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Abstract. In this paper, we establish the sufficient conditions for the existence of solutions

for multi-valued equilibrium problems.

1. Introduction

The equilibrium problem is a unified model of several problem, for exam-
ples, optimization problems, variational inequality problems, complementarity
problems and saddle point problems. In the literature, existence results for
various type of equilibrium problems have been investigated intensively (see
[1, 2, 3, 5, 10, 16, 21, 24, 25]).

Recently Kristly and Varga [17] considered the weak in the sense that the
convexity and continuity assumptions must not hold on the whole domain, but
just on a special type of dense subset of it that we call self segment dense (see
[19]). This new concepts are related to but different from that of a segment
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dense set introduced by Luc [22] in the context of densely quasi-monotone
respectively densely pseudo monotone operators.

Inspired and motivated by the recent research works [6, 7, 12, 13, 14, 15,
18, 20, 23, 26, 27, 28], we discuss the role of segment dense sets in the con-
text of multi-valued equilibrium problems both with and without compactness
assumptions and proved some existence theorems of multi-valued equilibrium
problems.

2. Preliminaries

Throughout this paper, let X and Y be two real Hausdorff topological
spaces. For a nonempty set D ⊆ X, we denotes by int(D) its interior and by
cl(D) its closure. We say that P ⊆ D is dense in D if D ⊆ cl(P ) and P ⊆ X
is closed regarding D if cl(P )∩D = P ∩D. Let T : X → Y be a multi-valued
mapping.

We denote by D(T ) = {x ∈ X : T (x) 6= ∅} its domain and by R(T ) =⋃
x∈D(T ) T (x) its range. The graph T is the set G(T ) = {(x, y) ∈ X × Y :

y ∈ T (x)}. T is said to be upper semicontinuous at x ∈ D(T ) if for every
open set N ⊆ Y containing T (x), there exists a neighborhood M ⊆ X of x
such that T (M) ⊆ N. T is said to be lower semicontinuous at x ∈ D(T ) if for
every open set N ⊆ Y satisfying T (x) ∩ N 6= ∅, there exists a neighborhood
M ⊆ X of x such that for every y ∈M ∩D(T ) has T (y) ∩N 6= ∅. T is upper
semi continuous (lower semicontinuous) on D(T ) if it is upper semicontinuous
(lower semicontinuous) at every x ∈ D(T ). For V ⊆ Y , define the following
sets

T−1(v) = {x ∈ X : T (x) ∩ V 6= ∅}
and

T+(v) = {x ∈ X : T (x) ⊆ V },
called the inverse image of V and the cone of V , respectively.

Lemma 2.1. ([4]) Let T : X → Y be a set-valued mapping. Then

(i) T is lower semicontinuous at x ∈ D(T ) if and only if for every net
{xα} ⊆ D(T ) such that xα → x and for every x∗ ∈ T (x), there exists
a net x∗α ∈ T (xα) such that x∗α → x∗.

(ii) T is upper semicontinuous at x ∈ D(T ) if and only if for every net
{xα} ⊆ D(T ) such that xα → x and for every open set V ⊆ Y such
that T (x) ⊆ V and F (xα) ⊆ V for sufficiently large α.

(iii) T is lower semicontinuous if and only if for every closed set V ⊆ Y ,
T+(V ) is closed in X.

(iv) T is upper semicontinuous if and only if for every closed set V ⊆ Y ,
T−(V ) is closed in X.
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For a function f : X → R = R ∪ {+∞}, we denote by domf its domain
that is domf = {x ∈ X|f(x) ∈ R}. We say that f is upper semi continuous
at x0 ∈ domf if for every ε > 0 there exists a neighborhood U of x0 such that

f(x) ≤ f(x0) + ε

for all x ∈ U . The function f is called upper semicontinuous if it is upper
semi continuous at every point of its domain. Also we say that f is lower
semicontinuity at x0 ∈ domf if for every ε > 0 there exists a neighborhood U
of x0 such that

f(x) ≥ f(x0)− ε
for all x ∈ U . The function f is called lower semicontinuous if it is lower
semicontinuous at every point of its domain.

