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Abstract. In this paper, we apply a fixed point theorem to the proof of Hyers-Ulam-Rassias
stability property for the quadratic functional equation

1

|K|
∑

k∈K

f(x + k · y) = f(x) + f(y), x, y ∈ E1

and for the Jensen functional equation

1

|K|
∑

k∈K

f(x + k · y) = f(x), x, y ∈ E1

from a normed space E1 into a quasi Banach space E2, where K is a finite cyclic transfor-

mation group of E1.

1. Introduction

The stability problem of functional equations originated from a question of
Ulam [40] concerning the stability of group homomorphisms: Given a group
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F , a metric group H with a metric d(., .) and an ε > 0, find δ > 0 such that, if
f : F → H satisfies d(f(xy), f(x)f(y)) ≤ δ for all x, y ∈ F , then there exists
a homomorphisms g : F → H such that d(f(x), g(x)) ≤ ε for all x ∈ F .
If the answer is affirmative, we would say that the equation of homomorphism
f(xy) = f(x)f(y) is stable. The concept of stability for a functional equation
arises when we replace the functional equation by an inequality which arts
as a perturbation of the equation. Thus, the stability question of functional
equations is that ”how do the solutions of the inequality differ from those of
the given functional equation”?
Hyers [11] gave a first partial affirmative answer to the question of Ulam for
Banach spaces.

Let F and H be Banach spaces. Assume that f : F → H satisfies

‖ f(x + y)− f(x)− f(y) ‖≤ ε

for all x, y ∈ F and some ε ≥ 0. Then, there exists a unique additive mapping
T : F → H such that

‖ f(x)− T (x) ‖≤ ε

for all x ∈ F .
Th. M. Rassias [27] provided a generalization of Hyers theorem which allows
the Cauchy difference to be unbounded.

Theorem 1.1. (Th. M. Rassias) Let f : F → H be a mapping from a normed
vector space F into a Banach space H subject to the inequality

‖ f(x + y)− f(x)− f(y) ‖≤ ε(‖ x ‖p) + (‖ y ‖p)

for all x, y ∈ F , where ε and p are constants such that ε > 0 and p < 1. Then,
the limit

L(x) = lim
n→+∞

f(2nx)
2n

exists for all x ∈ F and L : F → H is the unique additive mapping which
satisfies

‖ f(x)− L(x) ‖≤ 2ε

2− 2p
‖ x ‖p

for all x ∈ F . Also, if for each x ∈ F the function f(tx) is continuous in
t ∈ R, then L is R-linear.

This result provided a remarkable generalization of Theorem proved by Hy-
ers. What is more important here is that Rassias Theorem simulated several
mathematicians working in functional equations to investigate this kind of
stability for many important functional equations. Taking this fact in consid-
eration, the terminology Hyers-Ulam-Rassias stability originates from these
historical backgrounds. Beginning around the year 1980, several results for
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the Hyers-Ulam-Rassias stability of very many functional equations have been
proved by several researchers. For more detailed, we can refer to [5],...[39]

Let E1 be a real vector space and E2 be a real Banach space. Let K be
a finite cyclic subgroup of Aut(E1) (the group of automorphisms of G), |K|
denotes the order of K. Writing the action of k ∈ K on x ∈ G as k · x, we
will say that a function f : E1 → E2 is a solution of the quadratic functional
equation, if

1
|K|

∑

k∈K

f(x + k · y) = f(x) + f(y), x, y ∈ E1 (1.1)

and that f is a solution of the Jensen functional equation, if

1
|K|

∑

k∈K

f(x + k · y) = f(x), x, y ∈ E1 (1.2)

The above functional equations appeared in several works by H. Stetkær
(see, [37]-[39]).

Recently, Belaid et al have proved the Hyers-Ulam-Rassias stability of the
quadratic functional (1.1) and and the Jensen functional equation (1.2) (see
[1], [3] and [4]).

In [2] L. Cǎdariu and V. Radu applied the fixed point method to the inves-
tigation of the Cauchy additive functional equation.

