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Abstract. In this paper, we consider an extended general variational inequality with three

nonlinear operators, more precisely, relaxed (α, r)-cocoercive mappings. Using the projection

technique, we show that the extended general variational inequality is equivalent to the

nonlinear projection equation. This alternative equivalent formulation is used to discuss the

existence and convergence(or approximate solvability) of a solution of the extended general

variational inequality under suitable conditions.

1. Introduction

In recent years, many theory of variational inequalities and its special forms
have been extended and generalized to study a wide applications and prob-
lems arising from several fields such as applied mathematics, optimization,
control theory, equilibrium problems and nonlinear programming problems,
etc. Standard variational inequality problem was introduced by Stampacchia
[18] in 1964.

In 2009, Noor [11] introduced and studied the existence of solution for ex-
tended general variational inequality with three strongly monotone mappings.

In this paper, we consider an extended general variational inequality with
three nonlinear operators, more precisely, relaxed cocoercive mappings. We
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show that the extended general variational inequality includes general varia-
tional inequalities and several other classes of variational inequalities as special
cases. One can show that the extended general variational inequalities provide
us with a unified, simple and natural framework in which to study a wide class
of problems which arise in various areas of pure and applied sciences. Using
the projection technique, it is shown that the extended general variational
inequalities are equivalent to the nonlinear projection equation. This alterna-
tive equivalent formulation is used to discuss the existence and convergence
of a solution of the extended general variational inequalities under suitable
conditions.

2. Preliminaries

Throughout this paper, let H be a real Hilbert space, whose norm and inner
product are denoted by ‖·‖ and 〈·, ·〉, respectively. Let K be a nonempty closed
subset in H.

For given nonlinear operators T, g, h : H → H, we consider the problem of
finding u ∈ H,h(u) ∈ K such that

〈Tu, g(v)− h(u)〉 ≥ 0, ∀ v ∈ H, g(v) ∈ K. (2.1)

An inequality of type (2.1) is called the extended general variational inequality
involving three operators.

We would like to emphasize that problem (2.1) is equivalent to that of
finding u ∈ H, h(u) ∈ K such that

〈ρTu+ h(u)− g(u), g(v)− h(u)〉 ≥ 0, ∀ v ∈ H, g(v) ∈ K, (2.2)

where ρ > 0 is constant. The inequality of type (2.2) is called the auxiliary
extended general variational inequality associated with the problem (2.1). This
equivalent formulation is also useful from the applications point of view.

Now, we list some special cases of the extended general variational inequal-
ities.

I. If g = h, then problem (2.1) and problem (2.2) are equivalent to that of
finding u ∈ H, g(u) ∈ K such that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀ v ∈ H, g(v) ∈ K,

which is known as general variational inequality (see, [12]). It turned out that
odd order and nonsymmetric obstacle, free, moving, unilateral and equilib-
rium problems arising in various branches of pure and applied sciences can be
studied via general variational inequalities, see [13, 15].
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II. For h = I, the identity operator, then problem (2.1) is equivalent to that
of finding u ∈ K such that

〈Tu, g(v)− u〉 ≥ 0, ∀ v ∈ H, g(v) ∈ K,

which is also called the general variational inequality, see [10].

III. For g = h = I, the identity operator, the extended general variational
inequality problem (2.1) is equivalent to that of finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀ v ∈ K,

which is known as the classical variational inequality, see [18].

IV. If K∗ = {u ∈ H : 〈u, v〉 ≥ 0, ∀ v ∈ K} is a polar (dual) convex cone of a
closed convex cone K in H, then problem (2.1) is equivalent to that of finding
u ∈ H such that

g(u) ∈ K, Tu ∈ K∗, 〈g(u), Tu〉 = 0, (2.3)

which is known as the general complementarity problem. If g = I, the identity
operator, then problem (2.3) is called the generalized complementarity prob-
lem. For g(u) = u−m(u), where m is a point-to-point mapping, then problem
(2.3) is called the quasi (implicit) complementarity problem, see [15, 22].

From the above discussion, it is clear that the extended general variational
inequality (2.1) is most general and includes several known classes of varia-
tional inequalities and related optimization problems as special cases. These
variational inequalities have important applications in mathematical program-
ming and engineering sciences.

We also need the following concepts and results.

Lemma 2.1. Let K be a closed and convex subset in a Hilbert space H. Then
for a given z ∈ H, u ∈ K satisfies

〈u− z, v − u〉 ≥ 0, ∀ v ∈ K (2.4)

if and only if

u = PK(z),

where PK is the projection of H onto the closed and convex set K in H.

