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Abstract. A new class in the open unit disc of analytic p-valent functions is introduced

in this paper. This subclass Sm,jλ,p (a1, b1, α, β,A,B, γ) is mainly defined by the generalized

hypergeometric function. The majorization properties for the functions in this class are

introduced. Moreover, we investigate the coefficient estimates for this class.

1. Introduction and Preliminaries

We begin by letting U = {z ∈ C : |z|<1} be the open unit disk of the
complex plane and Ap denote the class of functions of the form:

f(z) = zp +
∞∑
k=1

ap+kz
p+k (p ∈ N = {1, 2, 3, ...}), (1.1)
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which are analytic and p-valent in U . For simplicity, we write A1 = A. The
Hadamard product (or convolution) f ∗ g for two analytic functions f defined
in (1.1) and

g(z) = zp +
∞∑
k=1

bp+kz
p+k

is given by

f(z) ∗ g(z) = zp +

∞∑
k=1

ap+kbp+kz
p+k.

Let f and g be two analytic functions in U . Then we say that f is majorized
by g in U (see [9]) and write

f(z)� g(z) (z ∈ U ), (1.2)

if there exists an analytic function φ(z) in U such that

|φ(z)| ≤ 1, f(z) = φ(z)g(z) (z ∈ U ). (1.3)

It may be noted here that (1.2) is closely related to the concept of quasi-
subordination between analytic functions.

Given two analytic functions f and g in U , the subordination between them
is written as f ≺ g or f(z) ≺ g(z), that is, we say f(z) is subordinate to g(z)
if there is a Schwarz function w with w(z) = 0, |w(z)|<1, (z ∈ U ) such that
f(z) = g(w(z)) for all z ∈ U . Furthermore, if g(z) is univalent in U , then
f ≺ g if and only if f(0) = g(0) and f(U ) ⊆ g(U ).

El-Ashwah [6] studied the p-valent function Hp(a1, b1; z), which defined by
generalized hypergeometric function as follows:

Hp(a1, b1; z) = zp +

∞∑
k=1

(a1)k...(ar)k
(b1)k...(bs)k

zp+k

k!
, p ∈ N (1.4)

where ai ∈ C, bn ∈ C \ {0,−1,−2, ...}, (i = 1, ..., r, n = 1, ..., s), and r ≤
s+ 1; r, s ∈ N0, and (υ)k is the Pochhammer symbol defined by

(υ)k =
Γ(υ + k)

Γ(υ)
=

{
υ(υ + 1)...(υ + k − 1), k = 1, 2, 3, ...,
1, k = 0.

The following defines the familiar Mittag-Leffler function Eα(z) which is
introduced by Mittag-Leffler [10] and [11] and its generalization Eα,β(z) is
introduced by Wiman [21]

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
,
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and

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

where α, β ∈ C, Re(α)>0 and Re(β)>0.

As a result, a lot of useful work have been made by many researchers in at-
tempt to explain Mittag-Leffler function and its generalization, for examples,
see [3], [14], [18], [19] and [20].

Corresponding to Eα,β(z), we define the function Qα,β(z) by

Qα,β(z) = zΓ(β)Eα,β(z)

= z +

∞∑
k=2

Γ(β)

Γ(α(k − 1) + β)
zk.

Now, for f ∈ A we define the following differential operator: Dm
λ (α, β)f :

A −→ A by

D0
λ(α, β)f(z) = f(z) ∗Qα,β(z), (1.5)

D1
λ(α, β)f(z) = (1− λ)(f(z) ∗Qα,β(z)) + λz(f(z) ∗Qα,β(z))

′
(1.6)

:

Dm
λ (α, β)f(z) = D1

λ(Dm−1
λ (α, β)f(z)) (1.7)

If f in A, then from (1.6) and (1.7) we see that

Dm
λ (α, β)f(z) = z +

∞∑
k=2

[1 + (k − 1)λ]m
Γ(β)

Γ(α(k − 1) + β)
akz

k. (1.8)

Now, we define the operator Dm
λ (α, β)f(z) in (1.8) of a function f ∈ Ap

given by (1.1) as

Dm
λ,p(α, β)f(z) = zp +

∞∑
k=1

[
p+ kλ

p

]m Γ(β)

Γ(αk + β)
ap+kz

k+p, p ∈ N, (1.9)

where m ∈ N0, λ ≥ 0.