Lemma 2.2. Let f : X → R = R
⋃
{+∞} be a function. Then

(i) f is uppersemi continuous at x0 if and only if

lim sup
xα→x0

f(xα) ≤ f(x0)

where {xα} is a net converging to x0.
(ii) f is lower semicontinuous at x0 if and only if

lim inf
xα→x0

f(xα) ≥ f(x0)

where {xα} is a net converging to x0.
(iii) f is upper semicontinuous on X if and only if the super level set {x ∈

X : f(x) ≥ a} is a closed set for every a ∈ R.
(iv) f is lower semicontinuous on X if and only if the super level set {x ∈

X : f(x) ≤ a} is a closed set for every a ∈ R.

Lemma 2.3. ([11]) If T is compact valued, then T is upper semicontinuous
if and only if for every net {xi} ⊆ X such that xi → x0 ∈ X and for every
zi ∈ T (xi) there exists z0 ∈ T (x0) and a subnet {zij} of {zi} such that zij → z0.

3. Multi-valued equilibrium problems

Let K be a nonempty subset of a real normed space X. Let F : K×K → R
be a multi-valued mapping and let T : K → 2K be a multi-valued mapping.

We consider a multi-valued equilibrium problem: for finding x0 ∈ K with
u0 ∈ T (x0) such that

F (u0, y) ≥ 0, ∀y ∈ K, (3.1)

that is,
F (u0, y) ⊆ [0,∞) = R+.
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Again, consider a multi-valued equilibrium problem: for finding x0 ∈ K
with u0 ∈ T (x0) such that

F (u0, y) ∩ R− 6= ∅, ∀y ∈ K. (3.2)

Proposition 3.1. ([17]) Let K be a a nonempty convex compact subset of a
real normed space X. Let F : K×K → R be a multi-valued mapping satisfying:

(i) for all y ∈ K,x→ F (x, y) is lower semicontinuous on K,
(ii) for all y ∈ K, y → F (x, y) is convex on K,

(iii) for all x ∈ K,F (x, x) ≥ 0.

Then there exists x0 ∈ K such that

F (x0, y) ≥ 0, ∀y ∈ K.

Proposition 3.2. Let K be a a nonempty convex compact subset of a real
normed space X. Let F : K ×K → R be a multi-valued mapping satisfying:

(i) for all y ∈ K,x→ F (x, y) is upper semicontinuous on K,
(ii) for all y ∈ K, y → F (x, y) is convex on K,

(iii) for all x ∈ K,F (x, x) ∩ R− 6= ∅.
Then there exists x0 ∈ K such that

F (x0, y) ∩ R− 6= ∅,∀y ∈ K.

The convexity of multi-valued mapping F : D ⊂ X → R where X is Haus-
dorff topological space, is understood in sense that for all x1, x2 · · · , xn ∈ D
and λi ≥ 0, (i = 1, 2, · · · , n),

∑n
i=1 λi = 1 such that

∑n
i=1 λixi ∈ D and

n∑
i=1

λiF (xi) ⊆ F (

n∑
i=1

λixi). (3.3)

To define the convexity in similar setting by
n∑
i=1

λiF (xi) ⊇ F (
n∑
i=1

λixi), (3.4)

here we do not assume that D is convex, then classical equilibrium problems
for φ : K ×K → R is to find x0 ∈ K such that

φ(x0, y) ≥ 0, ∀y ∈ K.

Theorem 3.3. ([9]) Let K be a nonempty convex compact subset of a Haus-
dorff topological space X and φ : K ×K → R be a mapping satisfying:

(i) for all y ∈ K,x→ φ(x, y) is upper semicontinuous on K,
(ii) for all y ∈ K, y → φ(x, y) is quasi convex on K,

(iii) for all x ∈ K,φ(x, x) ≥ 0.
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Then there exists x0 ∈ K such that

φ(x0, y) ≥ 0, ∀y ∈ K.

Definition 3.4. Let X be a Hausdorff topological vector space and M ⊆ X.
G : M → X is called a KKM-mapping if for every finite number of elements
x1, · · · , xn ∈M we have

co{x1, · · · , xn} ⊆
n⋃
i=1

G(xi).

