Nonlinear Functional Analysis and Applications Vol. 23, No. 4 (2018), pp. 683-691

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2018 Kyungnam University Press

ON THE LOCATION OF ZEROS OF A POLYNOMIAL WITH RESTRICTED COEFFICIENTS

Mushtaq Ahmad Shah¹ and Ho Geun Hyun²

¹Department of Mathematics, Government College of Engineering and Technology Safapora Ganderbal e-mail: mushtaqa022@gmail.com

²Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam 51767, Korea e-mail: hyunhg8285@kyungnam.ac.kr

Abstract. If $P(z) = \sum_{j=0}^{n} a_j z^j$, $a_j \ge a_{j-1}$, $a_0 > 0$, $j = 1, 2, \dots, n$ is a polynomial of degree n, then according to a classical result of Eneström-Kakeya, all the zeros of P(z) lie in $|z| \le 1$. Joyal et al extended Theorem A to the polynomials whose coefficients are monotonic but not necessarily non-negative. In this paper, I will prove some extensions and generalizations of this result by relaxing the hypothesis.

1. Introduction

Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n. Then concerning the distribution of zeros of P(z), Eneström and Kakeya [10, 11] proved the following interesting result.

Theorem A. Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that $a_n \ge a_{n-1} \ge \cdots \ge a_1 \ge a_0 > 0.$ (1.1)

Then P(z) has all its zeros in |z| < 1.

In the literature [1-11], there exist several extensions and generalizations of this Theorem. Joyal et al. [9] extended Theorem A to the polynomials

H. G. Hyun(hyunhg8285@kyungnam.ac.kr).

⁰Received March 5, 2018. Revised September 26, 2018.

⁰2010 Mathematics Subject Classification: 30C10, 30C15.

⁰Keywords: Polynomial, zeros, Eneström-Kakeya theorem.

^oCorresponding author: M. A. Shah(mushtaqa022@gmail.com),

whose coefficients are monotonic but not necessarily non-negative. In fact they proved the following result.

Theorem B. Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that

$$a_n \ge a_{n-1} \ge \cdots \ge a_1 \ge a_0$$
.

Then P(z) has all its zeros in the disk

$$|z| \le \frac{1}{|a_n|} (|a_n| - a_0 + |a_0|).$$

In this paper, we will prove some generalizations and extensions of Theorem B and of the Theorem A i,e., Eneström-Kakeya Theorem. In this direction we first present the following interesting result in which we relax the hypothesis and hence is a generalization of Theorem B. In fact, we prove the following:

2. Main Results

Theorem 2.1. Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_p z^p + \cdots + a_1 z + a_0$ be a polynomial of degree n satisfying

$$a_n \ge a_{n-1} \ge \dots \ge a_p, \qquad 0 \le p \le n.$$

Then all the zeros of P(z) lie in the disk

$$|z| \le \frac{a_n - a_p + M_p}{|a_n|},$$

where

$$M_p = \sum_{j=0}^{p} |a_j - a_{j-1}|.$$

Proof. Consider the polynomial

$$F(z) = (1-z)P(z)$$

$$= (1-z)(a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0)$$

$$= a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 - a_n z^{n+1} - a_{n-1} z^n - \dots - a_0 z$$

$$= -a_n z^{n+1} + (a_n - a_{n-1}) z^n + (a_{n-1} - a_{n-2}) z^{n-1} + \dots + (a_1 - a_0) z + a_0.$$

This gives

$$|F(z)| \ge |a_n z^{n+1}| - \left\{ |a_n - a_{n-1}| |z|^n + |a_{n-1} - a_{n-2}| |z|^{n-1} + \dots + |a_{p+1} - a_p| |z|^{p+1} + \dots + |a_1 - a_0| |z| + |a_0| \right\}$$

$$= |z|^n \left\{ |a_n| |z| - \left(|a_n - a_{n-1}| + \frac{|a_{n-1} - a_{n-2}|}{|z|} + \dots + \frac{|a_{p+1} - a_p|}{|z|^{n-p-1}} + \dots + \frac{|a_1 - a_0|}{|z|^{n-1}} + \frac{|a_0|}{|z|^n} \right) \right\}.$$

