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Abstract. In this paper, we prove existence and uniqueness of fixed points for a multivalued

mapping in complete G-metric space which satisfies some nonlinear contractive conditions.

We show that the multivalued nonlinear contraction mapping reduces to multivalued linear

contraction mapping by establishing the boundedness of orbit of the same. Our results

generalize existing results in the literature.

1. Introduction

Over the past few decades, the metric fixed point theory has attracted con-
siderable attention and become an important field of research in both pure and
applied sciences. The well-known Banach contraction principle, formulated
and proved by Banach in 1922, enunciates that any contractive self-mappings
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on a complete metric space has a unique fixed point. Because of its signif-
icance, Banach Contraction Principle has been extended and generalized in
various directions (see [5],[6],[7],[12],[21],[49] and references therein).

Later, in 1969, Nadler [31] initiated the study of fixed points for multivalued
mappings and generalized the Banach contraction principle. Inspired by this,
many authors proved fixed point results for multivalued mappings satisfying
different contractive conditions in metric space (see [8],[13],[14], [20],[23],[39]).
Some of the important generalizations among these are given by Reich[39],
obtained by extending the theorem of Boyd and Wong[4], to multivalued map-
pings whose range is compact sets, Mizoguzhi-Takahashi[23] and Kaneko[20].

On the other hand, several generalizations of standard metric spaces have
appeared. Pseudo metric space, ultra metric space, partial metric space, cone
metric space, b-metric space are few among such generalizations of metric
space. Many authors have studied fixed and common fixed point theorems
of various mappings in such spaces. We refer the reader to ([1],[17],[22],[32]-
[38],[47],[48]). In sixties Gahler introduced the notion of 2-metric claiming
that its a proper generalization of usual notion of metric spaces([15],[16]).
But, different authors proved that the results obtained by Gahler are inde-
pendent, rather than generalizations, of the corresponding results in metric
spaces. Then Dhage, in 1993, introduced D-metric and attempted to develop
topological structures in such spaces ([11], [10]). Later on, Mustafa and Sims
demonstrated the flaws in the topological properties of this space[26] and con-
sequently, they introduced the concept of G-metric space[30]. In recent years,
various fixed point theorems for single valued and multivalued maps have been
proved in G-metric space setting (refer [2],[3],[18],[19],[24],[25],[27],[28],[29],[41]-
[46]). The wide application of such fixed point theorems attracted many re-
searchers to study about G-metric space.

Motivated by above mentioned works, in this paper, we prove fixed point
theorems for multivalued mappings, which generalize theorems of Nadler and
Kaneko, in the setting of G-metric space. Then, we introduce the orbit of
a multivalued mapping and prove the boundedness of orbit of multivalued
mapping satisfying certain contractive condition in G-metric space. Further,
we prove fixed point theorem equivalent to the theorem analogue to Nadler’s
from which we can easily deduce that, the multivalued nonlinear contractions
can be reduced to multivalued linear contraction mapping. In the next section,
we present the necessary definitions and results in G-metric spaces, which will
be used for the rest of the paper.
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2. Preliminaries

We give some of the basic concepts and results in G-metric spaces that will
be needed in the sequel.

Definition 2.1. ([30]) Let X be a nonempty set and G : X×X×X → [0,∞)
be a function satisfying the following properties:

(P1) G(x, y, z) = 0 if x = y = z, for x, y, z ∈ X.
(P2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y.
(P3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z.
(P4) G(x, y, z) = G(x, z, y) = G(z, y, x) = · · · (symmetry in all three vari-

ables).
(P5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X(rectangle in-

equality).

Then, the pair (X,G) is called G-metric space andG is called generalized metric
or G-metric on X. A G-metric space is said to be symmetric if G(x, y, y) =
G(x, x, y).

We can always define a metric dG from a given G-metric on X by

dG(x, y) = G(x, y, y) +G(x, x, y).

If X is symmetric, then dG(x, y) = 2G(x, y, y) = 2G(x, x, y).

Example 2.2. ([30]) Let (X, d) be a metric space. Then the function G :
X ×X ×X → [0,∞) defined by

G(x, y, z) =
1

3
(d(x, y) + d(y, z) + d(x, z))

and
G(x, y, z) = max{d(x, y), d(y, z), d(x, z)}

are G-metrics on X.

Example 2.3. The metric defined on R by G(x, y, z) = |x − y| + |y − z| is
not a G-metric. Take x = 1, y = 5 and z = 3 to see that, it does not have
symmetry in all three variables.

Definition 2.4. ([30]) Let (X,G) be a G-metric space. A sequence {xn} ∈ X
is said to be G-convergent to x ∈ X if for any given ε > 0, there exists N ∈ N
such that G(xn, xm, x) < ε, for all n,m ≥ N . Then x is called the limit of
the sequence and we denote it by xn → x or lim

n→∞
xn = x.

Proposition 2.5. ([30]) Let (X,G) be a G-metric space. The following state-
ments are equivalent:
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(i) {xn} is G-convergent to x.
(ii) G(xn, xn, x)→ 0 as n→∞.

(iii) G(xn, x, x)→ 0 as n→∞.
(iv) G(xn, xm, x)→ 0 as n,m→∞.
(v) dG(xn, x)→ 0 as n→∞.