Lemma 3.5. ([8]) Let X be a Hausdorff topological vector space, M ⊆ X and
G : M → X a KKM-mapping. If G(x) is closed for every x ∈ M and there
exists x0 ∈M such that G(x0) is compact, then⋂

x∈M
G(x) 6= ∅.

Self segment-dense sets: Let X be a Hausdorff topological vector space.
The open and respectively closed line segments in X with the end points x and
y are defined by:

(x, y) = {z ∈ X : z = x+ t(y − x), t ∈ (0, 1)},

[x, y] = {z ∈ X : z = x+ t(y − x), t ∈ [0, 1]}.
Let V ⊆ X be a convex set and U be a segment-dense subset in V . Then for
each x ∈ V there exists y ∈ U such that x is a cluster point of the set [x, y]∩U
(see Luc [22]).

Lemma 3.6. ([19]) Let X be a Hausdorff topological vector space. Let U and
V be two subsets of X with U ⊆ V and assume that V is convex. Then U
is self segment-dense in V if U is dense in V and for all x, y ∈ U , the set
[x, y] ∩ U is dense in [x, y].

4. Self segment-dense sets and multi-valued equilibrium problems

Let X be a Hausdorff locally convex topological vector space. Then the
origin has a local base of convex, balanced and absorbent sets and recall the
set

coreD = {u ∈ D| x ∈ X, ∃δ > 0 such that ∀ε ∈ [0, δ] : u+ εx ∈ D}

is called the algebraic interior (or core) of D ⊆ X. If D is convex with
nonempty interior, then int(D) = core(D) (see [29]).
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Lemma 4.1. ([19]) Let X be a Hausdorff locally convex topological vector
space, V ⊆ X a convex set and U ⊆ V a self segment-dense set in V . Then
for all finite subset {u1 · · · , un} ⊆ U , we have

cl(co{u1 · · · , un} ∩ U) = co{u1 · · · , un}.

Theorem 4.2. Let X be a Hausdorff locally convex topological vector space,
K a nonempty convex compact subset of X and D a self segment-dense subset
of K. Let T : K → 2K be a multi-valued mapping and F : K ×K → R be a
set-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is lower semicontinuous on K,
(ii) for all x ∈ K,x→ F (x, y) is lower semicontinuous on K \D,

(iii) for all x ∈ D, y → F (x, y) is convex on D,
(iv) for all x ∈ D, T is lower semicontinuous and T (x) is compact,
(v) for all x ∈ D,F (x, x) ≥ 0.

Then there exists x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ≥ 0, ∀y ∈ K.

Proof. Consider a map G : D → K defined by

G(y) = {x ∈ K| ∃ u ∈ T (x) such that F (u, y) ≥ 0,∀y ∈ K}.

We prove that ⋂
y∈D

G(y) 6= ∅,

or there exists x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ≥ 0, ∀y ∈ D.

First, we prov that G(y) is closed for all y ∈ D. To this end, let for y ∈ D
and net {xα} ⊆ G(y), limxα = x ∈ K. Then there exists uα ∈ T (xα) such
that

F (uα, y) ≥ 0.

From Lemma 2.3, we obtain that {uα} contains a subsequence {uαk} that
converges to a u∗ ∈ T (x) in the norm topology of X. From the lower semi-
continuity assumption (i), we have that for every xα ∈ F (uα, y), there exists
a net {x∗α} ⊆ F (u∗α, y) such that x∗α → x∗ and also u∗α → u∗. Since x∗α ≥ 0 for
all α and T (x∗) is compact, we have x∗ ≥ 0. Thus

F (u, y) ≥ 0

which show that x ∈ G(y) and the set G(y) ⊆ K is closed. Since K is compact
also G(y) is compact for all y ∈ D. Hence G is a KKM-mapping satisfies the
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assumption of Ky Fan’s Lemma, so we have⋂
y∈K

G(y) 6= ∅.

This means that there exists x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ≥ 0, y ∈ K.