Now, for |z| > 1, *i,e.*, $\frac{1}{|z|^{n-j}} < 1$, $0 \le j \le n$, we have

$$|F(z)| > |z|^n \left\{ |a_n||z| - \left(|a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + \dots + |a_{p+1} - a_p| + \dots + |a_1 - a_0| + |a_0| \right) \right\}$$

$$= |z|^n \left\{ |a_n||z| - \left(a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + |a_{p+1} - a_p| + |a_p - a_{p-1}| + \dots + |a_1 - a_0| + |a_0| \right) \right\}$$

$$= |z|^n \left\{ |a_n||z| - \left(a_n - a_p + |a_p - a_{p-1}| + \dots + |a_1 - a_0| + |a_0| \right) \right\}$$

$$= |z|^n \left\{ |a_n||z| - \left(a_n - a_p + \sum_{j=0}^p |a_j - a_{j-1}| \right) \right\}$$

for $|z||a_n| > (a_n - a_p + M_p)$, where $M_p = \sum_{j=0}^p |a_j - a_{j-1}|$, $a_{-1} = 0$. Thus all the zeros of F(z) whose modulus is greater than 1 lie in the disk

$$|z| \le \frac{1}{|a_n|} \Big(a_n - a_p + M_p \Big).$$

But those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality and all the zeros of P(z) are also the zeros of F(z). Hence

it follows that all the zeros of P(z) lie in the disk

$$|z| \le \frac{1}{|a_n|} \Big(a_n - a_p + M_p \Big).$$

This completes the proof.

Remark 2.2. For p = 0, we get Theorem B.

Applying Theorem 2.1 to the polynomial P(tz), we get the following corollary.

Corollary 2.3. Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_p z^p + \cdots + a_1 z + a_0$ be a polynomial of degree n such that for any t > 0,

$$t^n a_n \ge t^{n-1} a_{n-1} \ge \dots \ge t^p a_p, \qquad 0 \le p \le n.$$

Then all the zeros of P(z) lie in the disk

$$|z| \le \frac{a_n - t^{p-n}a_p}{|a_n|} + \sum_{j=0}^p \frac{|ta_j - a_{j-1}|}{t^{n-j+1}|a_n|}.$$

The following result follows from Corollary 2.3 by taking p = n.

Corollary 2.4. Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ be a polynomial of degree n. Then for any t > 0, all the zeros of P(z) lie in the disk

$$|z| \le \sum_{j=0}^{n} \frac{|ta_j - a_{j-1}|}{t^{n-j+1}|a_n|}.$$

We also prove the following result which gives the lower bound for the moduli of zeros of a polynomial.

Theorem 2.5. If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_p z^p + \cdots + a_1 z + a_0$ is a polynomial of degree n satisfying

$$a_n \ge a_{n-1} \ge \dots \ge a_p$$
, $0 \le p \le n$.

Then P(z) does not vanish in

$$|z| < \min\left(1, \frac{|a_0|}{|a_n| + a_n - a_p - |a_0| + M_p}\right),$$

where

$$M_p = \sum_{j=0}^{p} |a_j - a_{j-1}|.$$

The bound is attained by the polynomial $P(z) = z^n + z^{n-1} + \cdots + z + 1$.

Proof. Consider the reciprocal polynomial

$$R(z) = z^{n} P(1/z) = a_0 z^{n} + a_1 z^{n-1} + \dots + a_p z^{n-p} + \dots + a_n.$$

Let

$$S(z) = (1-z)R(z)$$

= $-a_0 z^{n+1} + (a_0 - a_1)z^n + \dots + (a_p - a_{p+1})z^{n-p} + \dots + (a_{n-1} - a_n)z + a_n.$

This gives

$$\geq |a_0||z|^{n+1} - \left\{ |a_0 - a_1||z|^n + \dots + |a_p - a_{p+1}||z|^{n-p} + \dots + |a_{n-1} - a_n||z| + |a_n| \right\}$$

$$= |z|^n \left\{ |a_0||z| - \left(|a_0 - a_1| + \dots + \frac{|a_p - a_{p+1}|}{|z|^p} + \dots + \frac{|a_{n-1} - a_n|}{|z|^{n-1}} + \frac{|a_n|}{|z|^n} \right) \right\}.$$