Example 2.6. Consider R with the G-metric G(x, y, z) = max{|x − y|, |y −
z|, |x − z|}. Then the sequence xn =

1

n
is G-convergent in R(for given ε > 0,

choose N > 1
ε ).

Definition 2.7. ([30]) Let (X,G) be a G-metric space. A sequence {xn} ∈ X
is said to be G-Cauchy sequence if, for any ε > 0 there exists a positive
integer N such that, G(xn, xm, xl) < ε, for all n,m, l ≥ N . If every G-Cauchy
sequence in X is G-convergent in X, then (X,G) is G-complete.

Example 2.8. Consider X = [0,∞] with G(x, y, z) = |x−y|+ |y−z|+ |x−z|.
The sequence xn =

1

n2
is G-Cauchy for, given ε > 0 and m > n > l, choose

N >
1√
ε
, then G(xn, xm, xl) < ε, for all n,m, l ≥ N .

Kaewcharoen et al. [19] introduced the concept of Hausdorff G-distance
and proved some properties of the same.

Definition 2.9. Let X be a G-metric space and CB(X) denotes the family
of all non-empty closed bounded subsets of X. Let A,B,C ∈ CB(X), the
Hausdorff G-distance on CB(X) is defined by

HG(A,B,C) = max

{
sup
x∈A

G(x,B,C), sup
y∈B

G(A, y, C), sup
z∈C

G(A,B, z)

}
,

where
G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),
dG(x,B) = inf{dG(x, y), y ∈ B},
dG(A,B) = inf{dG(x, y), x ∈ A , y ∈ B}.

Lemma 2.10. ([19]) Let (X,G) be a G-metric space and A,B ∈ CB(X).
Then for each a ∈ A, we have

G(a,B,B) ≤ HG(A,B,B).

Lemma 2.11. ([19]) Let (X,G) be a G-metric space. If A,B ∈ CB(X) and
a ∈ A, then for each ε > 0, there exists b ∈ B such that

G(a, b, b) ≤ HG(A,B,B) + ε.
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3. Main results

First we state two lemmas which will be useful in the sequel. The results
follow directly from the definition of Hausdorff G-distance.

Lemma 3.1. Let (X,G) be a G-metric space. Let x ∈ X and K ∈ CB(X).
Then there exists k ∈ K such that G(x, k, k) ≤ G(x,K,K) + ε.

Lemma 3.2. Let (X,G) be a G-metric space. Let x ∈ X and K ∈ CB(X).
Then HG(Ā, B̄, C̄) = HG(A,B,C), where Ā denotes the closure of A.

In the next theorem, we prove the existence of fixed points for a multivalued
mapping in a G-metric space which is an analogous to Nadler’s theorem in G-
metric space setting.

Theorem 3.3. Let (X,G) be a complete G-metric space. Let T : X → CB(X)
be a multivalued mapping satisfying

HG(Tx, Ty, Tz) ≤ kG(x, y, z), (3.1)

where 0 < k < 1, for all x, y, z ∈ X. Then T has a fixed point in X. Further,
if we assume x ∈ Tx, y ∈ Ty and G(x, y, y) ≤ HG(Tx, Ty, Ty), then T has a
unique fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. If x0 ∈ Tx0, there is nothing to
prove. Suppose x0 /∈ Tx0 and since Tx0 is non-empty, choose x1 ∈ Tx0. Since
Tx0, Tx1 ∈ CB(X) and x1 ∈ Tx0, there exists x2 ∈ Tx1 such that

G(x1, x2, x2) ≤ HG(Tx0, Tx1, Tx1) + k.

Since Tx1, Tx2 ∈ CB(X) and x2 ∈ Tx1, there exists x3 ∈ Tx2 such that

G(x2, x3, x3) ≤ HG(Tx1, Tx2, Tx2) + k2.

Continuing this process, we obtain a sequence {xn}∞n=1 of points of X such
that, xn+1 ∈ Txn and

G(xn, xn+1, xn+1) ≤ HG(Txn−1, Txn, Txn) + kn, ∀n ≥ 1. (3.2)

Now, using (3.1) and (3.2),

G(xn, xn+1, xn+1) ≤ HG(Txn−1, Txn, Txn) + kn

≤ kG(xn−1, xn, xn) + kn

≤ k[HG(Txn−2, Txn−1, Txn−1) + kn−1] + kn

≤ k2[G(xn−2, xn−1, xn−1) + kn−2] + 2kn

...

≤ knG(x0, x1, x1) + nkn.
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Thus

G(xn, xn+1, xn+1) ≤ knG(x0, x1, x1) + nkn, ∀n ≥ 1, (3.3)

which implies that for any n and m,

G(xn, xn+m, xn+m)

≤ G(xn, xn+1, xn+1) +G(xn+1, xn+m, xn+m)

≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) +G(xn+2, xn+3, xn+3)

+ · · ·+G(xn+m−2, xn+m−1, xn+m−1) +G(xn+m−1, xn+m, xn+m)

≤ knG(x0, x1, x1) + nkn + kn+1G(x0, x1, x1) + (n+ 1)kn+1

+ · · ·+ kn+m−1G(x0, x1, x1) + (n+m− 1)kn+m−1

=
n+m−1∑
i=n

kiG(x0, x1, x1) +
n+m−1∑
i=n

iki.