In other worlds there exists x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ≥ 0, ∀y ∈ D.

At this point we make use of the assumption (ii) to extend the previous
statement to the whole set K. Consider y ∈ K\D, since D is dense in K
there exists a net {yα} ⊆ D such that lim yα = y. From assumption (ii) and
Definition 2.1, for every y∗ ∈ F (u0, y) there exists a net {y∗α} ⊆ F (u0, y

α) such
that y∗α = y∗. But obviously y∗α ≥ 0, hence y∗ ≥ 0 and finally

F (u0, y) ≥ 0, ∀y ∈ K,u0 ∈ T (x0).

�

Theorem 4.3. Let X,K,D, T be as in Theorem 4.2. Let F : K ×K → R be
a set-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is upper semicontinuous on K,
(ii) for all x ∈ K, y → F (x, y) is upper semicontinuous on K \D,

(iii) for all x ∈ D, y → F (x, y) is concave on D,
(iv) T is upper semicontinuous, concave and T (x) is compact,
(v) for all x ∈ D,F (x, x) ∩ R+ 6= ∅.

Then there exists x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ∩ R+ 6= ∅, ∀y ∈ K.

Proof. Consider a map G : D → K defined by

G(y) = {x ∈ K | ∃ u ∈ T (x) : F (u, y) ∩ R+ 6= ∅, ∀y ∈ K}.

First, we prove that G(y) is closed for all y ∈ D. For a fixed y ∈ D we have
F (y) = f−1y (R+), where fy : K → R, fy(x) = f(x, y). From (i) we have fy
is upper semicontinuous on K and R+ is closed. From Lemma 2.1, f−1y (R+)
is closed. Since T is upper semicontinuous and concave, G(y) ⊆ K is closed
for all y ∈ D and by the compactness of K we get G(y) is compact for every
y ∈ D. From Theorem 4.2 we prove that⋂

y∈D
G(y) 6= ∅,



786 J.K. Kim and Salahuddin

that is, there exists x0 ∈ K such that for u0 ∈ T (x0),

f(u0, y) ∩ R+ 6= ∅, ∀y ∈ D.
Now, let for y ∈ K \D and assume that

F (u0, y) ⊂ (−∞, 0).

Since the set-valued function F (x0, ·) is upper semicontinuous at y, we obtain
that there exists an open neighborhood U of y such that

F (u0, U) 6⊆ (−∞, 0).

Since D is dense in K, there exists z ∈ U such that z ∈ D, so we have

F (u0, z) ∩ R+ 6= ∅
which is a contradiction. Thus we obtain that

F (u0, y) ∩ R+ 6= ∅,∀y ∈ K.
This is completes the proof. �

Let f : K ⊆ X → X be a mapping. Then we say that f is convex (resp.
concave) on K, if for x1, · · · , xn ∈ K and λi ≥ 0, i ∈ {1, 2, · · · , n},

∑n
i=1 λi = 1

such that
∑n

i=1 λixi ∈ K, we have
n∑
i=1

λif(xi) ≥ f(
n∑
i=1

λixi)
(

resp.
n∑
i=1

λif(xi) ≤ f(
n∑
i=1

λixi)
)
.

Theorem 4.4. Let X,K,D, T be as in Theorem 4.2. Let φ : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D,x→ φ(x, y) is upper semicontinuous on K,
(ii) for all x ∈ K, y → φ(x, y) is upper semicontinuous on K \D,

(iii) for all x ∈ D, the function y → φ(x, y) is concave on D,
(iv) T is upper semicontinuous, concave and T (x) is compact,
(v) for all x ∈ D,φ(x, x) ≥ 0.

Then there exist x0 ∈ K such that for u0 ∈ T (x0),

φ(u0, y) ≥ 0, ∀y ∈ K.

