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Abstract. In some previous works, it is known that the KKM type results on Hadamard

manifolds can be extended to hyperbolic spaces originated from Kirk in 1982 and Reich-

Shafrir in 1990. Such results are the KKM theorem, the Fan-Browder fixed point theorem,

Nash equilibrium theorem, variational inequalities, etc. based on our theory of abstract

convex spaces. In the present article, we show that our method can be applied some recent

works on Hadamard manifolds. Historical remarks are added on the study of the KKM type

results on Hadamard manifolds and hyperbolic spaces.

1. Introduction

In 1982, Kirk [3] extended the Krasnoselskii iteration scheme for approxi-
mation of fixed points of nonexpansive mappings in Banach spaces to a wider
class of spaces including convex metric spaces of ‘hyperbolic’ type or hyper-
bolic spaces. In 1990, Reich and Shafrir [16] introduced hyperbolic spaces as
a class of metric spaces containing all normed vector spaces and Hadamard
manifolds, as well as the Hilbert ball and the Cartesian product of Hilbert
balls.

Since we began to study the KKM theory in 1992, we have been studied the
foundations of the theory on various types of the KKM spaces, and then finally
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we established the theory on abstract convex spaces in 2010 [13]. While we
were studying the KKM theory, in 2008, we found that any hyperbolic spaces
are G-convex spaces [9] and also particular cases of c-spaces [10-13]. Actually,
in 2010 [12, 13], we indicated but not concretely that most of key results in
the KKM theory can be applied to hyperbolic spaces.

Since then, a number of authors have studied some KKM theoretic results
on Hadamard manifolds. For example, Németh [6] introduced and studied
variational inequalities on Hadamard manifolds, and Zhou and Huang [19, 20]
introduced a KKM type theorem on Hadamard manifolds with some applica-
tions to a mixed variational inequality and a Fan-Browder fixed point theorem.
Moreover, in 2012, Colao, Lopez, Marino, and Martin-Marquez [1] developed
an equilibrium theory in Hadamard manifolds. Further, Yang and Pu [17]
proved a Fan-Browder type fixed point theorem on Hadamard manifolds with
strongly geodesic convexity. It is clear that such results are closely related to
the KKM theory on hyperbolic spaces.

In our previous work [14], we showed that three of key results of Colao et al.
[1] can be extended to hyperbolic spaces and are particular ones for abstract
convex spaces in the sense of ours in [12, 13]. Similarly, most of main theorems
in the KKM theory on abstract convex spaces can be applied to hyperbolic
spaces and Hadamard manifolds.

Moreover, in 2015, Lee [5] showed that the main results of [17, 19] also can
be derived from the corresponding ones on abstract convex spaces. This is not
the end of story. Very recently in 2018, W. Kim [2] obtained some obsolete
results in the KKM theory on Hadamard manifolds.

Our aim in this paper is to show that works of W. Kim and others are still
can be generalized and simplified in the frame of our abstract convex spaces
following the spirit of Park [14] and Lee [5].

Section 2 devotes to review some preliminary facts on our abstract convex
spaces as in [12, 13]. In Section 3, we are concerned with definitions and
examples of hyperbolic spaces and we show that any of such spaces are KKM
spaces, which means that most results in [12, 13] are applicable to them.
Section 4 deals with KKM type theorems on hyperbolic spaces. Some remarks
are added for such KKM type theorems for Hadamard manifolds due to other
authors.

In Section 5, we give the Fan-Browder type fixed point theorems for hy-
perbolic spaces generalizing other authors’ results on Hadamard manifolds.
Section 6 deals on the Nash type equilibrium theorems due to W. Kim [2].
We generalize them to the ones on hyperbolic spaces. Finally, in Section 7, we
recall some history of the study of KKM type results on Hadamard manifolds
and hyperbolic spaces.
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2. Abstract convex spaces

We follow our previous works [12, 13] and the references therein.