Remark 2.2. It is well known that the projection operator PK is nonexpan-
sive, that is,

‖PK(u)− PK(v)‖ ≤ ‖u− v‖, ∀u, v ∈ H. (2.5)

Definition 2.3. ([19]) Let H be a Hilbert space.
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(1) A mapping T : H → H is called α-strongly monotone, if for each
x, y ∈ H, we have

〈T (x)− T (y), x− y〉 ≥ α‖x− y‖2,

for a constant r > 0. This implies that

‖T (x)− T (y)‖ ≥ α‖x− y‖,

that is, T is α-expansive and when α = 1, it is expansive.
(2) A mapping T : H → H is called β-Lipschitz continuous, if there exists

a constant β ≥ 0 such that

‖T (x)− T (y)‖ ≤ β‖x− y‖, ∀x, y ∈ H.

(3) A mapping T : H → H is called µ-cocoercive, if there exists a constant
µ > 0 such that

〈T (x)− T (y), x− y〉 ≥ µ‖T (x)− T (y)‖2, ∀x, y ∈ H.

Clearly, every µ-cocoercive mapping T is 1
µ -Lipschitz continuous.

(4) A mapping T : H → H is called relaxed α-cocoercive, if there exists a
constant α > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−α)‖T (x)− T (y)‖2, ∀x, y ∈ H.

(5) A mapping T : H → H is called relaxed (α, r)-cocoercive, if there exists
a constant α, r > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−α)‖T (x)− T (y)‖2 + r‖x− y‖2,

for all x, y ∈ H. For α = 0, T is r-strongly monotone. This class of
mappings is more general than the class of strongly monotone map-
pings. It is easy to see that we have the following implication:

r − strongly monotonicity ⇒ relaxed (α, r)− cocoercivity

3. Existence of a solution of the extended general variational
inequality

In this section, we establish the equivalence between the extended gen-
eral variational inequality (2.2) and the fixed point problem. This alternative
equivalent formulation is used to study the existence of a solution of the ex-
tended general variational inequality under suitable conditions. We prove that
the extended general variational inequality (2.2) is equivalent to the fixed point
problem by invoking Lemma 2.1.
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Lemma 3.1. ([11]) The function u ∈ H, h(u) ∈ K is a solution of the extended
general variational inequality (2.2) if and only if u ∈ H, h(u) ∈ K satisfies the
relation

h(u) = PK(g(u)− ρTu), (3.1)

where PK is the projection operator and ρ > 0 is a constant.

Lemma 3.1 implies that the extended general variational inequality problem
of (2.2) is equivalent to the fixed point problem. This alternative equivalence
formulation is very useful from the numerical and theoretical points of view.
Zhao and Sun [22] used the concept of the exceptional family to study the
existence of a solution of the nonlinear projection equation (3.1). We rewrite
the relation (3.1) in the following form:

F (u) = u− h(u) + PK(g(u)− ρTu), (3.2)

which is used to study the existence of a solution of the extended general
variational inequality (2.2).

Now, we study those conditions under which the extended general vari-
ational inequality (2.2) has a solution and this is the main motivation for
obtaining our next result.

Theorem 3.2. Let the operators T, g, h : H → H be relaxed (αT , rT )-cocoercive,
relaxed (αg, rg)-cocoercive, relaxed (αh, rh)-cocoercive and βT -Lipschitz contin-
uous, βg-Lipschitz continuous, βh-Lipschitz continuous, respectively. If

∣∣∣ρ− rT − αTβ2T
β2T

∣∣∣ <
√

(rT − αTβ2T )2 − β2T δ(2− δ)
β2T

,

β2T δ(2− δ) < (rT − αTβ2T )2 ≤ β2T , δ < 1, (3.3)

where

δ =
√

1− 2rh + (2αh + 1)β2h +
√

1− 2rg + (2αg + 1)β2g ,

then there exists a unique solution u ∈ H, h(u) ∈ K of the extended general
variational inequality (2.2).