Proof. From similar proof of Theorem 4.2, consider a map G : D → K defined
by

G(y) = {x ∈ K | ∃ u ∈ T (x) : φ(u, y) ≥ 0}.
Observe that for a fixed y ∈ D, the set G(y) is the super level set

{x ∈ K : fy(x) ≥ 0}
of the function fy : K → R defined by fy(x) = φ(u, y) for u ∈ T (x). From
the assumptions (i), (iv) and (v), we have that G(y) is closed for all y ∈ D.
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Further from assumption (iii), (v) and Lemma 4.1, we obtain that G is a
KKM-mapping. Then from Ky Fan’s Lemma,⋂

y∈D
G(y) 6= ∅.

Hence there exist x0 ∈ K such that for u0 ∈ T (x0),

φ(u0, y) ≥ 0, ∀y ∈ D.

Finally, let y ∈ K \D. Then from the density of D in K, there exists a net
{yα} ⊆ D such that lim ya = y. Since φ(u0, y) is the upper semicontinuous on
K \D from the assumptions (ii) and (iv), this assure that

0 ≤ lim sup
yα→y

φ(u0, yα) ≤ φ(u0, y).

Thus

φ(u0, y) ≥ 0, ∀y ∈ K.
This completes the proof. �

5. Densely defined multi-valued equilibrium problems without
compactness

In this section, we will prove the multi-valued equilibrium problems without
compactness.

Theorem 5.1. Let X be a Hausdorff locally convex topological vector space,
K a nonempty convex compact subset of X and D a self segment-dense subset
of K. Let T : K → 2K be a multi-valued mapping and F : K ×K → R be a
multi-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is lower semicontinuous on K,
(ii) for all x ∈ K, y → F (x, y) is lower semicontinuous on K \D,

(iii) for all x ∈ D, y → F (x, y) is convex on D,
(iv) T is lower semi continuous and convex,
(v) for all x ∈ D,F (x, x) ≥ 0,
(vi) there exists a compact set K0 ⊆ X such that for y0 ∈ D ∩K0,

F (u, y0) ∩ (−∞, 0) 6= ∅,∀x ∈ K \K0, u ∈ T (x).

Then there exist x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ≥ 0, ∀y ∈ K.

Proof. Consider a map G : D → K defined by

G(y) = {x ∈ K | ∃ u ∈ T (x) : F (u, y) ≥ 0}.
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From the proof of Theorem 4.4, G(y) is closed for all y ∈ D. We show that
G(y0) is compact and the rest of the proof is similar to the proof of Theorem
4.4. It is enough to show that G(y0) ⊆ K0. Assume the contrary that there
exists z ∈ G(y0) such that z 6∈ K0, then

F (z, y0) ≥ 0,

which is contradicts to (vi). �

Theorem 5.2. Let X,K,D, T be as in Theorem 5.1. Let F : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is upper semicontinuous on K,
(ii) for all x ∈ K, y → F (x, y) is upper semicontinuous on K \D,

(iii) T is upper semicontinuous, concave and compact,
(iv) for all x ∈ D, y → F (x, y) is concave on D,
(v) for all x ∈ D,F (x, x) ∩ R+ 6= ∅,

(vi) there exists a compact set K0 ⊆ X such that for y0 ∈ D ∩K0,

F (x, y0) ∩ R+ 6= ∅, ∀x ∈ K \K0.

Then there exist x0 ∈ K such that for u0 ∈ T (x0),

F (u0, y) ∩ R+ 6= ∅, ∀y ∈ K.

Theorem 5.3. Let X,K,D, T be as in Theorem 5.1. Let φ : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D,x→ φ(x, y) is upper semicontinuous on K,
(ii) for all x ∈ D, y → φ(x, y) is upper semicontinuous on K \D,

(iii) T is upper semicontinuous, convex and compact,
(iv) for all x ∈ D, y → φ(x, y) is convex on D,
(v) for all x ∈ D,φ(x, x) ≥ 0,

(vi) there exists a compact set K0 ⊆ X such that for y0 ∈ D ∩K0,

φ(u, y0) < 0, ∀x ∈ K \K0, u ∈ T (x).

Then there exists x0 ∈ K such that for u0 ∈ T (x0),

φ(u0, y) ≥ 0, ∀y ∈ K.