Corresponding toHp(a1, b1; z) which defined in (1.4), Dm
λ,p(α, β)f(z) defined

in (1.9) and using Hadamard product, we define a new generalized derivative

operator D̃m
λ,p(α, β, a1, b1)f(z) as follows:
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Definition 1.1. Let f ∈ Ap. Then the generalized derivative operator

D̃m
λ,p(α, β, a1, b1)f(z) : Ap → Ap is given by

D̃m
λ,p(α, β, a1, b1)f(z)

= Hp(a1, b1; z) ∗Dm
λ,p(α, β)f(z)

= zp +
∞∑
k=1

[
p+ kλ

p

]m Γ(β)

Γ(αk + β)

(a1)k...(ar)k
(b1)k...(bs)k

ap+kz
p+k

k!
.

(1.10)

We can easily verify from (1.10) that

pD̃m+1
λ,p (α, β, a1, b1)f(z) = (p− pλ)D̃m

λ,p(α, β, a1, b1)f(z)

+ λz(D̃m
λ,p(α, β, a1, b1)f(z))

′
.

(1.11)

Remark 1.2. It can be seen that

• For r = 1, s = 0, a1 = 1, α = 0, β = 1 and p = 1, we get Al-Oboudi
operator [1].
• For r = 1, s = 0, a1 = 1, α = 0, β = 1, λ = 1 and p = 1, we get

Sǎlǎgean operator [17].
• For r = 1, s = 0, a1 = 1,m = 0 and p = 1, we get Eα,β(z) [19].
• For m = 0, α = 0 and β = 1, we get the operator studied by El-Ashwah

[6].
• For m = 0, α = 0, β = 1, r = 1, s = 0, a1 = δ + 1 and p = 1, we obtain

the operator introduced by Ruscheweyh [16].
• For m = 0, α = 0, β = 1, r = 2, s = 1 and p = 1, we obtain the

operator which was given by Hohlov [8].
• For m = 0, α = 0, β = 1, r = 2, s = 1, a2=1 and p = 1, we obtain the

operator was given by Carlson and Shaffer [4].
• For m = 0, α = 0, β = 1 and p = 1 we obtain the operator studied by

Dziok and Srivastava [5].

Next, as a result of full utilization of differential operator D̃m
λ,p(α, β, a1, b1)f(z),

we define and study the class Sm,jλ,p (a1, b1, α, β,A,B, γ) as follows:

Definition 1.3. Let f ∈ Ap. Then f ∈ Sm,jλ,p (a1, b1, α, β,A,B, γ) of p-valent

functions of complex order γ 6= 0 in U , if it satisfies the condition1 +
1

γ

z
(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j+1)

(
D̃m
λ,p(α, β, a1, b1)f(z)

)j − p+ j


 ≺ 1 +Az

1 +Bz
, (z ∈ U )

(1.12)
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where p ∈ N,m, j ∈ N0 = N
⋃
{0}, γ ∈ C \ {0}, λ ≥ 0,−1 ≤ B<A ≤ 1, ai ∈

C, bn ∈ C \ {0,−1,−2, ...}, (i = 1, ..., r, n = 1, ..., s), and r ≤ s+ 1; r, s ∈ N0.

Remark 1.4. It can be seen that, by specializing the parameters, the class

Sm,jλ,p (a1, b1, α, β,A,B, γ) is reduced to numerous known subclasses of analytic

functions, for examples:

• when m = 0, α = 0, β = 1, p = 1, j = 0, r = 2, s = 1, a1 = b1, a2 =

1, A = 1 and B = −1, then the class Sm,jλ,p (a1, b1, α, β,A,B, γ) reduces

to the class Sγ .
• when m = 0, α = 0, β = 1, p = 1, j = 1, r = 2, s = 1, a1 = b1, a2 =

1, A = 1 and B = −1, then the class Sm,jλ,p (a1, b1, α, β,A,B, γ) reduces

to the class Cγ .
• when m = 0, α = 0, β = 1, p = 1, j = 0, r = 2, s = 1, a1 = b1, a2 =

1, A = 1,B = −1 and γ = 1−δ then the class Sm,jλ,p (a1, b1, α, β,A,B, γ)

reduces to the class S∗(δ).

