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Abstract. In this note we present a proximal point algorithm for vector optimization. The

method we use adapts to the vectorial case some classical results in the scalar optimization

by means of some scalarization techniques.

1. Introduction

The proximal point algorithm is known to be one of the most important
theoretical schemes to find zeroes of maximal monotone operators and, in
particular, to minimize convex lower-semicontinuous scalar functions. Its rel-
evance is (mostly) a theoretical one and the success of its implementation
depends on the effectiveness of the methods used to solve the involved sub-
problems. Starting with the pioneering paper of Rockafellar [12], which clearly
fix some existing ideas in the previous literature and gives much more insights
on the potential of the inexact version of the algorithm when applies to opti-
mization problems, an important literature has grown on possible extensions
and generalizations of this algorithm (see, for example the survey paper [8]
and the references therein).

Recently, some attention was focused also on the case of vectorial functions:
see [7], [1], [2]. In that general situation, the sense of minima is understood
by means of a partial order relation induced on the output space by a closed
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convex pointed cone. The main aim of this paper is to continue the investi-
gation on this topic and to present in a vectorial setting a natural proximal
point algorithm derived from the classical one via some scalarization methods.

The outline of the paper is as follows. In the second section we briefly
discuss the main setting and properties of the scalar inexact proximal point
algorithm. Moreover we point out a result concerning the finite termination
of this algorithm in infinite dimensional setting. A proximal-like algorithm
in a nonconvex framework is given as well. The third section is devoted to
the vectorial case. We introduce an inexact proximal point algorithm for
vector optimization problems, we show that it has the same main features
as the classical algorithm and we compares our results with other results in
literature. In our theoretical tour we deal mainly with the weak minimum
points, but we briefly consider as well the case of Pareto minimum points in
the situation when the interior of the ordering cone is empty.

2. Scalar case

In this section we briefly remind some well-known facts about proximal
point algorithm separately in a convex and a nonconvex framework. In both
cases we propose as well some remarks on the use of this algorithm.

2.1. Convex framework.
Let X be a real Hilbert space and denote by 〈·, ·〉 its scalar product. We shall

tacitly identify the topological dual of X with the space X itself. The classical
exact proximal point algorithm (EPPA, for short) for finding a minimum of
a given convex lower-semicontinuous proper function f : X → R ∪ {+∞}
consists of generating a sequence (xn) ⊂ X by solving the convex program
associated to the Moreau-Yosida regularization of the initial function:

xn+1 = argminx∈X

(
f(x) +

λn

2
‖x− xn‖2

)
(2.1)

where (λn) is a bounded sequence of positive real numbers and x0 is arbitrarily
chosen. In fact, using the subdifferential calculus one gets that:

λn(xn − xn+1) ∈ ∂f(xn+1),

where ∂ denotes the Fenchel subdifferential of a convex function. Then, it
is shown in [11], [12] that in the case where f admits a minimum then (xn)
is bounded and weakly converges towards such a minimum. Subsequently, an
important literature have been developed by generalizing this initial method of
finding minima. In general, these generalizations concern the following aspects
(see [8], [3] and the references therein):
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• take xn+1 not as an exact solution of the problem

min
(

f(x) +
λn

2
‖xn − x‖2

)
(2.2)

but as an approximate solution of it (inexact proximal point algorithm,
IPPA, for short);

• consider another types of perturbations for f instead of the square of
the norm (generalized proximal point algorithms);

• consider the case where f is not convex but a lower semicontinuous
function (of course, in this case one should take ∈ instead of = in
relation (2.1)) (nonconvex proximal point algorithms).

Let us remind the main features of the IPPA in the Rockafellar’s sense
([12]). In this case, the iterate xn+1 is taken as an approximate solution of
the regularization program in relation (2.2). Let (εn) be a sequence of positive

real numbers s.t.
∞∑

n=0

εn < ∞, consider x0 ∈ X arbitrarily, and denote at every

step by x̃n+1 the unique solution of the problem (2.2), and take xn+1 ∈ X s.t.
‖xn+1 − x̃n+1‖ < εn. Then the sequence (xn) is bounded if and only if f has a
minimum point over X and in this case (xn) weakly converges to a minimum
point. Moreover,

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ ‖x̃n+1 − xn‖ = 0.

Remind that one says that x ∈ X is a sharp minimum of f if there exists
µ > 0 s.t. for every x ∈ X

f(x)− f(x) ≥ µ ‖x− x‖ .