Now, for |z| > 1, that is $\frac{1}{|z|^{n-j}} < 1, 0 \le j \le n$, we have

$$|S(z)|$$

$$\geq |z|^n \left\{ |a_0||z| - \left(|a_0 - a_1| + \dots + |a_p - a_{p+1}| + \dots + |a_{n-1} - a_n| + |a_n| \right) \right\}$$

$$= |z|^n \left\{ |a_0||z| - \left(|a_1 - a_0| + \dots + |a_{p+1} - a_p| + |a_p - a_{p-1}| + \dots + |a_n - a_{n-1}| + |a_n| \right) \right\}$$

$$+ \dots + |a_n - a_{n-1}| + |a_n| \right\}$$

$$= |z|^n \left\{ |a_0||z| - \left(M_p - |a_0| + |a_p - a_{p-1}| + \dots + |a_n - a_{n-1}| + |a_n| \right) \right\}$$

$$= |z|^n \left\{ |a_0||z| - \left(M_p - |a_0| + |a_n - a_p| + |a_n| \right) \right\}$$

$$> 0,$$

for $|z| > \frac{1}{|a_0|} \Big\{ |a_n| + a_n - a_p - |a_0| + M_p \Big\}$, where $M_p = \sum_{j=0}^p |a_j - a_{j-1}|, \ a_{-1} = 0$.

Thus all the zeros of S(z) whose modulus is greater than 1 lie in

$$|z| \le \frac{1}{|a_0|} \Big\{ |a_n| + a_n - a_p - |a_0| + M_p \Big\}.$$

Hence all the zeros of S(z) and hence of R(z) lie in

$$|z| \le \max \left\{ 1, \frac{1}{|a_0|} \left(|a_n| + a_n - a_p - |a_0| + M_p \right) \right\}.$$

Therefore, all the zeros of P(z) lie in

$$|z| \ge \min \left\{ 1, \frac{|a_0|}{|a_n| + a_n - a_p - |a_0| + M_p} \right\}.$$

Thus the polynomial P(z) does not vanish in

$$|z| < \min\left(1, \frac{|a_0|}{|a_n| + a_n - a_p - |a_0| + M_p}\right).$$

This completes the proof.

For p = 0, Theorem 2.5 reduces to the following result.

Corollary 2.6. If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ is a polynomial of degree n satisfying

$$a_n \geq a_{n-1} \geq \cdots \geq a_0$$

then P(z) does not vanish in

$$|z| < \frac{|a_0|}{|a_n| + a_n - a_0}.$$

The bound is attained by the polynomial $P(z) = z^n + z^{n-1} + \cdots + z + 1$.

Next we prove the following more general result which is also a generalization of Theorem B.

Theorem 2.7. Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_p z^p + \cdots + a_1 z + a_0$ be a polynomial of degree n satisfying

$$a_n \ge a_{n-1} \ge \dots \ge a_p, \qquad 0 \le p \le n$$

and

$$\max_{|z|=1} \left| \sum_{j=0}^{p} (a_j - a_{j-1}) z^j \right| \le M, \ (a_{-1} = 0).$$

Then all the zeros of P(z) lie in

$$|z| \le \max\left(1, \frac{a_n - a_p + M}{|a_n|}\right).$$

Proof. Consider the polynomial

$$F(z) = (1-z)P(z)$$

$$= (1-z)(a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0)$$

$$= a_n z^n + \dots + a_1 z + a_0 - a_n z^{n+1} - a_{n-1} z^n - \dots - a_0 z$$

$$= -a_n z^{n+1} + (a_n - a_{n-1}) z^n + \dots + (a_{p+1} - a_p) z^{p+1}$$

$$+ (a_p - a_{p-1}) z^p + \dots + (a_2 - a_1) z^2 + (a_1 - a_0) z + a_0$$

$$= R(z) - a_n z^{n+1},$$

where

$$R(z) = (a_n - a_{n-1})z^n + \dots + (a_{p+1} - a_p)z^{p+1} + (a_p - a_{p-1})z^p + \dots + (a_1 - a_0)z + a_0.$$

Let

$$R^*(z) = z^n R(1/z) = a_0 z^n + (a_1 - a_0) z^{n-1} + \dots + (a_p - a_{p-1}) z^{n-p} + (a_p - a_{p-1}) z^{n-p} + (a_{p+1} - a_p) z^{n-p-1} + \dots + (a_n - a_{n-1}).$$

Then, we have

$$|R^*(z)| \le |a_0 z^n + (a_1 - a_0) z^{n-1} \cdots + (a_p - a_{p-1}) z^{n-p}| + |(a_{p+1} - a_p) z^{n-p-1} + \cdots + (a_n - a_{n-1})| \le |\sum_{j=0}^p (a_j - a_{j-1}) z^{n-j}| + |(a_{p+1} - a_p)| |z|^{n-p-1} + \cdots + |(a_n - a_{n-1})| \le M + a_n - a_p,$$

for |z|=1, where M is defined as above. Hence by maximum modulus principle, it follows that

$$|R^*(z)| \le M + a_n - a_p$$
, for $|z| \le 1$.