In this paper, we will apply the fixed point method as in [2] to prove the
Hyers-Ulam-Rassias stability of the functional equations (1.1) and (1.2). In
this case the range of relevant functions is extended to any complete β-normed
space.

In 1996, G. Isac and Th. M. Rassias [16] were the first to provide applica-
tions of stability theory of functional equation for the proof of new fixed point
theorems with applications.

First we shall recall two fundamental results in fixed point theory. The
reader is referred to the book of D. H. Hyers, G. Isac and Th. M. Rassias [13]
for an extensive account of fixed point theory with several applications.

Theorem 1.2. (Banach’s contraction principal) Let (X, d) be a complete met-
ric space, and consider a mapping J : X → X, which is strictly contractive,
that is

d(Jx, Jy) ≤ Ld(x, y), ∀x, y ∈ X,

for some (Lipshitz constant) L < 1. Then,
(1) the mapping J has one, and only one, fixed point x∗ = J(x∗),
(2) the fixed point x∗ is globally attractive, that is,

lim
n→+∞Jnx = x∗
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for any starting point x ∈ X.
(3) One has the following estimation inequalities:

d(Jnx, x∗) ≤ Lnd(x, x∗)

d(Jnx, x∗) ≤ 1
1− L

d(Jnx, Jn+1x)

d(x, x∗) ≤ 1
1− L

d(x, Jx)

for all nonnegative integers n and all x ∈ X.

Let X be a set. A function d : X × X → [0,+∞] is called a generalized
metric on X if d satisfies the following:
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(2) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.3. (The alternative of fixed point) [7] Suppose we are given com-
plete generalized metric space (X, d) and a strictly contractive mapping J :
X → X, white the Lipshitz constant L < 1. Then, for each given element
x ∈ X, either

d(Jnx, Jn+1x) = +∞
for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < +∞, ∀n ≥ n0;
(2) the sequence Jnx converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < +∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

This paper is organized as followings. In section 2, using the fixed point
method, we prove the Hyers-Ulam-Rassias stability of the quadratic functional
equation (1.1). In section 3, using the fixed point method, we prove the Hyers-
Ulam-Rassias stability of the Jensen functional equation (1.2).

Throughout this paper, we fix a real number β with 0 < β ≤ 1 and let K
denote either R or C. Suppose E is a vector space over K. A function ‖.‖β:
E −→ [0,∞) is called a β-norm if and only if it satisfies
(1) ‖x‖β = 0, if and only if x = 0;
(2) ‖λx‖β = |λ|β‖x‖β for all λ ∈ K and all x ∈ E;
(3) ‖x + y‖β ≤ ‖x‖β + ‖y‖β, for all x, y ∈ E.

2. Hyers-Ulam-Rassias stability of the quadratic functional
equation

In this section we prove the Hyers-Ulam-Rassias stability of the quadratic
functional equation (1.1)
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Theorem 2.1. Let E1 be a vector space over K and let E2 be a complete
β-normed space over K, where β is a fixed real number with 0 < β ≤ 1. Let K
be a finite cyclic subgroup of the group of automorphisms of the abelian group
(E1, +). Let f : E1 −→ E2 be a mapping for which there exists a function
ϕ : E1 × E1 → R+ and a constant L, 0 < L < 1, such that

‖ | 1
|K|

∑

k∈K

f(x + k · y)− f(x)− f(y)‖β ≤ ϕ(x, y), (2.1)

∑

k∈K

ϕ(x + k · x, y + k · y) ≤ (2|K|)βLϕ(x, y) (2.2)

for all x, y ∈ E1. Then, there exists a unique solution q: E1 −→ E2 of equation
(1.1) such that

‖f(x)− q(x)‖β ≤ 1
2β

1
1− L

ϕ(x, x) (2.3)

for all x ∈ E1.