The condition (vi) in Theorem 5.1, Theorem 5.2 and Theorem 5.3 seem
to be not so easy to verify. However it is well known that the closed ball
Br = {x ∈ X : ‖x‖ ≤ r}, r > 0 is weakly compact in a reflexive Banach
space X. Therefore, for the reflexive Banach space X with the weak topology,
condition (vi) of the previous theorem becomes:

(vi’) there exists r > 0 and y0 ∈ D, ‖y0‖ ≤ r such that for all x ∈ K,u ∈
T (x), ‖x‖ > r, F (u, y0) ∩ (−∞, 0) 6= ∅ holds,

(vi”) there exists r > 0 and y0 ∈ D, ‖y0‖ ≤ r such that for all x ∈ K,u ∈
T (x), ‖x‖ > r, F (u, y0) ∩ R+ = ∅ holds,
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(vi”’) there exists r > 0 and y0 ∈ D, ‖y0‖ ≤ r such that for all x ∈ K, u ∈
T (x), ‖x‖ > r, φ(u, y0)) < 0 holds.

Furthermore, condition (vi) in the hypothesis of Theorem 5.1, 5.2 and 5.3
can be weaken by assuming that there exists r > 0 such that for all x ∈ K,u ∈
T (x), ‖x‖ > r there exists y0 ∈ K with ‖y0‖ < ‖x‖ and the appropriate
conditions:

(i) F (u, y0) ∩ (−∞, 0) 6= ∅,
(ii) F (u, y0) ∩ R+ = ∅,

(iii) F (u, y0) < 0 holds.

More precisely we have the following results.

Theorem 5.4. Let X be a reflexive Banach space, K ⊆ X a nonempty convex
closed subset and D ⊆ K a self segment dense set in the weak topology of X.
Assume that T : K → 2K is a multi-valued mapping. Let F : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is weak lower semi continuous on K,
(ii) for all x ∈ K, y → F (x, y) is weak lower semi continuous on K \D,

(iii) T is weak lower semicontinuous, convex and compact,
(iv) for all x ∈ K, y → F (x, y) is convex on K,
(v) for all x ∈ K,F (x, x) ≥ 0 and {0} ⊆ F (x, x),
(vi) there exists r > 0 such that for all x ∈ K,u ∈ T (x), ‖x‖ > 0 there

exists y0 ∈ K with ‖y0‖ < ‖x‖ such that

F (u, y0) ∩ (−∞, 0) 6= ∅.

Then there exists x0 ∈ K,u0 ∈ T (x0) such that

F (u0, y) ≥ 0, ∀y ∈ K.

Proof. Let r > 0 such that (v) holds and let r1 > r2. Let K0 = K ∩ Br1 .
Since K is convex and closed it is also weakly closed, Br1 is weakly compact,
hence K0 is convex and weakly compact. From Theorem 4.2 there exists
x0 ∈ K0, u0 ∈ T (x0) such that

F (u0, y) ≥ 0, ∀y ∈ K0.

Next we prove that there exists z0 ∈ K0, ‖z0‖ < r1 such that

{0} ⊆ F (u0, z0),∀u0 ∈ T (x0).

If ‖x0‖ < r1 then let z0 = x0 and the conclusion follows by (iv). If ‖x0‖ =
r1 > r then by (vi) we have that there exists z0 ∈ K with ‖z0‖ < ‖x0‖ such
that

F (u0, z0) ∩ (−∞, 0] 6= ∅.
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On the other hand since z0 ∈ K0 we have

F (u0, z0) ≥ 0, ∀u0 ∈ T (x0),

hence

{0} ⊆ F (u0, z0),∀u0 ∈ T (x0).

Let y ∈ K. Then there exists λ ∈ [0, 1] such that λz0+(1−λ)y ∈ K0. Therefore

F (u0, λz0 + (1− λ)y) ≥ 0.

From (iv) we have

λF (u0, z0) + (1− λ)F (u0, y) ⊆ F (u0, λz0 + (1− λ)y) ⊆ [0,∞).

Since

{0} ⊆ F (u0, z0),∀u0 ∈ T (x0),

we have

F (u0, y) ⊆ [0,∞).

