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Abstract. In this article, variational iteration technique is successfully applies to find the

approximate solutions of nonlinear Volterra-Fredholm integro-differential equations. The

reliability of the method and reduction in the size of the computational work give this method

a wider applicability. Moreover, we prove the existence and uniqueness results. Finally,

the examples are included to demonstrate the validity and applicability of the proposed

technique.

1. Introduction

In this chapter, we consider nonlinear Volterra-Fredholm integro-differential
equation of the form:

k∑
j=0

ξj(x)u(j)(x) = f(x) + λ1

∫ x

a
K1(x, t)G1(u(t))dt (1.1)
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+ λ2

∫ b

a
K2(x, t)G2(u(t))dt,

with the initial conditions

u(r)(a) = br, r = 0, 1, 2, · · · , (k − 1), (1.2)

where u(j)(x) is the jth derivative of the unknown function u(x) that will be
determined, Ki(x, t), i = 1, 2 are the kernels of the equation, f(x) and ξj(x) are
an analytic function, G1 and G2 are nonlinear functions of u and a, b, λ1, λ2,
and br are real finite constants.

In recent years, many authors focus on the development of numerical and
analytical techniques for integro-differential equations. For instance, we can
remember the following works. Abbasbandy and Elyas [1] studied some appli-
cations on variational iteration method for solving system of nonlinear Volterra
integro-differential equations, Alao et al. [2] used Adomian decomposition
and variational iteration methods for solving integro-differential equations,
Hamoud and Ghadle [8] applied the Laplace decomposition method to solve
the fractional integro-differential equations, Mittal and Nigam [10] applied
the Adomian decomposition method to approximate solutions for fractional
integro-differential equations, and Behzadi et al. [3] solved some class of non-
linear Volterra-Fredholm integro-differential equations by homotopy analysis
method. Moreover, several authors have applied the Adomian decomposition
method and the variational iteration method to find the approximate solutions
of various types of integro-differential equations [4, 5, 6, 7].

The main objective of the present chapter is to study the behavior of the
solution that can be formally determined by semi-analytical approximated
method as variational iteration method. Moreover, we proved the existence,
uniqueness results and convergence of the solutions of the nonlinear Volterra-
Fredholm integro-differential equations.

2. Variational Iteration Method (VIM)

This method is applied to solve a large class of linear and nonlinear prob-
lems with approximations converging rapidly to exact solutions. The main
idea of this method is to construct a correction functional form using general
Lagrange multipliers. These multipliers should be chosen such that its correc-
tion solution is superior to its initial approximation, called trial function. It is
the best within the flexibility of trial functions. Accordingly, Lagrange multi-
pliers can be identified by the variational theory [5, 6, 11]. A complete review
of variational iteration method is available in [9]. The initial approximation
can be freely chosen with possible unknowns, which can be determined by
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imposing boundary/initial conditions. To illustrate, we consider the following
general differential equation:

Lu(t) +Nu(t) = f(t),

where L is a linear operator, N is a nonlinear operator and f(t) is inhomo-
geneous term. According to variational iteration method [2], the terms of a
sequence un are constructed such that this sequence converges to the exact
solution. The terms un are calculated by a correction functional as follows:

un+1(t) = un(t) +

∫ t

0
λ(τ)(Lun(τ) +Nỹ(τ)− f(τ))dτ. (2.1)

The successive approximation un(t), n ≥ 0 of the solution u(t) will be readily
obtained upon using the obtained Lagrange multiplier and by using any se-
lective function u0. The zeroth approximation u0 may be selected using any
function that just satisfies at least the initial and boundary conditions, with
λ determined, several approximations un(t), n ≥ 0 follow immediately.

The VIM has been shown to solve effectively, easily and accurately a large
class of nonlinear problems with approximations converging rapidly to accu-
rate solutions.

To obtain the approximation solution of IVB (1.2)− (1.2), according to the
VIM, the iteration formula (2.1) can be written as follows:

un+1(x) = un(x) + L−1
[
λ(x)

[ k∑
j=0

ξj(x)u(j)n (x)− f(x)

−λ1
∫ x

a
K1(x, t)G1(un(t))dt− λ2

∫ b

a
K2(x, t)G2(un(t))dt

]]
,

where L−1 is the multiple integration operator given as follows:

L−1(·) =

∫ x

a

∫ x

a
· · ·
∫ x

a
(·)dxdx · · · dx (k − times).