Proof. Consider the set

X := {g : E1 −→ E2}
and introduce the generalized metric on X as follows:

d(g, h) = inf{C ∈ [0,∞] : ‖g(x)− h(x)‖β ≤ Cϕ(x, x), ∀x ∈ E1}.
It easy to show that (X, d) is complete.
Now, we consider the linear mapping J : X → X such that

(Jf)(x) =
1

2|K|
∑

k∈K

f(x + k · x)

for all x ∈ E1.
From [1], we can verified that

(Jnf)(x) =
1

(2|K|)n

∑

k1,...,kn∈K

f


x +

∑

ij<ij+1,kij∈{k1,...,kn}
(ki1 ...kip) · x




for all integer n.
Next, we are going to prove that J is a strictly contractive on X with the

Lipschitz constant L. Indeed, for given g and h in X and C ≥ 0 an arbitrary
constant with d(g, h) ≤ C, that is,

‖g(x)− h(x)‖β ≤ Cϕ(x, x) (2.4)



278 Y. Manar, E. Elqorachi and B. Bouikhalene

for all x ∈ E1. Thus from (2.1), (2.2) and ( 2.4) we get

‖(Jg)(x)− (Jh)(x)‖β = ‖ 1
2|K|

∑

k∈K

g(x + k · x)− 1
2|K|

∑

k∈K

h(x + k · x)‖β

=
1

(2|K|)β
‖

∑

k∈K

g(x + k · x)− h(x + k · x)‖β

≤ 1
(2|K|)β

∑

k∈K

‖g(x + k · x)− h(x + k · x))‖β

≤ 1
(2|K|)β

C
∑

k∈K

ϕ(x + k · x, x + k · x)

≤ CLϕ(x, x)

for all x ∈ E1, that is, d(Jg, Jh) ≤ LC. This means that d(Jg, Jh) ≤ Ld(g, h)
for any g, h ∈ X.

Now, by letting y = x in (2.1), we get

‖(Jf)(x)− f(x)‖β =
1
2β
‖ 1
|K|

∑

k∈K

f(x + k · x)− 2f(x)‖β ≤ 1
2β

ϕ(x, x)

for all x ∈ E1 and it follows that

d(Jf, f) ≤ 1
2β

< ∞ (2.5)

From the fixed point alternative we deduce the existence of a fixed point
of J which is a function q : E1 → E2 such that limn−→∞ d(Jnf, q) = 0.
Since d(Jnf, q) → 0 as n → ∞, there exists a sequence {Cn} such that
limn−→∞Cn = 0 and d(Jnf, q) ≤ Cn for every n ∈ N. Hence, from the
definition of d, we get

‖(Jnf)(x)− q(x)‖β ≤ Cnϕ(x, x) (2.6)

for all x ∈ E1. Consequently, we obtain

lim
n→∞ ‖(J

nf)(x)− q(x)‖β = 0, (2.7)

for each x ∈ E1.
Now, we will prove that q is a solution of the quadratic functional equation

(1.1). First, we use induction on n to prove the following inequality

‖ 1
|K|

∑

k∈K

Jnf(x + k · y)− Jnf(x)− Jnf(y)‖β ≤ Lnϕ(x, y) (2.8)

For n = 1, by using the definition of J , the commutativity of K and inequalities
(2.1), (2.2) we get
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‖ 1
|K|

∑
k∈K Jf(x + k · y)− Jf(x)− Jf(y)‖β

= ‖ 1
|K|

∑
k∈K

1
2|K|

∑
k1∈K f(x + k · y + k1 · x + k1k · y)

− 1
2|K|

∑
k1∈K f(x + k1 · x)

− 1
2|K|

∑
k1∈K f(y + k1 · y)‖β

≤ 1
(2|K|)β

∑
k1∈K ‖ 1

|K|
∑

k∈K f(x + k1 · x + k · (y + k1 · y))
−f(x + k1 · x)− f(y + k1 · y)‖β

≤ 1
(2|K|)β

∑
k1∈K ϕ(x + k1 · x, y + k1 · y)