In the case of EPPA (i.e. xn+1 = x̃n+1) it is known that if X has finite
dimension and if f admits a sharp minimum, then this algorithm terminates
in a finite number of iterations (see [12, Proposition 8], [5, Theorem 6]). We
observe here that this result can be extended to the infinite dimensional case
and for IPPA in a sense we make precise below.

Proposition 2.1. Suppose that f admits a sharp minimum point x. Then
the sequences of exact iterations (x̃n)n≥1 is stationary equal to x for n large
enough.

Proof. Since x is a sharp minimum point for f, taking into account [13, The-
orem 3.10.1, Implication (i) ⇒ (x)] one has that

µUX ⊂ ∂f(x),
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where UX stands for the closed unit ball in X. Then one can show as in [5,
Lemma 5] that for any z 6= x and w ∈ ∂f(z), ‖w‖ ≥ µ. Indeed, one has that

µ ‖z − x‖−1 (z − x) ∈ ∂f(x)

whence 〈
w − µ ‖z − x‖−1 (z − x), z − x

〉
≥ 0.

Therefore,
µ ‖z − x‖ ≤ 〈w, z − x〉 ≤ ‖w‖ ‖z − x‖ ,

and the claim is proved. Now, from the construction of the exact iterates, one
has that

λn(xn − x̃n+1) ∈ ∂f(x̃n+1).

The fact that limn→∞ ‖x̃n+1 − xn‖ = 0, the boundedness of (λn) and the
above claim assures that x̃n+1 = x for every n large enough. ¤

2.2. Nonconvex framework.
Let us consider now the case of a nonconvex function. In this subsection,

X is a reflexive Banach space, f : X → R ∪ {+∞} is a weakly lower semi-
continuous function having bounded (whence weakly compact) level sets. In
particular, this ensures the existence of a minimum point for f over X. A
necessary and sufficient condition for boundedness of the level sets is the co-
ercivity of f, i.e. lim‖x‖→∞ f(x) = +∞. In [3, Section 3] a generalized exact
proximal point algorithm for f is studied. In this paper we consider, on similar
lines, an IPPA under some minimal assumptions. First, consider a function
ψ : X × X → R+ which is weakly continuous with respect to the first vari-
able and weakly lower semicontinuous with respect to the second variable.
Moreover, suppose that ψ(x, x) = 0 for every x ∈ X. For several methods
to construct functions with these properties see, for example, [8]. Consider a
bounded sequence (λn) of positive real numbers, a sequence (εn) of positive

real numbers s.t.
∞∑

n=0

εn := C < ∞ and an element x0 ∈ X; denote:

An := argminx∈X (f(x) + λnψ(xn, x)) .

Note that in our assumptions An 6= ∅ because f(·)+λnψ(xn, ·) is weakly lower
semicontinuous and the boundedness of the level sets of f and the positivity of
ψ ensures the boundedness of the level sets of f(·)+λnψ(xn, ·). Take xn+1 ∈ X
s.t. d(xn+1, An) < εn (where, as usual, d(x,A) := inf{‖x− a‖ | a ∈ A}
denotes the distance between x ∈ X and A ⊂ X). This means that there
exists an element x̃n+1 ∈ An s.t. ‖xn+1 − x̃n+1‖ < εn. A convergence result
for this algorithm is stated below.



Some remarks on proximal point algorithm 311

Proposition 2.2. Suppose, in addition, that f is a Lipschitz function (whence
finite valued) and λn → 0. Then the sequence (xn) generated as above is
bounded and every accumulation point of it is a global minimizer of f.

Proof. Observe first that for every n ≥ 1 one has:

f(x̃n+1) + λnψ(xn, x̃n+1) ≤ f(xn),

whence

f(xn+1)− f(xn) ≤ −λnψ(xn, x̃n+1) + L ‖x̃n+1 − xn+1‖ ,

where L > 0 is the Lipschitz constant of f. In particular,

f(xn+1)− f(xn) ≤ Lεn.

This inequality entails that

f(xn+1)− f(x0) ≤ L

n∑

k=0

εk ≤ LC.

Consequently (xn) ⊂ {x ∈ X | f(x) ≤ f(x0) + LC}. Since f is supposed to
have bounded level sets, one deduces that (xn) is bounded as well.

Take now x as a weak accumulation point of (xn). Note that such a point
exists by the fact that the space is reflexive. Then there exists a strictly
increasing sequence of natural numbers (nk) such that xnk

converges weakly
to x. The weak lower semicontinuity of f yields

f(x) ≤ lim inf
k→∞

f(xnk
).

