidume, H. Zegeye and S.J. Aneke, Approximation of fixed points of weak contractive nonself maps in Banach spaces, J. Math. Anal. Appl., 270(1) (2002), 189-199.
- [8] P.N. Dutta and B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory and Appl., 2008 (2008), Article ID (406368) 1-8.
- [9] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79.
- [10] M. Imdad and L. Khan, Some common fixed point theorems for a family of mappings in metrically convex spaces, Nonlinear Anal. TMA., 67 (2007), 2717-2726.
- [11] M. Imdad and L. Khan, Common fixed point theorems for a pair of non-self mappings, Nonlinear Anal. Forum, 10(1) (2005), 21-35.
- [12] M. Imdad, L. Khan and D.R. Sahu, Common fixed point theorems for two pairs of nonself mappings, J. Appl. Math. Comptu. 21(1-2) (2006), 269-287.
- [13] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103(3) (1988), 977-983.
- [14] G. Jungck and B.E. Rhoades, Fixed points for set-valued functions without continuity, Indian Jour. Pure Appl. Math., 29(3) (1988), 227-238.
- [15] L. Khan and M. Imdad, Fixed point theorem for weakly contractive maps in metrically convex spaces, Nonlinear Funct. Anal. Appl., 21(4) (2016), 685-691.

Fixed point theorems for weakly contractive maps in metrically convex spaces 681

- [16] R.P. Pant, Common fixed points of non commuting mappings, J. Math. Anal. Appl., 188(2) (1994), 436-440.
- [17] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. TMA., 47(4) (2001), 2683-2693.
- [18] B.E. Rhoades, A fixed point theorem for some nonself mappings, Math Japonica, 23(4) (1978), 457-459.