≤ 1
(2|K|)β (2|K|)βLϕ(x, y) = Lϕ(x, y),

which proves that the assertion (2.8) is true for n = 1. Now, we assume that
(2.8) is true for some for n. By using the definition of J , the commutativity
of K, the inequalities (2.8), (2.2), we obtain

‖ 1
|K|

∑
k∈K Jn+1f(x + k · y)− Jn+1f(x)− Jn+1f(y)‖β

= ‖ 1
|K|

∑
k∈K

1
2|K|

∑
k′∈K Jnf(x + k · y + k

′ · x + k
′
k · y)

− 1
2|K|

∑
k
′∈K Jnf(x + k

′ · x)
− 1

2|K|
∑

k′∈K Jnf(y + k
′ · y)‖β

≤ 1
(2|K|)β

∑
k′∈K ‖ 1

|K|
∑

k∈K Jnf(x + k
′ · x + k · (y + k

′ · y)
−Jnf(x + k′ · x)− Jnf(y + k′ · y)‖β

≤ 1
(2|K|)β

∑
k
′∈K Lnϕ(x + k

′ · x, y + k
′ · y)

≤ Ln+1ϕ(x, y),

which implies the validity of the inequality (2.8) for n + 1.
By letting n →∞, in (2.8), we get the desired result that

1
|K|

∑

k∈K

q(x + k · y)− q(x)− q(y) = 0, (2.9)

for all x, y ∈ E1. From Theorem 1.3 and inequality (2.5), we deduce that

d(f, q) ≤ 1
1− L

d(Jf, f) ≤ 1
2β

1
(1− L)

, (2.10)

which proves the inequality (2.3). Now, assume that q1 : E1 → E2 is another
solution of (1.1) satisfying (2.3) so q1 is a fixed point of J . From the definition
of d and the inequality (2.3), the assertion (2.10) is also true with q1 in place
of q. By using Theorem 1.3 (3), we get the uniqueness of q. This ends the
proof of Theorem 2.1. ¤

The following corollaries follows from Theorem 2.1.
With the new weak condition (2.11), we obtain
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Corollary 2.2. [19] Let E1 be a vector space over K and let E2 be a complete
β-normed space over K, where β is a fixed real number with 0 < β ≤ 1. Let
K = {I, σ}, where σ is an involution of the abelian group (E1, +). Let f :
E1 −→ E2 be a mapping for which there exists a function ϕ : E1 × E1 → R+

and a constant L, 0 < L < 1, such that

ϕ(2x, 2y) + ϕ(x + σ(x), y + σ(y)) ≤ 4βLϕ(x, y), (2.11)

for all x, y ∈ E1. Assume that f : E1 → E2 satisfies the inequality

‖1
2
[f(x + y) + f(x + σ(y))]− f(x)− f(y)‖β ≤ ϕ(x, y) (2.12)

for all x, y ∈ E1. Then, there exists a unique solution q: E1 −→ E2 of equation

f(x + y) + f(x + σ(y)) = 2f(x) + 2f(y), x, y ∈ E1 (2.13)

such that

‖f(x)− q(x)‖β ≤ 1
2β

1
(1− L)

ϕ(x, x) (2.14)

for all x ∈ E1.

Corollary 2.3. Let E1 be a vector space over K and let E2 be a complete
β-normed space over K, let K be a finite cyclic subgroup of the group of
automorphisms of the abelian group (E1, +) and choose a constant p with
p < β + (β − 1) log(|K|)

log(2) . Let f : E1 −→ E2 be a mapping such that

‖ 1
|K|

∑

k∈K

f(x + k · y)− f(x)− f(y)‖β ≤ θ(‖x‖p + ‖y‖p), (2.15)

and ‖x + k · x‖p ≤ 2p‖x‖p for all k ∈ K and x ∈ E1. Then, there exists a
unique solution q: E1 −→ E2 of equation (1.1) such that

‖f(x)− q(x)‖β ≤ 2θ|K|β
2β|K|β − 2p|K|‖x‖

p (2.16)

for all x ∈ E1.