Proof. From Lemma 3.1, it follows that problems (3.2) and (2.2) are equiva-
lent. Thus it is enough to show that the mapping F (u), defined by (3.2), has
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a fixed point. For all u 6= v ∈ H, we have

‖F (u)− F (v)‖
= ‖u− v − (h(u)− h(v)) + PK(g(u)− ρTu)− Pk(g(v)− ρTv)‖
≤ ‖u− v − (h(u)− h(v))‖+ ‖PK(g(u)− ρTu)− Pk(g(v)− ρTv)‖
≤ ‖u− v − (h(u)− h(v))‖+ ‖u− v − (g(u)− g(v))‖

+ ‖u− v − ρ(Tu− Tv)‖, (3.4)

where we have used the fact (2.5). Since the operator T is relaxed (αT , rT )-
cocoercive and βT -Lipschitz continuous, it follows that

‖u− v − ρ(Tu− Tv)‖2

= ‖u− v‖2 − 2ρ〈Tu− Tv, u− v〉+ ρ2‖Tu− Tv‖2

≤ ‖u− v‖2 + 2ραT ‖Tu− Tv‖2 − 2ρrT ‖u− v‖2 + ρ2‖Tu− Tv‖2

=
(

1− 2ρrT + (2ραT + ρ2)β2T

)
‖u− v‖2. (3.5)

In a similar way, we have

‖u− v − (g(u)− g(v))‖2

= ‖u− v‖2 − 2〈u− v, g(u)− g(v)〉+ ‖g(u)− g(v)‖2

≤ ‖u− v‖2 + 2αg‖g(u)− g(v)‖2 − 2rg‖u− v‖2 + ‖g(u)− g(v)‖2

≤
(

1− 2rg + (2αg + 1)β2g

)
‖u− v‖2 (3.6)

and

‖u− v − (h(u)− h(v))‖2 ≤
(

1− 2rh + (2αh + 1)β2h

)
‖u− v‖2. (3.7)

From (3.4)-(3.7), we get

‖F (u)− F (v)‖

≤
(√

1− 2rh + (2αh + 1)β2h +
√

1− 2rg + (2αg + 1)β2g

+
√

1− 2ρrT + (2ραT + ρ2)β2T

)
‖u− v‖

=
(
δ + k(ρ)

)
‖u− v‖

= θ‖u− v‖, (3.8)

where

k(ρ) =
√

1− 2ρrT + (2ραT + ρ2)β2T
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and

θ = δ + k(ρ).

From conditions (3.3), it follows that

θ < 1.

Thus (3.8) implies that F is a contractive mapping and so there exists a
unique point u∗ ∈ H such that F (u∗) = u∗. Therefore, from the mapping
F (u), defined by (3.2), has a fixed point which is the unique solution of (2.2).
This completes the proof. �

Corollary 3.3. Let the operators T, g, h : H → H be rT -strongly monotone,
rg-strongly monotone, rh-strongly monotone and βT -Lipschitz continuous, βg-
Lipschitz continuous, βh-Lipschitz continuous, respectively. If

∣∣∣ρ− rT
β2T

∣∣∣ <
√
r2T − β2T δ(2− δ)

β2T
,

β2T δ(2− δ) < r2T ≤ β2T , δ < 1,

where

δ =
√

1− 2rh + β2h +
√

1− 2rg + β2g ,

then there exists a unique solution u ∈ H, h(u) ∈ K of the extended general
variational inequality (2.2).

Proof. For the mapping T be a relaxed (α, r)-cocoercive, if we take α = 0,
then relaxed (α, r)-cocoercive mapping being a r-strongly monotone mapping.
So, we should take α = 0 in Theorem 3.2, we can easily deduce the result of
Corollary 3.3. �

Remark 3.4. Theorem 3.2 extends and improves the main result in Noor
[11].

4. Convergence theorem of a solution of the extended general
variational inequality

In this section, we study the approximation solvability of the extended gen-
eral variational inequality problem (2.2) involving three operators for projec-
tion methods and its special iterative algorithm.

Most of all, Lemma 3.1 implies that (2.2) is equivalent to the fixed point
problem (3.1). Using the fixed point formulation (3.2), we suggest and analyze
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iterative form:

u = (1− an)u+ an{u− h(u) + PK(g(u)− ρTu)}, (4.1)

where 0 ≤ an ≤ 1 for all n ≥ 0.
This alternative formulation is used to suggest the following algorithm for

solving an extended general variational inequality (2.2) and its variant form.

Algorithm 4.1. For arbitrary chosen initial points u0 ∈ K compute the
iterative sequence {un} such that

un+1 = (1− an)un + an{un − h(un) + PK(g(un)− ρTun)}, (4.2)

where PK is the projection of H onto K, ρ > 0 is constant and {an} be
sequence in [0, 1].

Lemma 4.1. ([21]) If {λn} is a nonnegative sequence satisfying the following
inequality:

λn+1 ≤ (1− tn)λn + µn, ∀n ≥ 0

with 0 ≤ tn ≤ 1,
∑∞

n=0 tn =∞ and µn = o(tn), then

lim
n→∞

λn = 0.