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological
space E, a nonempty set D, and a multimap Γ : 〈D〉 ( E with nonempty
values ΓA := Γ(A) for A ∈ 〈D〉, where 〈D〉 is the set of all nonempty finite
subsets of D.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for
any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X;

in other words, X is Γ-convex relative to D′ := X ∩ D. In case E = D, let
(E; Γ) := (E,E; Γ).

Definition 2.2. Let (E,D; Γ) be an abstract convex space. If a multimap
G : D( E satisfies

ΓA ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map.

Definition 2.3. The partial KKM principle for an abstract convex space
(E,D; Γ) is the statement that, for any closed-valued KKM map G : D( E,
the family {G(y)}y∈D has the finite intersection property. The KKM principle
is the statement that the same property also holds for any open-valued KKM
map.

An abstract convex space is called a (partial) KKM space if it satisfies the
(partial) KKM principle, resp.

Our KKM theory concerns with the study of partial KKM spaces and their
applications.

For typical examples of KKM spaces, see [13] and the references therein.

Now we have the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space
=⇒ G-convex space =⇒ φA-space =⇒ KKM space
=⇒ Partial KKM space =⇒ Abstract convex space.
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Recall that, in 2010 [12], we derived generalized forms of the Ky Fan mini-
max inequality, the von Neumann-Sion minimax theorem, the von Neumann–
Fan intersection theorem, the Fan type analytic alternative, and the Nash
equilibrium theorem for partial KKM spaces. Consequently, our results in
[12] unify and generalize most of previously known particular cases of the
same nature.

Moreover, in [13], we clearly derived a sequence of a dozen statements which
characterize the KKM spaces and equivalent formulations of the partial KKM
principle. As their applications, we add more than a dozen statements includ-
ing generalized formulations of von Neumann minimax theorem, von Neumann
intersection lemma, the Nash equilibrium theorem, and the Fan type minimax
inequalities for any KKM spaces. Consequently, [13] unifies and enlarges pre-
viously known several proper examples of such statements for particular types
of partial KKM spaces.

3. Hyperbolic spaces

After the pioneering work of Kirk [3] appeared in 1982, Reich and Shafrir
[16] in 1990 introduced hyperbolic spaces in order to try to develop a theory
of nonexpansive iterations in more general infinite-dimensional manifolds than
normed vector spaces:

Definition 3.1. ([16]) Let (X, ρ) be a metric space and R the real line. We
say that a map c : R→ X is a metric embedding of R into X if

ρ(c(s), c(t)) = |s− t|
for all real s and t. The image of a metric embedding is called a metric line.
The image of a real interval [a, b]:= {t ∈ R | a ≤ t ≤ b} under such a map is
called a metric segment.

Assume that (X, ρ) contains a family M of metric lines, such that for each
pair of distinct points x and y in X there is a unique metric line in M which
passes through x and y. This metric line determines a unique metric segment
denoted by [x, y] joining x and y. For each 0 ≤ t ≤ 1 there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point z is denoted by (1− t)x⊕ ty.
We say that X, or more precisely (X, ρ,M), is a hyperbolic space if

ρ(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z) ≤ 1

2
ρ(y, z)

for all x, y and z in X.

Example 3.2. ([16]) The following are examples of hyperbolic spaces:
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(1) All normed vector spaces.
(2) All Hadamard manifolds, that is, all finite-dimensional connected, sim-

ply connected, complete Riemannian manifolds of constant curvature.
(3) The Hilbert ball equipped with the hyperbolic metric.
(4) Arbitrary product of hyperbolic spaces.

Definition 3.3. ([16]) A subset C of a hyperbolic space X is said to be
convex if, for each pair of points x and y in C, the metric segment [x, y] is also
contained in C. The closed convex hull of a subset D of X is the intersection
of all closed convex subsets of X which contains D.