The classes Sγ and Cγ are the classes of starlike and convex of complex of
order γ 6= 0 in U introduced by Nasr and Aouf [12] and the class S∗(δ) denote
the class of starlike functions of order δ in U (see [15]).

2. Main Results

In our first theorem, we begin with majorization problem for functions

belonging to the class Sm,jλ,p (a1, b1, α, β,A,B, γ).

Theorem 2.1. Let f ∈ Ap and suppose that g ∈ Sm,jλ,p (a1, b1, α, β,A,B, γ).

If
(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j)
is majorized by

(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)
in U ,

then∣∣∣∣(D̃m+1
λ,p (α, β, a1, b1)f(z)

)(j)
∣∣∣∣ ≤ ∣∣∣∣(D̃m+1

λ,p (α, β, a1, b1)g(z)
)(j)

∣∣∣∣ for |z| ≤ r0,

(2.1)
where r0 = r0(p, λ, γ) is the smallest positive root of the equation

r3
∣∣∣γ(A−B) +

(p
λ

)
B
∣∣∣− ∣∣∣(p

λ

)
+ 2|B|

∣∣∣ r2

−
[∣∣∣γ(A−B)−

(p
λ

)
B
∣∣∣+ 2

]
r +

(p
λ

)
= 0,

(2.2)

for −1 ≤ B<A ≤ 1; λ ≥ 0; p ∈ N; γ ∈ C \ {0}.
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Proof. Since g ∈ Sm,jλ,p (a1, b1, α, β,A,B, γ) we find from (1.12) that

1 +
1

γ

z
(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j+1)

(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)
− p+ j

 =
1 +Aw(z)

1 +Bw(z)
, (2.3)

where γ ∈ C \ {0}, j, p ∈ N and w(z) = d1z + d2z
2 + ..., w ∈ P, P denotes the

well-known class of bounded analytic functions in U (see Goodman [7]) with

w(0) = 0, |w(z)|<1 (z ∈ U ).

From (2.3), we get

z
(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j+1)

(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)
=

(p− j) + [γ(A−B) + (p− j)B]w(z)

1 +Bw(z)
.

(2.4)
It follows from (1.11) that

z(D̃m
λ,p(α, β, a1, b1)f(z))(j+1) =

p

λ

(
D̃m+1
λ,p (α, β, a1, b1)f(z)

)(j)

+
(
p− j − p

λ

)(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j)
.

(2.5)

Combining (2.4) and (2.5), we can get∣∣∣∣(D̃m
λ,p(α, β, a1, b1)g(z)

)(j)
∣∣∣∣

≤

(p
λ

)
[1 + |B||z|]

p

λ
−
∣∣∣γ(A−B) +

(p
λ

)
|B|
∣∣∣ |z|

∣∣∣∣(D̃m+1
λ,p (α, β, a1, b1)g(z)

)(j)
∣∣∣∣ . (2.6)

Next, since
(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j)
is majorized by

(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)

in U , it follows from (1.3) that(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j)
= φ(z)

(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)
. (2.7)

Differentiating (2.7) with respect to z and multiplying by z, we get

z
(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j+1)
= zφ

′
(z)
(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)

+ zφ(z)
(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j+1)
.

(2.8)
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Now, using (2.5) in (2.8), it yields

(
D̃m+1
λ,p (α, β, a1, b1)f(z)

)(j)
=
zφ

′
(z)
(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)

p/λ

+ φ(z)
(
D̃m+1
λ,p (α, β, a1, b1)g(z)

)(j)
.