Since 0 < k < 1, each term on RHS converges and thus, G(xn, xn+m, xn+m)→
0 as n,m → ∞. Hence {xn} is a G-Cauchy sequence. So, the sequence
converges to some x ∈ X.

Now, we shall prove that x ∈ Tx. Consider

G(xn+1, Tx, Tx) ≤ HG(Txn, Tx, Tx) ≤ kG(xn, x, x).

Since xn → x, RHS goes to 0 as n→∞. Thus

G(x, Tx, Tx)→ 0 as n→∞.

For Tx is closed, it follows that x ∈ Tx. Now, assume x ∈ Tx, y ∈ Ty and
G(x, y, y) ≤ HG(Tx, Ty, Ty). Suppose x 6= y, consider

G(x, y, y) ≤ HG(Tx, Ty, Ty) ≤ kG(x, y, y) < G(x, y, y),

which leads to a contradiction. So we have x = y. This completes the proof.
�

Example 3.4. Let X = [0, 1] with the G-metric G(x, y, z) = |x − y| + |y −

z|+ |x− z|. The mapping T : X → CB(X) is defined by Tx =

[
0,
x

10

]
and T

has a unique fixed point.

Without loss of generality, assume that x < y < z, then Tx ⊂ Ty ⊂ Tz.

HG(Tx, Ty, Tz)

= max

{
sup
a∈Tx

G(a, Ty, Tz), sup
b∈Ty

G(Tx, b, Tz), sup
c∈Tz

G(Tx, Ty, c)

}
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and

dG(x, y) = d(x, y, y) + d(x, x, y) = 4|x− y|.
Now, we calculate

dG(Ty, Tz) = inf{4|b− c|, b ∈ [0, y10 ], c ∈ [0, z10 ]} = 0,
dG(a, Ty) = inf{4|a− b|, b ∈ [0, y10 ]} = 0,
dG(a, Tz) = inf{4|a− c|, c ∈ [0, z10 ]} = 0.

Thus, sup
a∈Tx

G(a, Ty, Tz) = 0, and

dG(Tx, Tz) = inf{4|a− c|, a ∈ [0, x10 ], c ∈ [0, z10 ]} = 0,
dG(b, Tz) = inf{4|b− c|, c ∈ [0, z10 ]} = 0,

dG(b, Tx) = inf{4|b− a|, a ∈ [0, x10 ]} =

{
0 if b ∈ [0, x10 ]

4b− 4x
10 if b ≥ x

10 .

So, we get

sup
b∈Ty

G(Tx, b, Tz) =
4y − 4x

10
.

Similarly,

G(Tx, Ty, c) =


0 , ifc ∈ [0, x10 ]

4c− 4x
10 , ifc ∈ [ x10 ,

y
10 ]

8c− 4y
10 −

4x
10 , ifc ∈ [ y10 ,

z
10 ],

which gives

sup
c∈Tz

G(Tx, Ty, c) =
8z − 4y − 4x

10
.

Hence we have

HG(Tx, Ty, Tz) = max

{
0,

4y − 4x

10
,
8z − 4y − 4x

10

}
=

8z − 4y − 4x

10

≤ 8z − 8x

10

=
8

10
|z − x|

≤ 8

10

(
|x− y|+ |y − z|+ |x− z|

)
=

8

10
G(x, y, z).
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Therefore,

HG(Tx, Ty, Tz) ≤ 8

10
G(x, y, z),

and T has a unique fixed point which is zero.

In a G-metric space, a subset K ⊆ X is said to be proximinal if, for each
x ∈ X, there exists an element k ∈ K such that, G(x, k, k) = G(x,K,K). We
shall denote this family by P (X). A mapping φ : X × X × X → [0,∞) is
called compactly positive if,

inf{φ(x, y, z) : a ≤ G(x, y, z) ≤ b} > 0,

for each finite interval [a, b] ⊆ (0,∞). Again, we say T : X → P (X) weakly
contractive if, there exists a mapping φ, compactly positive, such that

HG(Tx, Ty, Tz) ≤ G(x, y, z)− φ(x, y, z),

for each x, y ∈ X.

Next, we give an equivalent definition of weakly contractive multivalued
mapping.

Proposition 3.5. Let (X,G) be a G-metric space and T : X → CB(X). The
following statements are equivalent:

(a) T is weakly contractive.
(b) HG(Tx, Ty, Tz) ≤ h(x, y, z)G(x, y, z) for some non negative function

h(x, y, z) satisfying

sup{h(x, y, z) : a ≤ G(x, y, z) ≤ b} < 1,

for each closed interval [a, b] ⊂ (0,∞).

Proof. (a) =⇒ (b) : Since T is weakly contractive, there exists compactly
positive mapping φ such that, HG(Tx, Ty, Tz) ≤ G(x, y, z)−φ(x, y, z). Define

h(x, y, z) =

1− φ(x, y, z)

G(x, y, z)
, G(x, y, z) 6= 0

0 , G(x, y, z) = 0.
.