To find the optimal λ(x), we proceed as follows:

δun+1(x) = δun(x) + δL−1
[
λ(x)

[ k∑
j=0

ξj(x)u(j)n (x)− f(x)

−λ1
∫ x

a
K1(x, t)G1(un(t))dt

−λ2
∫ b

a
K2(x, t)G2(un(t))dt

]]
= δun(x) + λ(x)δun(x)− L−1

[
δun(x)λ′(x)

]
. (2.2)
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From Eq. (2.2), the stationary conditions can be obtained as follows:

λ′(x) = 0, and 1 + λ(x)|x=t = 0.

As a result, the Lagrange multipliers can be identified as λ(x) = −1 and by
substituting in Eq. (2.2), the following iteration formula is obtained:

u0(x) = L−1
[ f(x)

ξk(x)

]
+

k−1∑
r=0

(x− a)r

r!
br,

un+1(x) = un(x)− L−1
[ k∑
j=0

ξj(x)u(j)n (x)− f(x)

−λ1
∫ x

a
K1(x, t)G1(un(t))dt

−λ2
∫ b

a
K2(x, t)G2(un(t))dt

]
, n ≥ 0. (2.3)

The term
∑k−1

r=0
(x−a)r

r! br is obtained from the initial conditions, ξk(x) 6= 0.
Relation (2.3) will enable us to determine the components un(x) recursively
for n ≥ 0. Consequently, the approximation solution may be obtained by using

u(t) = lim
n→∞

un(t).

3. Main results

In this section, we shall give an existence and uniqueness results of Eq.
(1.2), with the initial condition (1.2) and prove it.

We can be written Eq. (1.2) in the form of:

u(x)

= L−1
[ f(x)

ξk(x)

]
+

k−1∑
r=0

(x− a)r

r!
br + λ1L

−1
[ ∫ x

a

1

ξk(x)
K1(x, t)G1(un(t))dt

]
+λ2L

−1
[ ∫ b

a

1

ξk(x)
K2(x, t)G2(un(t))dt

]
− L−1

[ k−1∑
j=0

ξj(x)

ξk(x)
u(j)(x)

]
,

such that,

L−1
[ ∫ x

a

1

ξk(x)
K1(x, t)G1(un(t))dt

]
=

∫ x

a

(x− t)k

k!ξk(x)
K1(x, t)G1(un(t))dt,

k−1∑
j=0

L−1
[ ξj(x)

ξk(x)

]
u(j)(x) =

k−1∑
j=0

∫ x

a

(x− t)k−1ξj(t)
k − 1!ξk(t)

u(j)(t)dt.
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We set,

Ψ(x) = L−1
[ f(x)

ξk(x)

]
+

k−1∑
r=0

(x− a)r

r!
br.

Before starting and proving the main results, we introduce the following
hypotheses:

(H1) There exist two constants α, β and γj > 0, j = 0, 1, · · · , k such that,
for any u1, u2 ∈ C(J,R)

|G1(u1))−G1(u2))| ≤ α |u1 − u2| ,

|G2(u1)−G2(u2)| ≤ β |u1 − u2|

and ∣∣Dj(u1)−Dj(u2)
∣∣ ≤ γj |u1 − u2| ,

we suppose that the nonlinear termsG1(u(x))), G2(u(x))) andDj(u) =

( dj

dxj )u(x) =
∑∞

i=0 γij , (Dj is a derivative operator), j = 0, 1, · · · , k, are
Lipschitz continuous.

(H2) We suppose that for all a ≤ t ≤ x ≤ b, and j = 0, 1, · · · , k:∣∣∣∣λ1(x− t)kK1(x, t)

k!ξk(x)

∣∣∣∣ ≤ θ1,

∣∣∣∣λ1(x− t)kK1(x, t)

k!

∣∣∣∣ ≤ θ2,
∣∣∣∣(x− t)k−1ξj(t)(k − 1)!ξk(t)

∣∣∣∣ ≤ θ3, ∣∣∣∣(x− t)k−1ξj(t)(k − 1)!