Therefore

$$|R(z)| \le |z|^n (M + a_n - a_p), \text{ for } |z| \ge 1.$$

This gives for |z| > 1,

$$|F(z)| \ge |a_n z^{n+1}| - |R(z)|$$

$$\ge |a_n z^{n+1}| - z^n (M + a_n - a_p)$$

$$\ge |a_n||z|^n \left\{ |z| - \frac{M + a_n - a_p}{|a_n|} \right\}$$

$$> 0,$$

for $|z| > \frac{M + a_n - a_p}{|a_n|}$. Thus all zeros of F(z) whose modulus is greater than 1 lie in the disk

$$|z| \leq rac{M + a_n - a_p}{|a_n|}.$$

Therefore all zeros of F(z) lie in the disk

$$|z| \le Max \left\{ 1, \frac{M + a_n - a_p}{|a_n|} \right\}.$$

But all the zeros of P(z) are also the zeros of F(z). Hence it follows that all the zeros of P(z) lie in the disk

$$|z| \le Max \left\{ 1, \frac{M + a_n - a_p}{|a_n|} \right\}.$$

This completes the proof of Theorem 2.7.

Remark 2.8. Let $\max_{|z|=1} \left| \sum_{j=0}^{p} (a_j - a_{j-1}) z^j \right|$ is attained at $z = e^{i\alpha}$. Then

$$M = \left| \sum_{j=0}^{p} (a_j - a_{j-1}) e^{i\alpha} \right|$$

$$\leq \sum_{j=0}^{p} |a_j - a_{j-1}|$$

$$= M_p, \quad 0 \leq p \leq n,$$

where M_p is defined as in Theorem 2.1. Thus

$$M \le M_p, \ 0 \le p \le n.$$

From this, we conclude that Theorem 2.7 is a refinement of Theorem 2.1.

The following result is an immediate consequence of the Theorem 2.7.

Corollary 2.9. Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ be a polynomial of degree n. Then all the zeros of P(z) lie in

$$|z| \le \frac{M}{|a_n|},$$

where

$$M = \max_{|z|=1} \left| \sum_{j=0}^{n} (a_j - a_{j-1}) z^j \right|.$$

References

- N. Anderson, E.B.Saff and R.S. Verga, An Extension of Enestrom-Kakeya Theorem and its Sharpness, SIAM. Math. Anal., 12 (1981), 10-22. bibitem A. Aziz and B.A. Zargar, Some Extensions of Enestrom-Kakeya Theorem, Glasnik Mathematiki, 31 (1996), 239-244.
- [2] A. Aziz and B.A. Zargar, Bounds for the Zeros of a Polynomial with Restricted Coefficients, Applied Mathematics, Scientific Research Publications, 3 (2012), 30-33.
- [3] K.K. Dewan and N.K. Govil, On the Enestrom-Kakeya Theorem, J. Approx. Theory, 42 (1984), 239-244.
- [4] K.K. Dewan and M. Bidkham, On the Enestrom-Kakeya Theorem, J. Math. Anal. Appl., 180 (1993), 29-36.
- [5] R.B. Gardener and N.K. Govil, Some Generalizations of the Enestrom-Kakeya Theorem, Acta Math. Hungar., 4 (1997), 125-134.
- [6] N.K. Govil and G.N. Mctume, Some Extensions of Enestrom-Kakeya Theorem, Int. J. Appl. Math., 11(3) (2002), 245-253.
- [7] N.K. Govil and Q.I. Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math.J., 20 (1968), 126-136.
- [8] A. Joyal, G. Labelle and Q.I. Rahman, On the Location of Zeros of polynomials, Canadian Math. Bull., bf 10 (1967), 55-63.
- [9] M. Marden, Geometry of polynomials, Math. Surveys, No. 3, Amer. Math. Soc. Providence, RI 1949.
- [10] G.V. Milovanovic, D.S. Mitrinovic and Th.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore, 1994.