In the class of Hadamard manifolds, the authors [6, 17, 19] defined more
special concepts of convexity as follows:

Definition 3.4. A set K of an Hadamard manifold M is said to be geodesic
convex if for any p, q ∈ K, the geodesic joining p to q is contained in K, that
is, for any p, q ∈ K, expp(t exp−1

p q) ∈ K for all t ∈ [0, 1].

A set K of an Hadamard manifold M is said to be strongly geodesic convex if
for any given o ∈M and for any p, q ∈ K, expo((1−t) exp−1

o p+t exp−1
o q) ∈ K

for all t ∈ [0, 1].

Since any geodesic is a metric segment and the point o can be given by p,
a strongly geodesic convex set in an Hadamard manifold is a geodesic convex
set and hence a convex set in a hyperbolic space. See also [4].

In our previous works, we noted that any hyperbolic spaces are G-convex
spaces [8] and also particular cases of c-spaces [10-13]. This can be strength-
ened as follows:

Definition 3.5. The convex hull coD of a subset D of a hyperbolic space X
is the intersection of all convex subsets of X which contains D.

Lemma 3.6. ([14]) Any convex subset Y of a hyperbolic space X = (X, ρ,M)
can be made into a c-space (X; Γ) and hence a KKM space.

In view of Lemma 3.6, all results in [12, 13] hold for any convex subset of a
hyperbolic spaces.

4. The KKM theorem on hyperbolic spaces

Consider the following related four conditions for a map G : D( Z with a
topological space Z:

(a)
⋂

y∈DG(y) 6= ∅ implies
⋂

y∈DG(y) 6= ∅.

(b)
⋂

y∈DG(y) =
⋂

y∈DG(y) (G is intersectionally closed-valued ).
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(c)
⋂

y∈DG(y) =
⋂

y∈DG(y) (G is transfer closed-valued).

(d) G is closed-valued.

Note that (a) ⇐= (b) ⇐= (c) ⇐= (d), and not conversely in each step.

The following is one of the most general KKM type theorems in [15] for
abstract convex spaces:

Theorem C. Let (E,D; Γ) be an abstract convex space, Z a topological space,
F ∈ KC(E,D,Z), and G : D( Z a map such that

(1) G is a KKM map w.r.t. F ; and
(2) there exists a nonempty compact subset K of Z such that either

(i) K = Z;

(ii)
⋂
{G(y) | y ∈M} ⊂ K for some M ∈ 〈D〉; or

(iii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of E relative to

some D′ ⊂ D such that N ⊂ D′, F (LN ) is compact, and

F (LN ) ∩
⋂
y∈D′

G(y) ⊂ K.

Then we have
F (E) ∩K ∩

⋂
y∈D

G(y) 6= ∅.

Furthermore,
(α) if G is transfer closed-valued, then F (E) ∩K ∩

⋂
{G(y) | y ∈ D} 6= ∅;

and
(β) if G is intersectionally closed-valued, then

⋂
{G(y) | y ∈ D} 6= ∅.

Since any hyperbolic space is a partial KKM space, Theorem C is applicable
to hyperbolic spaces.

By putting E = Z and F=idE , we immediately have the following form of
the KKM theorem in the setting of hyperbolic spaces:

Theorem 4.1. Let (E,D; Γ) be an abstract convex space, where E is a hy-
perbolic space, D ⊂ E, and Γ is the convex hull operation, and G : D( E a
map such that

(1) G is a closed-valued KKM map; and
(2) there exists a nonempty compact subset K of E such that either

(i) K = E;
(ii)

⋂
{G(y) | y ∈M} ⊂ K for some M ∈ 〈D〉; or

(iii) for each N ∈ 〈D〉, there exists a closed compact Γ-convex subset LN

of E relative to some D′ ⊂ D such that N ⊂ D′, and

LN ∩
⋂
y∈D′

G(y) ⊂ K.
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Then we have

K ∩
⋂
y∈D

G(y) 6= ∅.