�

If we replace (vi) with a condition that assures the existence of a solution
under the original assumption (iv) and (v). In fact we show that if for all x ∈
K, y → F (x, y) is convex on D respectively, for all x ∈ D,u ∈ T (x), F (u, x) ≥
0 instead of (iv) respectively, (v) in the previous theorem then we can replace
by (vi), there exists r > 0 such that for all x ∈ K,u ∈ T (x), ‖x‖ < r there
exists y0 ∈ D with ‖y0‖ < r such that

{0} ⊆ F (u, y0) ≥ 0, ∀u ∈ T (x).

Theorem 5.5. Let X be a reflexive Banach space, K ⊆ X a nonempty convex
closed subset and D ⊆ K a self segment dense set in the weak topology of X.
Assume that T : K → 2K is a multi-valued mapping. Let F : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is weak lower semi continuous on K,
(ii) for all x ∈ K, y → F (x, y) is weak lower semi continuous on K \D,
(iii) T is weak lower semi continuous, convex and compact,
(iv) for all x ∈ K, y → F (x, y) is convex on D,
(v) for all x ∈ D,F (x, x) ≥ 0,
(vi) there exists r > 0 such that for all x ∈ K,u ∈ T (x), ‖x‖ < 0 there

exists y0 ∈ K with ‖y0‖ < r such that

{0} ⊆ F (u, y0).

Then there exists x0 ∈ K,u0 ∈ T (x0) such that

F (u0, y) ≥ 0, ∀y ∈ K.
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Proof. Let r > 0 such that (vi) holds and consider weakly compact set K0 =
K ∩Br. From Theorem 4.2 there exists x0 ∈ K0, u0 ∈ T (x0) such that

F (u0, y) ≥ 0, ∀y ∈ K0.

From (vi) there exists z0 ∈ D, ‖z0‖ < r such that

{0} ⊆ F (u0, z0).

Let z ∈ D \ K0, by virtue of self segment denseness of D in K there exists
λ ∈ (0, 1) such that

λz0 + (1− λ)z0 ∈ K0 ∩D.
From (iv)

F (u0, λz0 + (1− λ)z) ⊇ λF (u0, z0) + (1− λ)F (u0, z0).

But
F (u0, λz0 + (1− λ)z) ≥ 0

and
{0} ⊆ F (u, z0) ≥ 0,

which lead to
F (u0, z) ≥ 0.

Hence
F (u0, z) ≥ 0, ∀z ∈ D.

Let y ∈ K \ D, since D is dense in K, there exists a net yα ∈ D such that
lim yα = y where the limit is taken in the weak topology of X. From (ii)
F (x0, ·) is weakly lower semi continuous at y. From Definition 2.1 for every
y∗ ∈ F (u0, y) there exists a net

y∗α ∈ F (u0, y
∗
α) ≥ 0

such that y∗α = y∗. But y∗α ≥ 0. Hence y∗ ≥ 0 and

F (u0, y) ≥ 0, ∀y ∈ K.
�

Theorem 5.6. Let X be a reflexive Banach spaces, K ⊆ X a nonempty convex
closed subset and D ⊆ K a self segment dense set in the weak topology of X.
Assume that T : K → 2K is a multi-valued mapping. Let F : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D,x→ F (x, y) is weak upper semi continuous on K,
(ii) for all x ∈ K, y → F (x, y) is weak upper semi continuous on K \D,
(iii) T is weak upper semi continuous,
(iv) for all x ∈ K, y → F (x, y) is concave on D,
(v) for all x ∈ D,F (x, x) ∩ R+ 6= ∅,
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(vi) there exists r > 0 such that for all x ∈ K,u ∈ T (x), ‖x‖ < r there
exists y0 ∈ D with ‖y0‖ < r such that

F (u, y0) ≤ o.

Then there exists x0 ∈ K,u0 ∈ T (x0) such that

F (u0, y) ∩ R+ 6= ∅, ∀y ∈ K.