Then, HG(Tx, Ty, Tz) ≤ h(x, y, z)G(x, y, z) and it can be easily verified that,
h(., ., .) satisfies the required conditions.
(b) =⇒ (a) : To prove the reverse implication, define φ(., ., .) using h(., ., .),
then we have desired result. �

The following theorem generalizes Theorem 2 of [20] proved by Kaneko.
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Theorem 3.6. Let (X,G) be a complete G-metric space and let T : X →
P (X) be such that

HG(Tx, Ty, Tz) ≤ h(x, y, z)G(x, y, z), ∀ x, y, z ∈ X, (3.4)

and for some non-negative function h(x, y, z) satisfying

sup{h(x, y, z) : a ≤ G(x, y, z) ≤ b} < 1,

for each closed interval [a, b] ⊂ (0,∞). Assume also that if, (xn, yn, zn) ∈
X ×X ×X is such that

lim
n→∞

G(xn, yn, zn) = 0 then, lim
n→∞

h(xn, yn, zn) = k, for some k ∈ [0,∞).

(3.5)
Then T has a fixed point in X. Also, if we assume x ∈ Tx, y ∈ Ty and
G(x, y, y) ≤ HG(Tx, Ty, Ty), then T has a unique fixed point in X.

Proof. Let x0 ∈ X and Tx0 ∈ P (X). If x0 ∈ Tx0, the proof is done. If not,
there is x1 ∈ Tx0 such that

G(x0, x1, x1) = G(x0, Tx0, Tx0).

Continuing this process to generate the sequence {xn}∞n=1 ∈ X such that
xn ∈ Txn−1,

G(xn, xn+1, xn+1) = G(xn, Txn, Txn).

Now
G(xn, xn+1, xn+1) = G(xn, Txn, Txn)

≤ HG(Txn−1, Txn, Txn)

≤ h(xn−1, xn, xn)G(xn−1, xn, xn)

< G(xn−1, xn, xn),

which implies that, {G(xn, xn+1, xn+1)} is a monotone decreasing sequence
which is bounded below by 0 and hence it converges.

Claim: lim
n→∞

G(xn, xn, xn+1) = 0. Suppose that lim
n→∞

G(xn, xn, xn+1) = ε.

Consider

G(xn, xn+1, xn+1)
≤ h(xn−1, xn, xn)G(xn−1, xn, xn)

≤ h(xn−1, xn, xn)h(xn−2, xn−1, xn−1)G(xn−2, xn−1, xn−1)

...

≤ h(xn−1, xn, xn)h(xn−2, xn−1, xn−1) · · ·h(x0, x1, x1)G(x0, x1, x1).

So,
ε < G(xn, xn+1, xn+1) < G(x0, x1, x1).

Let k = sup{h(x, y, z) : ε ≤ G(x, y, z) ≤ G(x0, x1, x1)} < 1. Then

G(xn, xn+1, xn+1) ≤ knG(x0, x1, x1),



732 M. Pitchaimani, Pavana Devassykutty and W. H. Lim

which implies, lim
n→∞

G(xn, xn+1, xn+1) = 0.

Let k0 < 1, choose N ∈ N such that, h(xn, xn+1, xn+1) ≤ k0, ∀ n ≥ N .
Thus

G(xn, xn+1, xn+1)
≤ h(xn−1, xn, xn)h(xn−2, xn−1, xn−1) · · ·h(x0, x1, x1)G(x0, x1, x1)

≤ kn−N0 rNG(x0, x1, x1)

≤ RnG(x0, x1, x1),

where R = max{k0, r} and r = max{h(xi, xi+1, xi+1) : i = 0, 1, · · ·N−1} < 1.
So we have for m > n,

G(xn, xm, xm) ≤
m−1∑
i=n

G(xi, xi+1, xi+1)

≤
m−1∑
i=n

RiG(x0, x1, x1)

≤ Rn

1−R
G(x0, x1, x1).

Hence {xn} is a G-Cauchy sequence and so xn → x in X.
Now, we prove that x is a fixed point of T. We have

G(xn, Tx, Tx) ≤ HG(Txn−1, Tx, Tx) ≤ h(xn−1, x, x)G(xn−1, x, x).

As n→∞ , G(x, Tx, Tx) = 0 and thus x ∈ Tx. Now, assume x ∈ Tx, y ∈ Ty
and G(x, y, y) ≤ HG(Tx, Ty, Ty). Suppose x 6= y, consider

G(x, y, y) ≤ HG(Tx, Ty, Ty) ≤ h(x, y, y)G(x, y, y) < G(x, y, y),

which is a contradiction. So we have x = y. �

In the next theorem, we have used the condition of weakly contractivity
along with a weaker condition and extended Theorem 3.6 to multivalued map-
pings whose range is closed bounded sets.

Theorem 3.7. Let (X,G) be a complete G-metric space and T : X → CB(X)
be weakly contractive. Also assume that

lim inf
b→0

λ(a, b)

b
> 0, (3.6)

where λ(a, b) = inf{φ(x, y, z) | x, y, z ∈ X, a ≤ G(x, y, z) ≤ b}, for each finite
interval [a, b] ⊂ (0,∞). Then T has a fixed point. If we assume x ∈ Tx, y ∈
Ty and G(x, y, y) ≤ HG(Tx, Ty, Ty), then T has a unique fixed point in X.
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Proof. Let x1 ∈ X and r1 = G(x1, Tx1, Tx1). If r1 > 0, take R1 =
λ(r1, 2r1)

2r1
.