The following is a simple observation:

Theorem 4.2. Let M be a hyperbolic space and K ⊂M a convex subset. Let
G : K ( K be a KKM map such that, for each x ∈ K, G(x) is closed. Then
{G(x) | x ∈ K} has the finite intersection property.

Moreover, if there exists x0 ∈ K such that G(x0) is compact, then⋂
x∈K

G(x) 6= ∅.

Proof. By Lemma 3.6, a convex subset K ⊂ M is a KKM space. Hence, by
the definition itself, the conclusion follows. �

In [19, Theorem 3.1], the first half of Theorem 4.2 for Hadamard manifolds
with a KKM map G : K ( M and compact K was proved. They could
deduce only the finite intersection property of map-values of G. Here, the
compactness is redundant.

In [19, Theorem 3.2], Theorem 4.2 for Hadamard manifolds with a KKM
map G : K (M and compact K was proved as follows:

Corollary 4.3. Let M be a Hadamard manifold and K ⊂M a geodesic convex
subset. Let G : K (M be a closed-valued KKM mapping and there exists at
least one x0 ∈ K such that G(x0) is compact in M, then⋂

x∈K
G(x) 6= ∅.

This is the basis of Zhou and Huang [19, 20].
Colao et al. [1, Lemma 3.1] provided Corollary 4.3 with almost two page

proof.

For open-valued KKM map, we have the following:

Theorem 4.4. Let M be a hyperbolic space and K ⊂M a convex subset. Let
G : K ( K be a KKM map such that, for each x ∈ K, G(x) is open. Then
{G(x) | x ∈ K} has the finite intersection property.

Proof. By Lemma 3.6, K is a KKM space. Hence, by the definition itself, the
conclusion follows. �

Kim [2, Theorem 3.7] is the following:

Corollary 4.5. Let X be a nonempty geodesic convex subset of a Hadamard
manifold M, and T : X ( M be a geodesic KKM map such that for each
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x ∈ X, T (x) is an open subset of M. Then the family of sets {T (x) | x ∈ X}
has the finite intersection property.

5. Fan-Browder type fixed point theorem on hyperbolic spaces

We begin with the following correct form of [13, Theorem 1(V)], which is a
basis of the Fan-Browder type fixed point theorem:

Theorem 5.1. An abstract convex space (E,D; Γ) is a KKM space if and
only if the following Fan-Browder fixed point property holds:

Let S : E ( D, T : E ( E be multimaps satisfying
(1) for each x ∈ E, coΓS(x) ⊂ T (x);
(2) S−(z) := {x ∈ E | z ∈ S(x)} is open [resp. closed]; and
(3) E =

⋃
z∈M S−(z) for some M ∈ 〈D〉.

Then T has a fixed point x0 ∈ E; that is, x0 ∈ T (x0).

In fact, x0 ∈ coΓS(x0) ⊂ T (x0) in this theorem.
From this theorem we immediately obtain the following Fan-Browder type

fixed point theorem:

Theorem 5.2. Let X be a nonempty compact convex subset of a hyperbolic
space M, and T : X ( X be a multimap such that

(i) For any x ∈ X, T (x) is nonempty and convex in X;
(ii) For any y ∈ X, T−(y) is open in X.

Then there exists x0 ∈ X such that x0 ∈ T (x0).

Recall that Zhou and Huang [19, Theorem 4.2] obtained Theorem 5.2 for a
geodesic convex set X of a Hadamard manifold M by using the KKM principle
on a Hadamard manifold.

As an application of Lemma 3.6 and Theorem 5.1 withX = E = D for open-
valued case, we have the following Fan-Browder type fixed point theorem:

Theorem 5.3. Let X be a nonempty convex subset of a hyperbolic space M,
and S, T : X ( X be two multimaps such that

(1) for each y ∈ X, T−(y) is (possibly empty) open in X;
(2) for each x ∈ X, T (x) is nonempty and S(x) is convex, and T (x) ⊂ S(x);
(3) there exists an x0 ∈ X such that X \ T−(x0) is compact.