Proof. Let r > 0 such that (vi) holds and consider the weakly compact set
K0 = K ∩Br. From Theorem 4.4, there exists x0 ∈ K0, u0 ∈ T (x0) such that

F (u0, y) ∩ R+ 6= ∅, ∀y ∈ K0

From (vi) there exists z0 ∈ D, ‖z0‖ < r such that

F (u, z0) ≤ 0, ∀u ∈ T (x).

Let z ∈ D \ K0, by virtue of self segment denseness of D in K there exists
λ ∈ (0, 1) such that

λz0 + (1− λ)z ∈ K0 ∩D.
From (iv)

F (u0, λz0 + (1− λ)z) ⊆ λF (u0, z0) + (1− λ)F (u0, z).

which lead to

F (u0, z) ∩ R+ 6= ∅.
Hence

F (u0, z) ∩ R+ 6= ∅, ∀z ∈ D,u0 ∈ T (x0).

Let y ∈ K \ D and from (ii), F (x0, ·) is weakly upper semi continuous at y,
hence for any open set V ⊆ X there exists an open neighborhood U of y such
that for any u ∈ U , we have

F (u0, u) ⊆ V.

Since D is dense in K we have D ∩ U 6= ∅. Assume that

F (u0, y) ⊆ (−∞, 0), ∀y ∈ D,u0 ∈ T (x0).

We take V = (−∞, 0) and let z ∈ U ∩D. Then

F (u0, z) ⊆ (−∞, 0)

which is contradiction the fact that

F (u0, z) ∩ R+ 6= ∅,∀u0 ∈ T (x0).

�



Existence of solutios for multi-valued equilibrium problems 793

Theorem 5.7. Let X be a reflexive Banach space, K ⊆ X a nonempty convex
closed subset and D ⊆ K a self segment dense set in the weak topology of X.
Assume that T : K → 2K is a multi-valued mapping. Let φ : K ×K → R be
a multi-valued mapping satisfying:

(i) for all y ∈ D, x→ φ(x, y) is weak upper semi continuous on K,
(ii) for all x ∈ K, y → φ(x, y) is weak upper semi continuous on K \D,

(iii) T is weak upper semi continuous on K, convex and T (x) is compact,
(iv) for all x ∈ K, y → φ(x, y) is convex on D,
(v) for all x ∈ D,φ(x, x) ≥ 0,

(vi) there exists r > 0 such that for all x ∈ K,u ∈ T (x), ‖x‖ ≤ r there
exists y0 ∈ D with ‖y0‖ < r such that

φ(u, y0) = 0.

Then there exists x0 ∈ K,u0 ∈ T (x0) such that

φ(u0, y) ≥ 0, ∀y ∈ K.

Proof. Let r > 0 such that (vi) holds and consider the weakly compact set
K0 = K ∩Br. From Theorem 4.4, there exists x0 ∈ K0, u0 ∈ T (x0) such that

φ(u0, y) ≥ 0, ∀y ∈ K0.

From (vi) there exists z0 ∈ D ∩K0, ‖z0‖ < r such that

0 = φ(u0, z0).

Consider z ∈ D \ K0, since D is self segment denseness in K there exists
λ ∈ (0, 1) such that

λz0 + (1− λ)z ∈ K0 ∩D.
From (iv)

φ(u0, λz0 + (1− λ)z) ≤ λφ(u0, z0) + (1− λ)φ(u0, z),

or equivalently

(1− λ)φ(u0, z0) ≥ φ(u0, λz0 + (1− λ)z) ≥ 0.

This show that
φ(u0, z) ≥ 0, ∀z ∈ D,u0 ∈ T (x0).

Finally if y ∈ K \D. By the denseness of D in K there exists a net yα ⊆ D
such that lim yα = y where the limit is taken in the weak topology of X. At
this point the assumption (ii)

φ(u0, y) ≥ 0, ∀y ∈ D,u0 ∈ T (x0).

From the upper semi continuity of φ(u0, y) in K \D we have

0 ≤ lim
yα→y

supφ(u0, y
α) ≤ φ(u0, y).
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Thus
φ(u0, y) ≥ 0, ∀y ∈ K,u0 ∈ T (x0).

�
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