It can be easily seen that, R1 < 1 and since φ is compactly positive, R1 > 0.

Now, ε1 be such that 0 < ε1 < min

{
R1

1−R1
, 1

}
. Choose x2 ∈ Tx1 such that

G(x1, x2, x2) < (1 + ε1)G(x1, Tx1, Tx1).

We have

G(x2, Tx2, Tx2) ≤ HG(Tx1, Tx2, Tx2) ≤ G(x1, x2, x2)− φ(x1, x2, x2).

Now,

G(x1, Tx1, Tx1)−G(x2, Tx2, Tx2)

≥ 1

1 + ε1
G(x1, x2, x2)− [G(x1, x2, x2)− φ(x1, x2, x2)]

=
1

1 + ε1
G(x1, x2, x2)−

[
1− φ(x1, x2, x2)

G(x1, x2, x2)

]
G(x1, x2, x2)

≥ 1

1 + ε1
G(x1, x2, x2)−

[
1− λ(r1, 2r1)

2r1

]
G(x1, x2, x2)

=

[
1

1 + ε1
− (1−R1)

]
G(x1, x2, x2).

Hence we have

G(x1, Tx1, Tx1)−G(x2, Tx2, Tx2) ≥
[

1

1 + ε1
− (1−R1)

]
G(x1, x2, x2). (3.7)

Note that,

[
1

1 + ε1
− (1 − R1)

]
> 0. Now let r2 = G(x2, Tx2, Tx2) and

R2 =
λ(r2,

3
2r2)

3
2r2

if r2 > 0. Using (3.7), r1 − r2 > 0 which implies,
r1
r2

> 1.

Now, choose ε2 to be, 0 < ε2 < min

{
R2

1−R2
,
r1
r2
− 1,

1

2

}
, and x3 ∈ Tx2 such

that

G(x2, x3, x3) < (1 + ε2)G(x2, Tx2, Tx2).

Proceeding as above, we obtain

G(x2, Tx2, Tx2)−G(x3, Tx3, Tx3) ≥
[

1

1 + ε2
− (1−R2)

]
G(x2, x3, x3).

Iteratively, we get rn = G(xn, Txn, Txn) and Rn =
λ(rn,

n+1
n rn)

n+1
n rn

. Now,

choose εn such that, 0 < εn < min

{
Rn

1−Rn
,
rn−1
rn
−1,

1

n

}
and find xn+1 ∈ Txn
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satisfying

G(xn, xn+1, xn+1) < (1 + εn)G(xn, Txn, Txn),

and

G(xn, Txn, Txn)−G(xn+1, Txn+1, Txn+1)

≥
[

1

1 + εn
− (1−Rn)

]
G(xn, xn+1, xn+1).

If rn = 0 for any n, then the proof is done. If rn > 0, for all n, then by (3.6)
lim inf Rn > 0 and lim sup(1−Rn) < 1. Thus we have, for some k > 0,

G(xn, Txn, Txn)−G(xn+1, Txn+1, Txn+1) ≥ kG(xn, xn+1, xn+1),

for sufficiently large n. The sequence {rn} converges as it is monotonically
decreasing sequence and bounded below. Consider for m > n,

G(xn, xm, xm) ≤
m−1∑
i=n

G(xi, xi+1, xi+1)

≤ 1

k

m−1∑
i=n

[G(xi, Txi, Txi)−G(xi+1, Txi+1, Txi+1)]

=
1

k
[G(xn, Txn, Txn)−G(xm, Txm, Txm)]

=
1

k
(tn − tm)→ 0 as n→∞.

Thus {xn} is G-Cauchy sequence in X. Since X is G-complete, xn → x ∈ X.
Now it remains to prove that x is a fixed point for T . Consider

G(xn, Tx, Tx) ≤ HG(Txn−1, Tx, Tx)

≤ G(xn−1, x, x)− φ(xn−1, x, x)

≤ G(xn−1, x, x).

As n→∞, we get G(x, Tx, Tx)→ 0 and thus x ∈ Tx.
Next, assume x ∈ Tx, y ∈ Ty are two fixed points of T and G(x, y, y) ≤

HG(Tx, Ty, Ty). Suppose x 6= y, consider

G(x, y, y) ≤ HG(Tx, Ty, Ty) ≤ G(x, y, y)− φ(x, y, y) < G(x, y, y),

which leads to a contradiction and thus x = y. �

Example 3.8. Let X = [0,∞) with the G-metric G(x, y, z) = max{|x −

y|, |y − z|, |z − x|}. Define T : X → CB(X) by Tx =

[
0,

x

5(1 + x)

]
. For

x ≤ y ≤ z, by carrying out the calculation as in Example 3.4, we can see that



Fixed point theorems for multivalued nonlinear contraction 735

HG(Tx, Ty, Tz) ≤ h(x, y, z)G(x, y, z), where h(x, y, z) : X ×X ×X → [0,∞)

given by h(x, y, z) =
4

1 +G(x, y, z)
and T has a fixed point x = 0.

In [46], the following theorem concerning the common fixed points for a
single valued mapping and a multivalued mapping in a G-metric space have
proved.