3. Hyers-Ulam-Rassias stability of Jensen functional equation

In this section, we prove the Hyers-Ulam-Rassias stability of the functional
equation (1.2).

Theorem 3.1. Let E1 be a vector space over K and let E2 be a complete
β-normed space over K, where β is a fixed real number with 0 < β ≤ 1. Let K
be a finite cyclic subgroup of the group of automorphisms of the abelian group
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(E1, +). Let f : E1 −→ E2 be a mapping for which there exists a function
ϕ : E1 × E1 → R+ and a constant L, 0 < L < 1, such that

‖ 1
|K|

∑

k∈K

f(x + k · y)− f(x)‖β ≤ ϕ(x, y), (3.1)

∑

k∈K

ϕ(x− k · x, y − k · y) ≤ |K|βLϕ(x, y) (3.2)

for all x, y ∈ E1. Then, there exists a unique solution j: E1 −→ E2 of equation
(1.2) such that

‖f(x)− j(x)‖β ≤ 1
1− L

ϕ(x, x) (3.3)

for all x ∈ E1.

Proof. We consider the linear mapping J : X → X such that

(Jf)(x) =
1
|K|

∑

k∈K

f(x− k · x) (3.4)

for all x ∈ E1. Given g, h ∈ X and C ∈ [0,∞] such that d(g, h) ≤ C, then we
get

‖(Jg)(x)− (Jh)(x)‖β = ‖ 1
|K|

∑

k∈K

g(x− k · x)− 1
|K|

∑

k∈K

h(x− k · x)‖β

=
1

|K|β ‖
∑

k∈K

[g(x− k · x)− h(x− k · x)]‖β

≤ 1
|K|β

∑

k∈K

‖g(x− k · x)− h(x− k · x)‖β

≤ CLϕ(x, x)

for all x ∈ E1, which implies that J is a strictly contractive operator, that
is d(Jg, Jh) ≤ Ld(g, h).
Letting y = −x in (3.1), we get

d(Jf, f) ≤ 1 (3.5)

By Theorem 1.3, there exits a mapping j : E1 → E2 such that the following
hold.
(a) j is a fixed point of J , that is

1
|K|

∑

k∈K

j(x− k · x) = j(x),

for all x ∈ G. The mapping j is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}
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(b) limn−→∞ d(Jnf, j) = 0, that is

j(x) = lim
n→∞

1
|K|n

∑

k1,...,kn∈K

f


x +

∑

ij<ij+1,kij∈{k1,...,kn}
[(−ki1) · · · (−kip)] · x




(c) d(f, j) ≤ 1
1−Ld(f, Jf), so we have the inequality (3.3).

Now, by applying same computations used in the proof of Theorem 3.1, we
will show by induction that

‖ 1
|K|

∑

k∈K

Jnf(x + k · y)− Jnf(x)‖β ≤ Lnϕ(x, y) (3.6)

for all x, y ∈ E1.
Finally, By letting n →∞ in the formula (3.6), we get that j is a solution

of equation (1.2). The uniqueness of j can be derived by using same argument
as in the proof of Theorem 2.1. This completes the proof of our theorem. ¤
Corollary 3.2. Let E1 be a vector space over K and let E2 be a complete
β-normed space over K, let K be a finite cyclic subgroup of the group of auto-
morphisms of the abelian group (E1, +) with |K| ≥ 2 and choose a constant p

with p < β log(|K|)−log(|K|−1)
log(2) . Let f : E1 −→ E2 be a mapping such that

‖ 1
|K|

∑

k∈K

f(x + k · y)− f(x)‖β ≤ θ(‖x‖p + ‖y‖p), (3.7)

and ‖x + k · x‖p ≤ 2p‖x‖p for all k ∈ K and x ∈ E1. Then, there exists a
unique solution j : E1 −→ E2 of equation (1.2) such that

‖f(x)− j(x)‖β ≤ 2θ|K|β‖x‖p

2p + |K|β − 2p|K| (3.8)

for all x ∈ E1.
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