(2.9)

Noting that φ(z) ∈ P satisfies the inequality (see [13])

|φ′
(z)| ≤ 1− |φ(z)|2

1− |z|2
(z ∈ U ), (2.10)

and making use of (2.6) and (2.10) in (2.9), we get∣∣∣∣(D̃m+1
λ,p (α, β, a1, b1)f(z)

)(j)
∣∣∣∣

≤

|φ(z)|+ 1− |φ(z)|2

1− |z|2
|z|(1 + |B||z|)(p

λ

)
−
∣∣∣γ(A−B) +

(p
λ

)
|B|
∣∣∣ |z|


×
∣∣∣∣(D̃m+1

λ,p (α, β, a1, b1)g(z)
)(j)

∣∣∣∣ .
(2.11)

Let |z| = r and |φ(z)| = ρ, (0 ≤ ρ ≤ 1). Then we have∣∣∣∣(D̃m+1
λ,p (α, β, a1, b1)f(z)

)(j)
∣∣∣∣

≤ ψ(ρ)

(1− r2)
[(p
λ

)
−
∣∣∣γ(A−B) +

(p
λ

)
B
∣∣∣ r]

∣∣∣∣(D̃m+1
λ,p (α, β, a1, b1)g(z)

)(j)
∣∣∣∣ ,

(2.12)

where

ψ(p) = −r(1 + |B|r)ρ2 + (1− r2)
[(p
λ

)
−
∣∣∣γ(A−B) +

(p
λ

)
B
∣∣∣ r] ρ

+ r(1 + |B|r)
(2.13)

takes its maximum value at ρ = 1, with r0 = r0(p, λ, γ) and r0 is the smallest
positive root of (2.2). Moreover, if 0 ≤ ϑ ≤ r0, then the function χ(ρ) defined
by

χ(ρ) = −ϑ(1 + |B|ϑ)ρ2 + (1− ϑ2)×
[(p
λ

)
−
∣∣∣γ(A−B) +

(p
λ

)
B
∣∣∣ϑ] ρ

+ ϑ(1 + |B|ϑ)
(2.14)
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is an increasing function on the interval 0 ≤ ρ ≤ 1, so that

χ(ρ) ≤ χ(1) = (1− ϑ2)
[(p
λ

)
−
∣∣∣γ(A−B) +

(p
λ

)
B
∣∣∣ϑ] ρ,

0 ≤ ϑ ≤ r0, 0 ≤ ρ ≤ 1. Hence, setting ρ = 1 in (2.12), we conclude that (2.1)
of Theorem 2.1 holds true for

|z| ≤ r0 = r0(p, λ, γ),

where r0(p, λ, γ) is the smallest positive root of (2.2). This completes the proof
of Theorem 2.1. �

Putting A = 1 and B = −1 in Theorem 2.1, we obtain the following corol-
lary.

Corollary 2.2. Let f ∈ Ap and suppose that g ∈ Sm,jλ,p (a1, b1, α, β, γ). If(
D̃m
λ,p(α, β, a1, b1)f(z)

)(j)
is majorized by

(
D̃m
λ,p(α, β, a1, b1)g(z)

)(j)
in U , then∣∣∣∣(D̃m+1

λ,p (α, β, a1, b1)f(z)
)(j)

∣∣∣∣ ≤ ∣∣∣∣(D̃m+1
λ,p (α, β, a1, b1)g(z)

)(j)
∣∣∣∣ for |z| ≤ r0,

where

r0 = r0(p, λ, γ) =

l −
√
l2 − 4

(p
λ

) ∣∣∣2γ − p

λ

∣∣∣
2
∣∣∣2γ − p

λ

∣∣∣
and

l = 2 +
(p
λ

)
+
∣∣∣2γ − p

λ

∣∣∣ , (λ ≥ 0; p ∈ N; γ ∈ C \ {0}).

Putting p = 1,m = 0, j = 0, λ = 1, α = 0, β = 1, r = 2, s = 1, a1 = b1 and
a2 = 1 in Corollary 2.2, we get the following corollary:

Corollary 2.3. ([2]) Let f ∈ Ap and suppose that g ∈ Sγ. If f(z) is majorized
by g(z) in U , then we have∣∣∣f ′

(z)
∣∣∣ ≤ ∣∣∣g′

(z)
∣∣∣ for |z| ≤ r0,

where

r0 = r0(γ) =
3 + |2γ − 1| −

√
9 + 2 |2γ − 1|+ |2γ − 1|2

2 |2γ − 1|
.