Theorem 3.9. Let (X,G) be a complete G-metric space. Let g : X → X
and T : X → CB(X) be two mappings. Assume that there is a function
α : [0,∞)→ [0, 1) satisfying lim sup

r→t+
α(r) < 1, for every t ≥ 0 such that

HG(Tx, Ty, Tz) ≤ α(G(gx, gy, gz))G(gx, gy, gz), (3.8)

for all x, y, z ∈ X. If for any x ∈ X, Tx ⊆ g(X) and g(X) is a G-complete
subspace of X, then g and T have a point of coincidence in X.

If we let g to be the identity mapping, we get the following result.

Theorem 3.10. Let (X,G) be a complete G-metric space and T : X →
CB(X) be a multivalued mapping. Assume that, there is a function α :
[0,∞)→ [0, 1) satisfying lim sup

r→t+
α(r) < 1 for every t ≥ 0 such that

HG(Tx, Ty, Tz) ≤ α(G(x, y, z))G(x, y, z) (3.9)

for all x, y, z ∈ X. Then T has a fixed point in X.

Theorem 3.10 is a generalized version of Theorem 3.3 and it also generalizes
theorem of Mizoguzhi-Takahashi in [23]. Now we define the orbit of a multi-
valued mapping and then will be proving the boundedness of orbit of certain
multivalued mappings to get a fixed point result equivalent to Theorem 3.3.

Definition 3.11. Let T : X → CB(X) be a multivalued mapping and let
x ∈ X, we define the orbit of T at x as

OT (x) = {x}
⋃
Tx
⋃
T 2x

⋃
· · · ,

OT (x) =
∞⋃
n=0

Tnx where Tnx =
⋃

w∈Tn−1

Tw.

Example 3.12. Consider the multivalued mapping T : R → R defined by
Tx = [0, x], the orbit of T is bounded for each x ∈ R. Whereas, the orbit of
T given by Tx = [0, x4] is not bounded for |x| > 1.
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Definition 3.13. Let T : X → CB(X) be a multivalued mapping. T is said
to be invariant under S ⊆ X if, Tx ⊆ S, whenever x ∈ S.

Proposition 3.14. Let (X,G) be a complete G-metric space and T : X →
CB(X) be a multivalued Lipschitz mapping. Let S = OT (x0), x0 ∈ X. Then
T is invariant under S.

Proof. Let x ∈ S. Then, there exists a sequence {xn}n∈N ∈ OT (x) such that
xn → x. Since T is multivalued Lipschitz mapping, there exists α > 0 such
that

HG(Txn, Txn, Tx) ≤ αG(xn, xn, x),

which implies that HG(Txn, Txn, Tx) → 0, since G(xn, xn, x) → 0. We need
to prove that Tx ⊆ S. Let y ∈ Tx. Then by Lemma 2.10,

G(y, Txn, Txn) ≤ HG(Tx, Txn, Txn).

Now, choose zn ∈ Txn such that, G(y, zn, zn) ≤ G(y, Txn, Txn) +
1

n
, then

there is a sequence of points of OT (x) which converges to y. i.e., G(y, zn, zn)→
0, which implies that y ∈ Tx ⊂ S. Hence T is invariant under S = OT (x). �

Lemma 3.15. Suppose that h : X ×X ×X → [0,∞) satisfies

sup{h(x, y, z) : a ≤ G(x, y, z) ≤ b} < 1, (3.10)

for each closed interval [a, b] ⊂ (0,∞). Assume also that if, (xn, yn, zn) ∈
X ×X ×X is such that

lim
n→∞

G(xn, yn, zn) = 0, then lim
n→∞

h(xn, yn, zn) = k, for some k ∈ [0,∞).

(3.11)
Then, sup{h(x, y, z) : 0 ≤ G(x, y, z) ≤ b} < 1.

Proof. Let M = sup{h(x, y, z) : 0 ≤ G(x, y, z) ≤ b} and suppose that M = 1.
Then, there exists (xn, yn, zn) ∈ X ×X ×X such that lim

n→∞
h(xn, yn, zn) = 1.

But using (3.11), G(xn, yn, zn) must converge to 0, which is a contradiction to
the condition (3.10). Hence the conclusion follows. �

Next, we prove that under certain contractive condition the orbit of a mul-
tivalued mapping is bounded.

Theorem 3.16. Let (X,G) be a complete G-metric space and T : X →
CB(X) be such that

HG(Tx, Ty, Tz) ≤ h(x, y, z)G(x, y, z), ∀ x, y, z ∈ X, (3.12)
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where h : X ×X ×X → (0,∞) is such that

sup{h(x, y, z) : 0 ≤ G(x, y, z) ≤ b} < 1.

Then the orbit of T is bounded.

Proof. Let x ∈ X and T satisfies (3.12). First we prove that
HG(Tnx, Tn+1x, Tn+1x) converges to some nonnegative number.

Let u ∈ Tnx =
⋃

z∈Tn−1x

Tz and Tn+1x =
⋃

w∈Tnx

Tw.

Now,

G(u, Tn+1x, Tn+1x) = dG(u, Tn+1x) + dG(Tn+1x, Tn+1x) + dG(u, Tn+1x)

= 2dG(u, Tn+1x)

= inf{dG(u, t), t ∈ Tn+1x}
≤ dG(u, Tw) for each w ∈ Tnx

≤ HG(Tz, Tw, Tw) for some z ∈ Tn−1x
≤ h(z, w,w)G(z, w,w)

≤ G(z, w,w)

≤ 2dG(z, w).

