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Abstract. If P(z) = Z?:o a;2’,a; > aj_1,a0 > 0,5 =1,2,--- ,n is a polynomial of degree
n, then according to a classical result of Enestrom-Kakeya, all the zeros of P(z) lie in |2z| < 1.
Joyal et al extended Theorem A to the polynomials whose coefficients are monotonic but
not necessarily non-negative. In this paper, I will prove some extensions and generalizations

of this result by relaxing the hypothesis.

1. INTRODUCTION

Let P(z) = Z?:o ajzj be a polynomial of degree n. Then concerning the
distribution of zeros of P(z), Enestrém and Kakeya [10, 11] proved the follow-
ing interesting result.

Theorem A. Let P(z) = Z?:o ajz’ be a polynomial of degree n such that
Ap > Ap_1 > - > a1 > ag > 0. (1.1)
Then P(z) has all its zeros in |z| < 1.

In the literature [1-11], there exist several extensions and generalizations
of this Theorem. Joyal et al. [9] extended Theorem A to the polynomials
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whose coefficients are monotonic but not necessarily non-negative. In fact
they proved the following result.

Theorem B. Let P(z) =\, a;jz’ be a polynomial of degree n such that
ap 2 Ap—1 2+ 2> a1 2> QQ.

Then P(z) has all its zeros in the disk

1
21 < pory (] — a0 +Jaol)
mn

In this paper, we will prove some generalizations and extensions of Theorem
B and of the Theorem A i,e., Enestrom-Kakeya Theorem. In this direction we
first present the following interesting result in which we relax the hypothesis
and hence is a generalization of Theorem B. In fact, we prove the following:

2. MAIN RESULTS

Theorem 2.1. Let P(z) = a,2™ +an 12" 1+ -+ apzP + -+ a1z +ag be
a polynomial of degree n satisfying

Up 2 Ap—1 2+ 2 ap, 0<p<n.
Then all the zeros of P(z) lie in the disk

ap — ap + M,

|an| ’

2| <
where
P
Mp = Z ]aj — aj—-1].
=0

Proof. Consider the polynomial

F(z)=(1-2)P(2)
= (1 — z)(anz" + an_lznfl 4+ dajz+ a())

+1

=, 2" Fap 12" darzFag— a2 — a2 — - —apz

= —a,2" + (an —apn—1)z" + (ap—1 — an_g)z”_l + -4 (a1 — ag)z + ap.
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This gives

|F(z)] > |anz"+1’ - {‘an - an,lﬂz]" + |an,1 - an,2||z|"_1

+-t |ap+1 —asz]”H +-- 4 |a1 —aOHZ\ + ]a0|}

Ap—1 — Ap—2
_ |z|"{|an|\z| - <|anan1| 1 anm1 = anaf

E

laps1 — ap lar —ao| | aol
T e T T TR

1
?j<1,0§j§n,wehave

E

[F(2)] > IZI”{IanIIZI = (!an — ap-1] + |an-1 — ap-2|

Now, for |z| > 1, i,e.,

+...+|ap+1—ap|+---+!a1—ao|+|ao|>}
= |Z’n{|an||z| N (an —Qp-1+ap-1— Ap-2+ -

+apt1 —ap +lap —ap—1|+ -+ oy —00’+|‘10|>}

= IZI”{IanIIZI - (an —ap+lap —apa|+ - +far —aol + Iao\>}

p
= |z’”{|an||z| — (an —ap+ Z ‘aj — aj1|)}

§=0
>0,
P
for |z||an| > (an —ap + Mp), where M), = ) {aj —aj_1|, a_1 =0. Thus all
=0
the zeros of F'(z) whose modulus is greater than 1 lie in the disk

1
|z < —(an — ap—l—Mp).
|an|

But those zeros of F'(z) whose modulus is less than or equal to 1 already satisfy
the above inequality and all the zeros of P(z) are also the zeros of F'(z). Hence
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it follows that all the zeros of P(z) lie in the disk

—(an—ap—i—Mp).

This completes the proof. O
Remark 2.2. For p = 0, we get Theorem B.

Applying Theorem 2.1 to the polynomial P(tz), we get the following corol-
lary.

Corollary 2.3. Let P(2) = ap2" + ap_12"" 1+ + apz? + -+ a1z +ag be
a polynomial of degree n such that for any t > 0,

ap >t ap g > >tPa,, 0<p<n.
Then all the zeros of P(z) lie in the disk
|Z‘ < Z ‘taj —aj- 1|
tn— ]+1|a |

The following result follows from Corollary 2.3 by taking p = n.

Corollary 2.4. Let P(2) = ap,2" + an_12"" '+ -+ a1z +ag be a polynomial
of degree n. Then for any t > 0, all the zeros of P(z) lie in the disk

B —Z ]ta] aj—1|
n— ]+1|a |

We also prove the following result which gives the lower bound for the
moduli of zeros of a polynomial.