Then S has a fixed point x̄ ∈ X, that is, x̄ ∈ S(x̄).

Proof. For each x ∈ X, by (2), y ∈ T (x) or x ∈ T−(y) for some y ∈ X. Since
X \T−(x0) is compact by (3), X is covered by a finite number of open T−(y)′s.
Since T (x) ⊂ S(x) by (2), by Theorem 5.1, there exists an x̄ ∈ X such that
x̄ ∈ coT (x̄) ⊂ S(x̄). �

For geodesic convex sets in Hadamard manifolds, the above theorem reduces
to W. Kim [2, Theorem 3.1] with a quite lengthy proof.
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As an application of Theorem 5.1, we can prove the second Fan-Browder
type fixed point theorem for convex sets in a hyperbolic space as follows:

Theorem 5.4. Let X be a convex subset of a hyperbolic space M and S, T :
X ( X be two multimaps such that

(1) for each x ∈ X, S(x) is convex, and T (x) ⊂ S(x);
(2) for each y ∈ X, T−(y) is a closed subset of X;
(3) there exists a finite subset {x1, . . . , xn} of X such that X ⊂

⋃n
i=1 T

−(xi).
Then S has a fixed point x̄ ∈ X, i.e., x̄ ∈ S(x̄).

For geodesic convex sets in Hadamard manifolds, the above theorem reduces
to W. Kim [2, Theorem 3.8].

6. The Nash equilibrium for an 1-person game

As an application of Theorem 5.1, we have the following:

Theorem 6.1. Let X be a nonempty compact convex subset of a hyperbolic
space M . Suppose that f : X × X → R is a function, and T : X ( X is a
multimap such that

(1) the set {(x, y) ∈ X | f(x, x) > f(x, y)} is open;
(2) T has open graph in X ×X, and T (x) is nonempty for each x ∈ X;
(3) {y ∈ X | f(x, x) > f(x, y)} ∩ T (x) is a convex subset of X for each

x ∈ X.
Then there is an x0 ∈ X such that

f(x0, x0) ≤ f(x0, y) for each y ∈ T (x0).

Furthermore, if (x0, x0) > f(x0, y) for each y /∈ T (x0), then x0 ∈ X satisfies

x0 ∈ T (x0) and f(x0, x0) ≤ f(x0, y) for each y ∈ T (x0).

Proof. First, we define a multimap S : X → X by S(x) := {y ∈ X | f(x, x) >
f(x, y)} ∩ T (x) for each x ∈ X. By (3), each S(x) is a convex subset of X.
For each y ∈ X, we have

S−(y) = {x ∈ X | y ∈ S(x)} = {x ∈ X | f(x, x) > f(x, y)} ∩ T−(y).

By (2), T− has also open graph in X × X so that S−(y) is open for each
y ∈ X. Since X is compact, and each S−(y) is open in X, the set X \ S−(y)
is compact. Therefore, if S(x) is nonempty for each x ∈ X, then S satisfies
all the assumptions of Theorem 5.1 in case of S = T so that there exists a
fixed point y̌ ∈ X of S, i.e., y̌ ∈ S(y̌). This implies that f(y̌, y̌) > f(y̌, y̌),
a contradiction. Therefore, S(x0) should be empty for some x0 ∈ X. Since
T (x0) is nonempty, we can obtain the conclusion

f(x0, x0) ≤ f(x0, y) for each y ∈ T (x0).
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Furthermore, by the assumption, if x0 /∈ T (x0), then f(x0, x0) > f(x0, x0),
a contradiction. Therefore, we obtain that x0 ∈ T (x0) which completes the
proof. �

The above proof is followed the corresponding one of [2, Theorem 3.3].
Kim [2] in his Section 2 recalled some notions and terminologies on the

generalized Nash equilibrium for pure strategic games. See also our Section 6
of [14].