∣∣∣∣ ≤ θ4,∣∣∣∣λ2L−1[K2(x, t)

ξk(x)

]∣∣∣∣ ≤ θ5,
∣∣∣λ2L−1[K2(x, t)

]∣∣∣ ≤ θ6,
(H3) There exist three functions θ∗3, θ

∗
4, and γ∗ ∈ C(D,R+), the set of all

positive function continuous on D = {(x, t) ∈ R × R : 0 ≤ t ≤ x ≤ 1}
such that:

θ∗3 = max |θ3| , θ∗4 = max |θ4| , and γ∗ = max |γj | .

(H4) Ψ(x) is bounded function for all x in J = [a, b].

Theorem 3.1. Assume that (H1)–(H4) hold. If

0 < ψ = (αθ1 + βθ5 + kγ∗θ∗3)(b− a) < 1, (3.1)

then there exists a unique solution u(x) ∈ C(J) to IVB (1.2)− (1.2).
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Proof. Let u1 and u2 be two different solutions of IVB (1.2)− (1.2). Then

∣∣∣u1 − u2∣∣∣ =
∣∣∣ ∫ x

a

λ1(x− t)kK1(x, t)

ξk(x)k!
[G1(u1)−G1(u2))]dt

+

∫ b

a
λ1L

−1
[K2(x, t)

ξk(x)

]
[G2(u1)−G2(u2))]dt

−
k−1∑
j=0

∫ x

a

(x− t)k−1ξj(t)
ξk(t)(k − 1)!

[Dj(u1)−Dj(u2))]dt
∣∣∣

≤
∫ x

a

∣∣∣λ1(x− t)kK1(x, t)

ξk(x)k!

∣∣∣∣∣∣G1(u1)−G1(u2))
∣∣∣dt

+

∫ b

a

∣∣∣λ1L−1[K2(x, t)

ξk(x)

∣∣∣∣∣∣G2(u1)−G2(u2))
∣∣∣dt

−
k−1∑
j=0

∫ x

a

∣∣∣(x− t)k−1ξj(t)
ξk(t)(k − 1)!

∣∣∣∣∣∣Dj(u1)−Dj(u2))
∣∣∣dt

≤ (αθ1 + βθ5 + kγ∗θ∗3)(b− a)|u1 − u2|,

it implies that (1 − ψ)|u1 − u2| ≤ 0. Since 0 < ψ < 1, so |u1 − u2| = 0.
Therefore, u1 = u2 and the proof is completed. �

Theorem 3.2. If problem (1.2)−(1.2) has a unique solution, then the solution
un(x) obtained from the recursive relation (2.3) using VIM converges when
0 < φ = (αθ5 + βθ6 + kγ∗θ∗4)(b− a) < 1.

Proof. We have from equation (2.3):

un+1(x)− u(x) = un(x)− u(x)−
(
L−1

[ k∑
j=0

ξj(x)[u(j)n (x)− u(j)(x)]
]

−L−1
[
λ1

∫ x

a
K1(x, t)[G1(un(t))−G1(u(t))]dt

−L−1
[
λ2

∫ b

a
K2(x, t)[G2(un(t))−G2(u(t))dt]

])
.

If we set, ξk(x) = 1, and Wn+1(x) = un+1(x) − u(x), Wn(x) = un(x) − u(x)
since Wn(a) = 0, then



Nonlinear Volterra-Fredholm integro-differential equations 803

Wn+1(x) = Wn(x) +

∫ x

a

λ1K1(x, t)(x− t)k

k!
[G1(un(t))−G1(u(t))]dt

+

∫ b

a
λ2L

−1
[
K2(x, t)[G2(un(t))−G2(u(t))dt]

]
−

k−1∑
j=0

∫ x

a

λ1ξj(t)(x− t)k−1

(k − 1)!
[Dj(un(t))−Dj(u(t))]dt

−(Wn(x)−Wn(a)).

Therefore,∣∣∣Wn+1(x)
∣∣∣ ≤ ∫ x

a

∣∣∣λ1K1(x, t)(x− t)k

k!