As above, for every k and every x ∈ X,

f(x̃nk
) + λnk−1ψ(xnk−1, x̃nk

) ≤ f(x) + λnk−1ψ(xnk−1, x),

whence

f(x̃nk
) ≤ f(x)− λnk−1ψ(xnk−1, x̃nk

) + λnk−1ψ(xnk−1, x).

Since
f(xnk

)− f(x̃nk
) ≤ Lεnk−1,

one deduces that

f(xnk
) ≤ Lεnk−1 + f(x)− λnk−1ψ(xnk−1, x̃nk

) + λnk−1ψ(xnk−1, x).

We conclude that

f(xnk
) ≤ f(x) + Lεnk−1 + λnk−1ψ(xnk−1, x).

We pass now to the lim inf when k goes to +∞ and we take into account that
ψ is weakly continuous in the first variable and the sequences (λn) and (εn)
converge towards 0. Then we have:

f(x) ≤ f(x)
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and since x is arbitrary in X, we get the conclusion. ¤

3. Vectorial case

The goal of this section is to introduce and study, by use of a simple but
effective scalarization technique, some proximal point schemes for minimizing
vector-valued maps. Let X be a Hilbert space and Y be a Banach space.
We consider a pointed closed convex proper cone K ⊂ Y which introduces a
partial order on Y by the equivalence y1 ≤K y2 ⇔ y2 − y1 ∈ K.

We denote by D(x, ε) the closed ball with center x and radius ε > 0. In
order to cover the case of functions with real extended values we add to Y
two abstract and distinct elements −∞K , +∞K which do not belong to Y
and we set Y := Y ∪ {−∞K , +∞K}. The ordering and algebraic rules we
need for the new elements are the following ones: −(+∞K) = −∞K ; ∀y ∈
Y ,−∞K ≤K y ≤K +∞K , y + (+∞K) = (+∞K) + y = +∞K ; ∀λ ∈R+ :=
[0,∞), λ · (+∞K) = +∞K .

We need now a topology on the new space Y . We say that a set V ⊂ Y is a
neighborhood of +∞K if there exists θ > 0 s.t. (K \D(0, θ)) ∪ {+∞K} ⊂ V .
Similarly, a set V ⊂ Y is a neighborhood of −∞K if there exists θ > 0 s.t.
(−K \D(0, θ)) ∪ {−∞K} ⊂ V . We denote by τ the norm topology on Y and
we endow the space Y with the following topology:

τ= τ ∪ {D ⊂ Y | D neighborhood for −∞K or +∞K and

D \ {−∞k,+∞K} ∈ τ}.
Every topological notion used on Y will be considered with respect to this
topology. Let us consider a vectorial map f from X into Y ∪ {+∞K} which
is proper, i.e. nonidentical equal +∞K . We set dom f := {x ∈ X | f(x) ∈ Y },
which is nonempty because f is proper.

We address the following minimization problem:

min
x∈X

f(x). (3.1)

The minimizers are considered with respect to the partial order relation in-
troduced in Y by the cone K (see [10]). In this way, we say that x ∈ X is a
Pareto minimizer of (3.1) if f(x) is a minimal point for f(X) with respect to
≤K , i.e. f(x) ∈ Y and (f(X)− f(x))∩−K = {0}. We denote the topological
interior of K by intK and in the case where intK 6= ∅, we say that x is a
weak minimizer of (3.1) if f(x) is a weak minimal point for f(X) with respect
to ≤K , i.e. f(x) ∈ Y and (f(X) − f(x)) ∩ − intK = ∅. It is a well-known
fact that, in the vectorial setting, having intK 6= ∅ is an important advan-
tage, this condition being very important in a theoretical discussion. But this
is quite restrictive because for many important particular Banach spaces, as
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Lp (1 < p < ∞) for example, the natural ordering cones have empty interi-
ors. However, the case of cones with nonempty interior should be considered
because it still corresponds to some infinite dimensional Banach spaces (as
C[0, 1],L∞ for example) and to the finite dimensional spaces as well. For the
results below we need to suppose that K has nonempty interior if it is not
stated otherwise. At the end of our theoretical tour we shall briefly consider
the case where intK = ∅.

In order to adapt the proximal point algorithm we use a well-known scalar-
ization functional (see [6, Section 2.3]). We present this functional in our
specific case and for this let us fix e ∈ intK. We work with the convention
that 0 · (+∞) = +∞.

Theorem 3.1. Define the functional ϕe : Y ∪ {+∞K} → R ∪ {+∞} as

ϕe(y) =
{

inf{λ ∈ R | y ∈ λe−K}, if y ∈ Y
+∞, if y = +∞K .