As an application of Theorem 6.1, Kim proved an existence of Nash equilib-
rium for an 1-person game of compact geodesic convex settings in a Hadamard
manifold as follows [2, Theorem 3.3]:

Corollary 6.2. Let G = (X;T, f) be an 1-person game such that X is a
nonempty compact geodesic convex subset of a Hadamard manifold M. Suppose
f : X ×X → R is a function on X ×X, and T : X ( X is a multimap such
that

(1) the set {(x, y) ∈ X | f(x, x) > f(x, y)} is open;
(2) T has open graph in X ×X, and T (x) is nonempty for each x ∈ X;
(3) {y ∈ X | f(x, x) > f(x, y)} ∩ T (x) is a geodesic convex subset of X for

each x ∈ X.
Then there is an x0 ∈ X such that

f(x0, x0) ≤ f(x0, y) for each y ∈ T (x0).

Furthermore, if (x0, x0) > f(x0, y) for each y /∈ T (x0), then x0 ∈ X is a Nash
equilibrium for the game G, that is,

x0 ∈ T (x0) and f(x0, x0) ≤ f(x0, y) for each y ∈ T (x0).

In Theorem 6.1, when T (x) := X for each x ∈ X, a variational inequality
is obtained as follows:

Theorem 6.3. Suppose that X is a nonempty compact convex subset of a
hyperbolic space M. Suppose f : X × X → R is a continuous function on
X ×X such that {y ∈ X | f(x, x) > f(x, y)} is a convex subset of X for each
x ∈ X. Then there is an x0 ∈ X such that

f(x0, x0) ≤ f(x0, y) for each y ∈ X.

The following is Kim [2, Corollary 3.5]:

Corollary 6.4. Suppose that X is a nonempty compact geodesic convex subset
of a Hadamard manifold M. Suppose f : X ×X → R is a continuous function
on X ×X such that {y ∈ X | f(x, x) > f(x, y)} is a geodesic convex subset of
X for each x ∈ X. Then there is an x0 ∈ X such that

f(x0, x0) ≤ f(x0, y) for each y ∈ X.
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Recall that Theorem 6.3 is comparable to the following correct form of Park
[13, Theorem 5(XVI)]:

Theorem 6.5. For a compact partial KKM space (X; Γ), the following vari-
ational inequality (XVI) hold:
(XVI) Let f, g : X ×X → R be functions satisfying

(1) for any x, y ∈ X, f(y, y)− f(x, y) ≤ g(y, y)− g(x, y);
(2) for each x ∈ X, {y ∈ X | f(x, y) < f(y, y)} is open; and
(3) for each y ∈ X, {x ∈ X | g(x, y) < g(y, y)} is Γ-convex.

Then there exists a y0 ∈ X such that

f(x, y0) ≥ f(y0, y0) for all x ∈ X
and

sup
y∈X

inf
x∈X

f(x, y) ≥ inf
x∈X

f(x, x).

7. Historical Remarks

In this section, we introduce the contents of the major references by showing
their abstract or our comments in order to clarify the history of the present
study.

(1) Kirk [3] in 1982 : A well-known iteration scheme due to Krasnoselskii for
approximation of fixed points of of nonexpansive mappings in Banach spaces
is extended to a wider class of spaces. This class includes convex metric spaces
of ‘hyperbolic’ type, and the results apply to the study of holomorphic self-
mappings of the unit ball in complex Hilbert space.

(2) In 1990, Reich and Shafrir [16] introduced hyperbolic spaces in order
to try to develop a theory of nonexpansive iterations in more general infinite-
dimensional manifolds than normed vector spaces. This class of metric spaces
contains all normed vector spaces and Hadamard manifolds, as well as the
Hilbert ball and the Cartesian product of Hilbert balls.