For γ = 1, Corollary 2.3 reduces to the following result:

Corollary 2.4. ([9]) Let f ∈ Ap and suppose that g ∈ S∗ = S∗(0). If f(z) is
majorized by g(z) in U , then we have∣∣∣f ′

(z)
∣∣∣ ≤ ∣∣∣g′

(z)
∣∣∣ for |z| ≤ 2−

√
3.
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Now, we obtain the coefficient estimate for a function belongs to the class

Sm,jλ,p (a1, b1, α, β,A,B, γ) when j = 0.

Definition 2.5. Let f ∈ Ap, then f ∈ Smλ,p(a1, b1, α, β,A,B, γ) of p-valent
functions of complex order γ 6= 0 in U , if it satisfies the condition

1 +
1

γ

z
(
D̃m
λ,p(α, β, a1, b1)f(z)

)′

(
D̃m
λ,p(α, β, a1, b1)f(z)

) − p
 ≺ 1 +Az

1 +Bz
, (2.15)

where p ∈ N,m ∈ N0 = N
⋃
{0}, γ ∈ C \ {0}, λ ≥ 0,−1 ≤ B<A ≤ 1, ai ∈

C, bn ∈ C \ {0,−1,−2, ...}, (i = 1, ..., r, n = 1, ..., s), and r ≤ s+ 1; r, s ∈ N0.

Theorem 2.6. Let f ∈ Ap. if f satisfies the condition∑∞
k=1 [k + |γ(A−B)− kB|]

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk! |ap+k|

|γ|(A−B)
≤ 1, (2.16)

then f ∈ Smλ,p(a1, b1, α, β,A,B, γ).

Proof. Let f ∈ Smλ,p(a1, b1, α, β,A,B, γ). Then we can write (2.15) as follows:

1 +
1

γ

z
(
D̃m
λ,p(α, β, a1, b1)f(z)

)′

(
D̃m
λ,p(α, β, a1, b1)f(z)

) − p
 =

1 +Aw(z)

1 +Bw(z)
,

which implies

z
(
D̃m
λ,p(α, β, a1, b1)f(z)

)′

(
D̃m
λ,p(α, β, a1, b1)f(z)

) − p
=

γ(A−B)−B

z
(
D̃m
λ,p(α, β, a1, b1)f(z)

)′

(
D̃m
λ,p(α, β, a1, b1)f(z)

) − p

w(z).

(2.17)

From (2.17), we obtain

pzp +
∑∞

k=1

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!(p+ k)ap+kz
p+k

zp +
∑∞

k=1

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!ap+kz
p+k

− p

=

γ(A−B)−B

pzp+
∑∞

k=1

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!(p+k)ap+kz
p+k

zp +
∑∞

k=1

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!ap+kz
p+k

−p

w(z),
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which yields∑∞
k=1 k

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!ap+kz
k

1 +
∑∞

k=1

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!ap+kz
k

=

γ(A−B)−B

 ∑∞
k=1 k

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!ap+kz
k

1 +
∑∞

k=1

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk!ap+kz
k

w(z).

Since |w(z)| ≤ 1,∣∣∣∣∣
∞∑
k=1

k

[
p+ kλ

p

]m Γ(β)

Γ(αk + β)

(a1)k...(ar)k
(b1)k...(bs)kk!

ap+kz
k

∣∣∣∣∣
≤

∣∣∣∣∣γ(A−B)−
∞∑
k=1

[Bk−γ(A−B)]

[
p+ kλ

p

]m Γ(β)

Γ(αk + β)

(a1)k...(ar)k
(b1)k...(bs)kk!

ap+kz
k

∣∣∣∣∣ .
Letting |z| → 1− through real values, we have

∞∑
k=1

[k + |γ(A−B)− kB|]
[
p+ kλ

p

]m Γ(β)

Γ(αk + β)

(a1)k...(ar)k
(b1)k...(bs)kk!

|ap+k|

≤ |γ|(A−B).

Therefore, we have∑∞
k=1 [k + |γ(A−B)− kB|]

[
p+kλ
p

]m
Γ(β)

Γ(αk+β)
(a1)k...(ar)k

(b1)k...(bs)kk! |ap+k|

|γ|(A−B)
≤ 1.

This completes the proof of Theorem 2.6. �
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[20] H.M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator con-

taining a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211
(2009), 198–210.
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