∣∣∣∣∣∣Wn

∣∣∣αdt
+

∫ b

a

∣∣∣λ2L−1[∣∣∣K2(x, t)
∣∣∣∣∣∣Wn

∣∣∣βdt]
+

k−1∑
j=0

∫ x

a

∣∣∣λ1ξj(t)(x− t)k−1
(k − 1)!

∣∣∣max |γj |
∣∣∣Wn

∣∣∣dt
≤

∣∣∣Wn

∣∣∣[ ∫ x

a
αθ5dt+

∫ b

a
βθ6dt+

k−1∑
j=0

∫ x

a
θ∗4 max |γj |

]
≤ |Wn|(αθ5 + βθ6 + kγ∗θ∗4)(b− a)

= |Wn|φ.

Hence,

‖Wn+1‖ = max
∀x∈J

|Wn+1(x)| ≤ φmax
∀x∈J

|Wn(x)| = φ‖Wn‖.

Since 0 < φ < 1, we have ‖Wn‖ −→ 0. So, the series converges and the proof
is complete. �

4. Illustrative Examples

In this section, we present the semi-analytical techniques based on ADM
and VIM to solve Volterra-Fredholm integro-differential equations. To show
the efficiency of the present methods for our problem in comparison with the
exact solution we report absolute error.

Example 4.1. Consider the following Volterra-Fredholm integro-differential
equation:
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u′(x) + xu(x) = 2x+ x3 − x5

5
− 0.97

7
x+

∫ x

0
u2(t)dt+

∫ 0.9

0
xu3(t)dt,

with the initial condition u(0) = 0, u′(0) = 0, and the the exact solution is
u(x) = x2.

Table 1. Numerical Results of the Example 1.

x Exact ADM VIM EADM EVIM
0.1 0.010000 0.010397 0.010024 0.000397 0.000024
0.2 0.040000 0.043354 0.040394 0.003354 0.000394
0.3 0.090000 0.097463 0.091969 0.007463 0.001969
0.4 0.160000 0.148954 0.151274 0.011046 0.008726
0.5 0.250000 0.240548 0.243752 0.009452 0.006248
0.6 0.360000 0.348973 0.350874 0.011027 0.009126
0.7 0.490000 0.473681 0.483681 0.016319 0.006319
0.8 0.640000 0.627596 0.630257 0.012404 0.009743
0.9 0.810000 0.764797 0.801487 0.045203 0.008531

Example 4.2. Consider the following Volterra-Fredholm integro-differential
equation:

u′′(x) + u′(x)− u(x) = ex−1 − ex − 1 +

∫ x

0
u(t)dt+

∫ 1

0
et+xu2(t)dt,

with the initial condition

u(0) = 1, u′(0) = −1,

and the the exact solution is u(x) = e−x.

Table 2. Numerical Results of the Example 2.

x Exact ADM VIM EADM EVIM
0.1 0.904837418 0.896160501 0.904350694 0.008676917 0.000486724
0.2 0.818730753 0.783594511 0.817029618 0.035136242 0.001701135
0.3 0.740818221 0.660685557 0.737405770 0.080132664 0.003412451
0.4 0.670320046 0.525762821 0.664765171 0.144557225 0.005554875
0.5 0.606530659 0.377106516 0.598327465 0.229424144 0.008203194
0.6 0.548811636 0.212950800 0.537264396 0.335860836 0.011547240
0.7 0.496585303 0.031483915 0.480719900 0.465101388 0.015865403
0.8 0.449328964 -0.169154690 0.427831430 0.618483654 0.021497534
0.9 0.406569659 -0.390880529 0.377751090 0.797450188 0.028818569
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5. Conclusion

The variational iteration method has been successfully applied to find the
approximate solution of Volterra-Fredholm integro-differential equation. The
reliability of the method and reduction in the size of the computational work
give this method a wider applicability. The method is very powerful and ef-
ficient in finding analytical as well as numerical solutions for wide classes of
linear and nonlinear Volterra-Fredholm integro-differential equations. More-
over, we proved the existence and uniqueness of the solution. From the exam-
ples considered, VIM has an advantage over ADM due to non-requirement of
Adomian polynomial and hence converges faster to the exact solution for some
nonlinear problems. Also, it was observed that these methods were compared
favorably with the exact solution.
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