(3) Németh [6] in 2003 : The notion of variational inequalities is extended
to Hadamard manifolds and related to geodesic convex optimization problems.
Existence and uniqueness theorems for variational inequalities on Hadamard
manifolds are proved. A convexity property of the solution set of a variational
inequality on a Hadamard manifold is presented.

The basic lemma is based on the Brouwer fixed point theorem.

(4) In 2008, while Park was studying the KKM theory, he found that any
hyperbolic spaces are G-convex spaces [9] and also particular cases of c-spaces
[10-13]. Actually, in 2010 [12, 13], he indicated but not concretely that most
of key results in the KKM theory can be applied to hyperbolic spaces.
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(5) In Zhou and Huang [19], a new notion of KKM mapping is introduced
and a generalized KKM theorem is proved on Hadamard manifolds. As appli-
cations, an existence theorem of solution for a generalized mixed variational
inequality and a fixed point theorem for a set-valued mapping are obtained on
Hadamard manifolds.

(6) In 2012, Colao, Lopez, Marino, and Martin-Marquez [1] developed an
equilibrium theory in Hadamard manifolds. They provided an analogous KKM
theorem in the setting of Hadamard manifolds which is essential in proving the
main result of this paper. The existence of equilibrium points for a bifunction
is proved under suitable conditions, and applications to variational inequality,
fixed point and Nash equilibrium problems are provided. The convergence of
Picard iteration for firmly nonexpansive mappings along with the definition
of resolvents for bifunctions in this setting is used to devise an algorithm to
approximate equilibrium points.

(7) In 2012, Yang and Pu [17] introduced a generalized Browder-type fixed
point theorem on Hadamard manifolds, which can be regarded as a general-
ization of the one on an Euclidean space. As applications, a maximal element
theorem, a section theorem, a Ky Fan-type Minimax Inequality and an exis-
tence theorem of Nash equilibrium for non-cooperative games on Hadamard
manifolds are established.

(8) In 2012, Yang and Pu [18] proved a Fan-Browder type fixed point theo-
rem with strongly geodesic convexity on Hadamard manifolds. It is clear that
such results are closely related to the KKM theory on hyperbolic spaces.

(9) In 2013, using an analogous to KKM lemma [1, 19], Zhou and Huang
[20] proved the existence of solutions for the vector variational inequalities
on Hadamard manifolds. The results presented in this paper generalize some
previous ones from Euclidean spaces to Hadamard manifolds.

(10) In 2013, Park [14] showed that three of key results (the KKM lemma,
the Ky Fan type minimax inequality, and Nash equilibrium theorem) on
Hadamard manifolds in [1] can be extended to hyperbolic spaces and are par-
ticular ones for abstract convex spaces in the sense of [12, 13]. Similarly, most
of main theorems in the KKM theory on abstract convex spaces can be applied
to hyperbolic spaces and Hadamard manifolds.

(11) Kristály, Li, Lopez, and Nicolae [4] : Various results based on some
convexity assumptions (involving the exponential map along with affine maps,
geodesics and convex hulls) have been recently established on Hadamard man-
ifolds. In this paper we prove that these conditions are mutually equivalent
and they hold if and only if the Hadamard manifold is isometric to the Eu-
clidean space. In this way, we show that some results in the literature obtained
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on Hadamard manifolds are actually nothing but their well known Euclidean
counterparts.

(12) In 2015, Lee [5] showed that main results of Yang and Pu [17] can
be obtained from the one in the more general spaces. As applications, he
claimed that their maximal element theorems, section theorems, Ky Fan type
minimax inequality, and equilibrium theorem about non-cooperative games on
Hadamard manifolds are already obtained in some sense.

(13) In 2018, Kim [2] provided two basic Fan-Browder type fixed point
theorems for multimaps on geodesic convex sets in Hadamard manifolds. Also,
an existence theorem of Nash equilibrium for an 1-person game in Hadamard
manifolds is established.
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