Theorem 2.5. If P(2) = a,2" + ap_12" 1 4 -+ + apzP + -+ a1z +ap is a
polynomial of degree n satisfying

anan—lz"‘zapn ngén
Then P(z) does not vanish in

|ao| >
|lan| + an — ap — |ao| + M, ’

|z| < min <1,
where

p
My =" laj —aj1l-
§=0

The bound is attained by the polynomial P(z) = 2" + 2" 1 4 -  + 2+ 1.
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Proof. Consider the reciprocal polynomial
R(z) =2"P(1/2) = apz" + a12" ' + -+ apz" P + - + ay.
Let
S(z) =(1—2)R(z)
= —apz" M +(ag—a1)z"+ - + (ap—ap11)2" P + - + (ap_1—an) 2 +an.
This gives
562

2VMVW“—{MrﬂHM”+~4%%—%HMd"p+~~H%hrﬂdd+MM}

|ap - ap+1| lan—1 — an| |an|
f— /rL —_— —_— PR — . e — —
—m{mwwow S = ke e =i 5

Now, for |z| > 1, that is

- < 1,0 < j < n, we have
2|

|S()]
2 IZ!"{\aoHZI - (Iao —ai| 4 A ap = appa| A+ a1 = an| + Ianl>}

= IZ!"{\aoHZI - (Ial —aol + -+ |apyr — ap| + fap — ap|

+'--+|an—an_1|+|an\>}

= |Z!"{|a0||2| - (Mp = laol + lap — ap—a] + -+ |an — an—a] + !an|> }

= |Z!"{|a0||2| - (Mp = lao| + an —ap + Ian|> }

>0,

1 P
for |z| > {\an+an—ap—\ao|+Mp}, where M, = > |a;j—aj_1|, a—1 = 0.
=0

|ao

Thus all the zeros of S(z) whose modulus is greater than 1 lie in

1
o1 < e {lanl = 0y~ ool + 14 .
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Hence all the zeros of S(z) and hence of R(z) lie in

1
2| < max{l, |a0|(|an| + an, — ap — |ao| +Mp) }

Therefore, all the zeros of P(z) lie in

|z| > min < 1, a0l .
|an| + an — ap — |ag| + M,

Thus the polynomial P(z) does not vanish in

|z| < min <1, a0l > .
|an| + an — ap — |ao| + M,

This completes the proof. [l

For p = 0, Theorem 2.5 reduces to the following result.
Corollary 2.6. If P(2) = ap2" + an_12"" ' + -+ + a1z + ag is a polynomial
of degree n satisfying
Qp 2 Ap_1 2 -+ 2 A0,
then P(z) does not vanish in

|ao|

) < — %l
|an| + QAp — ap

The bound is attained by the polynomial P(z) = 2" + 2" 1 4. + 2+ 1.

Next we prove the following more general result which is also a generaliza-
tion of Theorem B.

Theorem 2.7. Let P(z) = apz" + ap—12""1 + -+ +apzP + -+ a1z + ag be
a polynomial of degree n satisfying

anZaan“'Zap, 0<p<n
and
p .
‘mlaulc Z(aj —aj—1)2' | <M, (a1 =0).
zZl=
J=0

Then all the zeros of P(z) lie in

— M
2] < max (1’ W) _

|an|
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Proof. Consider the polynomial
F(z) = (1 - 2)P()
=(1-2)(an2" + an—12""" 4+ + a1z +ag)

g, 2" —apz

=ap2" + - tarz+ag— ayz"
= —an2" T 4 (ap — an—1)2" + -+ (app1 — ap) 2Pt
+ (ap — ap—1)2P + -+ (a2 — a1)2* + (a1 — ap)z + ag
= R(2) — a,z",
where
R(2) =(an—an_1)2"+ -+ (apr1—ap) 2P +(ap—ap_1)2P+ - - - + (a1 —ap)z+ao.
Let
R*(2) = 2"R(1/2) = apz" + (a1 — ag)z" ' + -+ + (ap — ap_1)z" P
+(ap = ap-1)2" P + (apr1 — ap)2" P 4+ (an — apo1).
Then, we have
R ()] < Ja=" + (a1 — a0)=™ -+ (ap — ap_1)"7]

+ | (apr1 — ap) 2" P 4+ (an — ap—1))|

+---+\(an—an_1)|
SM—’_an_apv

IN

V4
> (aj — aj-1)2" | + [(apr1 — ap)| 2" P
7=0

for |z| = 1, where M is defined as above. Hence by maximum modulus prin-
ciple, it follows that

|R*(2)| < M + an — ap, for |z| < 1.
Therefore
|R(2)| < [2|"(M + an — ap), for |z] > 1.
This gives for |z| > 1,
|F(z)] > ‘anz"H’ — |R(z)]
> ‘anz”H’ —2"(M +an —ap)

M -
> \anHZI”{\Z|— +}Zn‘ Clp}
n

> 0,
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M _
for |z| > T 7 % Thus all zeros of F(z) whose modulus is greater than
an,
1 lie in the disk
2] < M + ayn — ayp
|an]

Therefore all zeros of F(z) lie in the disk
M _
2] < Maz! 1, Mtan—ap
s

But all the zeros of P(z) are also the zeros of F'(z). Hence it follows that all
the zeros of P(z) lie in the disk

M _
] < Mam{l,wap}.

]

This completes the proof of Theorem 2.7. O

is attained at z = €'®. Then

i (aj —aj—1)2

Jj=0

Remark 2.8. Let 1‘fn|ax
z|=1

where M, is defined as in Theorem 2.1. Thus
M <M, 0<p<n.

From this, we conclude that Theorem 2.7 is a refinement of Theorem 2.1.
The following result is an immediate consequence of the Theorem 2.7.

Corollary 2.9. Let P(2) = ay2" +an_12"" 1 + -+ + a1z +ag be a polynomial
of degree n. Then all the zeros of P(z) lie in

2] <

Jan]’
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where
n
M = max a; —a;_1)7|.
e > (a; a1
Jj=0
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