Theorem 4.2. Let the operators T, g, h : H → H be relaxed (αT , rT )-cocoercive,
relaxed (αg, rg)-cocoercive, relaxed (αh, rh)-cocoercive and βT -Lipschitz contin-
uous, βg-Lipschitz continuous, βh-Lipschitz continuous, respectively. Let {un}
be the iterative sequence generated by Algorithm 4.1. If {an} is sequence in
[0, 1] satisfying the following conditions:

∞∑
n=0

an =∞,

∣∣∣ρ− rT − αTβ2T
β2T

∣∣∣ <
√

(rT − αTβ2T )2 − β2T δ(2− δ)
β2T

,

β2T δ(2− δ) < (rT − αTβ2T )2 ≤ β2T , δ < 1, (4.3)

where

δ =
√

1− 2rh + (2αh + 1)β2h +
√

1− 2rg + (2αg + 1)β2g ,

then the sequence {un} converges strongly to u.

Proof. Since u ∈ H, h(u) ∈ K is a solution of the extended general variable
inequality (2.2), by Lemma 3.1, we know that

h(u) = PK(g(u)− ρTu), ρ > 0.
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It follows from (4.1) and (4.2) that

‖un+1 − u‖
= ‖(1− an)un + an{un − h(un) + PK(g(un)− ρTun)}
− (1− an)u− an{u− h(u) + PK(g(u)− ρTu)}‖
≤ (1− an)‖un − u‖+ an‖un − u− (h(un)− h(u))‖

+ an‖un − u− (g(un)− g(u))‖+ an‖un − u− ρ(Tun − Tu)‖. (4.4)

Since T is relaxed (αT , rT )-cocoercive and βT -Lipschitz continuous, from (3.5),
we have

‖un − u− ρ(Tun − Tu)‖2 ≤
(

1− 2ρrT + (2ραT + ρ2)β2T

)
‖un − u‖2. (4.5)

Similarly, from (3.6) and (3.7), we get

‖un − u− (g(un)− g(u))‖2 ≤
(

1− 2rg + (2αg + 1)β2g

)
‖un − u‖2 (4.6)

and

‖un − u− (h(un)− h(u))‖2 ≤
(

1− 2rh + (2αh + 1)β2h

)
‖un − u‖2. (4.7)

From (4.4)-(4.7), we get

‖un+1 − u‖ ≤ (1− an)‖un − u‖

+ an

√
1− 2rh + (2αh + 1)β2h ‖un − u‖

+ an

√
1− 2rg + (2αg + 1)β2g ‖un − u‖

+ an

√
1− 2ρrT + (2ραT + ρ2)β2T ‖un − u‖

= (1− an(1− θ))‖un − u‖,
where

k(ρ) =
√

1− 2ρrT + (2ραT + ρ2)β2T

and

θ = δ + k(ρ).

From conditions (4.3), it follows that

θ < 1.

Taking
λn = ‖un − u‖, tn = an(1− θ) and µn = 0,

we know that all conditions in Lemma 4.1 are satisfied. Therefore, ‖un−u‖ →
0 as n→∞, i.e.,

un → u as n→∞.
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This completes the proof of Theorem 4.2. �

Corollary 4.3. Let the operators T, g, h : H → H be rT -strongly monotone,
rg-strongly monotone, rh-strongly monotone and βT -Lipschitz continuous, βg-
Lipschitz continuous, βh-Lipschitz continuous, respectively. Let {un} be the
iterative sequence generated by Algorithm 4.1. If {an} is sequence in [0, 1]
satisfying the following conditions:

∞∑
n=0

an =∞,

∣∣∣ρ− rT
β2T

∣∣∣ <
√

(rT )2 − β2T δ(2− δ)
β2T

,

β2T δ(2− δ) < r2T ≤ β2T , δ < 1,

where

δ =
√

1− 2rh + β2h +
√

1− 2rg + β2g ,

then the sequence {un} converges strongly to u.

Proof. For the mapping T be a relaxed (α, r)-cocoercive, if we take α = 0,
then relaxed (α, r)-cocoercive mapping being a r-strongly monotone mapping.
So, if we take α = 0, then we can easily obtain the result of Corollary 4.3 from
Theorem 4.2 immediately. �

5. Conclusion

The extended general variational inequalities include various classes of vari-
ational inequalities and optimization problems as special cases, its results
proved in this paper continue to hold for these problems. It is expect that
this class will inspire and motivate further research in this area (see, [1]-[9],
[14], [16, 17], [20]).

Acknowledgments: This work was supported by Kyungnam University
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