Taking infimum over w ∈ Tnx,

G(u, Tn+1x, Tn+1x) ≤ dG(z, Tnx) ≤ G(z, Tnx, Tnx)

for each u ∈ Tnx. Similarly,

G(v, Tnx, Tn+1x) ≤ G(z, Tnx, Tn+1x)

for each v ∈ Tn+1x. Hence

HG(Tnx, Tn+1x, Tn+1x) ≤ HG(Tn−1x, Tnx, Tnx).

Thus, HG(Tnx, Tn+1x, Tn+1x) is a decreasing sequence of non-negative real
numbers and it follows that, lim

n→∞
HG(Tnx, Tn+1x, Tn+1x) = r.

Now we prove that {Tnx} is a G-Cauchy sequence in CB(X). Let u ∈ Tnx.
Then for each w ∈ Tnx

G(u, Tn+1x, Tn+1x) ≤ h(z, w,w)G(z, w,w)

for some z ∈ Tn−1x.
Now, ε > 0 be given. For each n ∈ N and zn ∈ Tn−1x, there is wn ∈ Tnx

satisfying
G(zn, wn, wn) ≤ G(znT

nx, Tnx) + ε, (3.13)

which implies that

G(zn, wn, wn) ≤ HG(Tn−1x, Tnx, Tnx) + ε.
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Since {HG(Tn−1x, Tnx, Tnx)} converges to r, G(zn, wn, wn) is bounded for
all n. We have, sup{h(x, y, z) : 0 ≤ G(x, y, z) ≤ r + ε} < 1 and so, take
sup{h(zn, wn, wn) = k , k ∈ [0, 1). Now

G(u, Tn+1x, Tn+1x) ≤ h(zn, wn, wn){G(zn, T
nx, Tnx) + ε},

sup
u∈Tnx

G(u, Tn+1x, Tn+1x) ≤ sup
zn∈Tn−1x

h(zn, wn, wn)HG(Tn−1x, Tnx, Tnx)

≤ kHG(Tn−1x, Tnx, Tnx) (arbitrary ε).

Repeating the same arguments, we can prove that

sup
v∈Tn+1x

G(v, Tnx, Tn+1x) ≤ kHG(Tn−1x, Tnx, Tnx).

Thus, HG(Tnx, Tn+1x, Tn+1x) ≤ kHG(Tn−1x, Tnx, Tnx). This is true for
each n ∈ N. So iteratively we get

HG(Tnx, Tn+1x, Tn+1x) ≤ knG(x, Tx, Tx).

Since k ∈ (0, 1), the sequence {Tn(x)} is G-Cauchy. Let An = {Tn(x)}. We
have by Lemma 3.2, HG(Ā, B̄, B̄) = HG(A,B,B) and CB(X) is complete in
Hausdorff G-distance, there is an A ∈ CB(X) such that An → A.

Now, choose δ > 0. Let p, q ∈ OT (x). So for p ∈ Tnx there exists p1 ∈ A so
that G(p, p1, p1) ≤ HG(Tnx, Tnx,A) + δ and for q ∈ Tmx there exists q1 ∈ A
so that G(q, q, q1) ≤ HG(Tmx, Tmx,A) + δ.
So,

G(p, q, q) ≤ G(p, p1, p1) +G(p1, q1, q1) +G(q1, q, q)

≤ HG(Tnx, Tnx,A) +HG(Tmx, Tmx,A) + 2δ +G(p1, q1, q1).

Since δ is arbitrary constant, An → A and A ∈ CB(X), G(p, q, q) ≤ M for
some M > 0. Thus orbit of T is bounded. �

Now, we give a fixed point theorem for multivalued mappings which is
equivalent to 3.3.

Theorem 3.17. Let S be a bounded complete G-metric space and T : S →
CB(S) be such that

HG(Tx, Ty, Tz) ≤ kG(x, y, z)

for all x, y ∈ S, where, 0 < k < 1. Then T has a fixed point. Further, if
we assume x ∈ Tx, y ∈ Ty and G(x, y, y) ≤ HG(Tx, Ty, Ty), then T has a
unique fixed point in X.

It is obvious that Theorem 3.3 implies Theorem 3.17. For the reverse im-
plication, we have from Proposition 3.14, T is invariant under OT (x) and T
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satisfies (3.12). So by Theorem 3.16, OT (x) is bounded. Thus by taking

S = OT (x) in Theorem 3.17, T has a fixed point.

Using the extra bounded condition on G-metric space, we can see that
Theorem 3.6 and 3.10 follows as corollaries of Theorem 3.17.

Corollary 3.18. Let (X,G) be a complete G- metric space and let T : X →
CB(X) be such that

HG(Tx, Ty, Tz) ≤ h(x, y, z)G(x, y, z), ∀ x, y, z ∈ X,
and for some non negative function h(x, y, z) satisfying sup{h(x, y, z) : a ≤
G(x, y, z) ≤ b} < 1, for each closed interval [a, b] ⊂ (0,∞). Assume also
that if, (xn, yn, zn) ∈ X × X × X is such that lim

n→∞
G(xn, yn, zn) = 0, then

lim
n→∞

h(xn, yn, zn) = k for some k ∈ [0,∞). Then T has a fixed point in X.

Proof. We have from Theorem 3.16, OT (x) is bounded. So, we can define
b = sup{G(x, y, y) : x, y ∈ OT (x)}. Now by Lemma 3.15, sup{h(x, y, z) :
0 ≤ G(x, y, z) ≤ b} < 1. Thus T becomes a multi valued contraction mapping
when it restrict to OT (x). Taking S = OT (x), it follows by Theorem 3.17 that
T has a fixed point in X. �

Corollary 3.19. Let (X,G) be a complete G- metric space. Let T : X →
CB(X) be a multi valued mapping. Assume that there is a function α :
[0,∞)→ [0, 1) satisfying lim sup

r→t+
α(r) < 1 for every t ≥ 0 such that

HG(Tx, Ty, Tz) ≤ α(G(x, y, z))G(x, y, z),

for all x, y, z ∈ X. Then T has a fixed point in X.

Proof. Take h(x, y, z) = α(G(x, y, z)). It can easily be seen that the h(., ., .)
thus defined satisfies all the condition of Theorem 3.16 and so repeating the
same arguments as above, it follows that T has a fixed point in X. �

Remark 3.20. In the proof of Corollary 3.18 and Corollary 3.19, It can
be seen that the multivalued mappings reduced to multivalued contraction
mappings. We have used the boundedness of the orbit of multivalued mappings
to obtain the results easily.
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[12] W-S Du, On coincidence point and fixed point theorems for nonlinear multivalued maps,
Topol. Appl., 159 (2012), 49-56.

[13] A.A. Eldred, J. Anuradha and P. Veeramani, On equivalence of generalized multi-valued
contractions and Nadlers fixed point theorem, J. Math. Anal. Appl., 336 (2007), 751-757.

[14] G.M. Eshaghi, H. Baghani, H. Khodaei and M. Ramezani, A generalization of Nadlers
fixed point theorem, J. Nonlinear Sci. Appl., 3(2) (2010), 148-151.

[15] S. Gahler, 2-metriche raume und ihre topologische strukture, Math. Nachr., 26 (1963),
115-148.

[16] S. Gahler, Zur geometric 2-metriche raume, Reevue Roumaine de Math.Pures et Appl.,
XI (1966), 664-669.

[17] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl., 332(2) (2007), 1468-1476.

[18] A. Kaewcharoen, Common fixed point theorems for contractive mappings satisfying φ
mapps in G-metric spaces, Banach J. Math. Anal., 6(1) (2012), 101-111.

[19] A. Kaewcharoen and A. Kaewkhao, Common fixed points for single-valued and multi-
valued mappings in G-metric spaces, Int. J. Math. Anal. (Ruse). 5 (2011), 1775-1790.

[20] H. Kaneko, Generalized contractive multi-valued mappings and their fixed points, Math.
Japon., 33 (1988), 57-64.

[21] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71-76.
[22] W.A. Kirk and N. Shahzad, Some fixed point results in ultrametric spaces. Topol. Appl.,

159 (2012), 3327-3334.
[23] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on

complete metric spaces, J. Math.Anal. Appl., 141 (1989), 177-188.
[24] Z. Mustafa, M. Khandaqji and W. Shatanawi, Fixed point results on complete G-metric

spaces, Studia Sci. Math. Hungar., 48 (2011), 304-319.
[25] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete

G-metric spaces, Fixed Point Theory Appl., Article ID 917175 (2009).



Fixed point theorems for multivalued nonlinear contraction 741

[26] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceedings of
the Internatinal Conference on Fixed Point Theory and Appl., Valencia (Spain), July
(2003), 189-198.

[27] Z. Mustafa, M. Arshad, K.U. Khan, J. Ahmad and M. M. Jaradat, Common fixed points
for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl.,
10 (2017), 2550-2564.

[28] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on
complete G-metric spaces, Fixed Point Theory Appl. Article ID 189870 (2008).

[29] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric
spaces, Int. J. Math. Math. Sci. Article ID 283028 (2009).

[30] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear
Convex Anal., 7(2) (2006), 289-297.

[31] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[32] M. Pitchaimani and D. Ramesh Kumar, Some common fixed point theorems using im-

plicit relation in 2-Banach spaces, Surv. Math. Appl., 10 (2015), 159-168.
[33] M. Pitchaimani and D. Ramesh Kumar, Common and coincidence fixed point theorems

for asymptotically regular mappings in 2-Banach Space, Nonlinear Funct. Anal. Appl.,
21(1) (2016), 131-144.

[34] M. Pitchaimani and D. Ramesh Kumar, On construction of fixed point theory under
implicit relation in Hilbert spaces, Nonlinear Funct. Anal. Appl. 21(3) (2016), 513-522.

[35] M. Pitchaimani and D. Ramesh Kumar, On Nadler type results in ultrametric
spaces with application to well-posedness, Asian-European J. of Math., 10(4) (2017),
1750073(1-15) DOI: 10.1142/S1793557117500735.

[36] M. Pitchaimani and D. Ramesh Kumar, Generalized Nadler type results in ultrametric
spaces with application to well-posedness, Afri. Mat., 28 (2017), 957-970.

[37] D. Ramesh Kumar and M. Pitchaimani, Set-valued contraction mappings of Prešić-Reich
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