This map has finite values on Y, is sublinear on Y ∪ {+∞K} (hence convex),
strictly monotone with respect to intK, monotone with respect to K, Lipschitz
on Y and for every λ ∈ R

{y ∈ Y | ϕe(y) ≤ λ} = λe−K, {y ∈ Y | ϕe(y) < λ} = λe− intK.

The next lemma links the minima of the composite function ϕe ◦f with the
minimizers of f.

Lemma 3.2. If x ∈ X is a minimum of ϕe ◦ f then it is a weak minimizer of
f as well.

Proof. Since x is a minimum of ϕe ◦ f and f is nonidentical equal with +∞K

one deduces that (ϕe ◦ f)(x) ∈ R whence f(x) ∈ Y. For every x ∈ X, we have

0 ≤ (ϕe ◦ f)(x)− (ϕe ◦ f)(x),

i.e.
0 ≤ ϕe(f(x))− ϕe(f(x)).

But, since ϕe is sublinear,

ϕe(f(x))− ϕe(f(x)) ≤ ϕe(f(x)− f(x)),

whence
0 ≤ ϕe(f(x)− f(x))

for every x ∈ X. The form of the level sets of ϕe from Theorem 3.1 ensures
that

f(x)− f(x) /∈ − intK

for every x ∈ X, whence the conclusion. ¤
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First, we introduce a counterpart of the IPPA for the vectorial convex case.
Consider the assumptions:

(A1): f is K−convex, i.e. for every x1, x2 ∈ dom f, and every α ∈ (0, 1)

αf(x1) + (1− α)f(x2)− f(αx1 + (1− α)x2) ∈ K;

(A2): f has closed level sets with respect to the linear subspace gener-
ated by e, i.e. the set

{x ∈ X | f(x) ≤K λe}
is closed for every λ ∈ R.

Consider now the proximal point algorithm for ϕe ◦ f : X → R ∪ {+∞}.
Take a bounded sequence of positive real numbers (λn), let (εn) be a sequence

of positive real numbers s.t.
∞∑

n=0

εn < ∞, consider x0 ∈ X arbitrarily, and at

every step take x̃n+1 as

x̃n+1 = argminx∈X

(
(ϕe ◦ f)(x) +

λn

2
‖xn − x‖2

)
(3.2)

= argminx∈X

(
ϕe(f(x) +

λn

2
‖xn − x‖2 e)

)
. (3.3)

Subsequently consider xn+1 ∈ X s.t. ‖xn+1 − x̃n+1‖ < εn. The following result
shows that the properties of ϕe displayed in Theorem 3.1 are good enough to
ensure that the main features of IPPA are preserved by the above algorithm.

Theorem 3.3. Suppose that the assumptions (A1) and (A2) hold. Then the
sequence generated by (3.2) is well-defined. Also, it is bounded if and only
if the function ϕe ◦ f admits a minimum point. In this case, (xn) is weakly
convergent to a weak minimizer of f .

Proof. We show that the scalar function ϕe ◦ f fulfills the conditions in the
IPPA. First we show the convexity: take x1, x2 ∈ X and α ∈ (0, 1). If f(x1)
or f(x2) equals +∞K , there is nothing to prove. Otherwise, by the definition
of ϕe, for every ε > 0 one has

f(x1) ∈ [ϕe(f(x1)) + ε]e−K

and
f(x2) ∈ [ϕe(f(x2)) + ε]e−K,

whence

αf(x1) + (1− α)f(x2) ∈ [α(ϕe ◦ f)(x1) + (1− α)(ϕe ◦ f)(x2) + ε]e−K.
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Therefore, from (A1),

f(αx1 + (1− α)x2) ∈ αf(x1) + (1− α)f(x2)−K

⊂ [α(ϕe ◦ f)(x1) + (1− α)(ϕe ◦ f)(x2) + ε]e−K.

This shows that

ϕe(f(αx1 + (1− α)x2)) ≤ α(ϕe ◦ f)(x1) + (1− α)(ϕe ◦ f)(x2) + ε

and letting ε → 0 we obtain the desired property. Moreover for any λ ∈ R one
has

{x ∈ X | (ϕe ◦ f)(x) ≤ λ} = {x ∈ X | f(x) ≤K λe}
whence, by (A2), the level sets of ϕe ◦ f are closed and then ϕe ◦ f is a convex
lower semicontinuous proper function.

We can apply now the conclusions of the classical IPPA to conclude that
the sequence (xn) generated by (3.2) is bounded if and only if ϕe ◦ f admits a
minimum point. Also, in such a case (xn) is weakly convergent to one of the
minima of ϕe ◦ f , say x. Lemma 3.2 shows that x is a weak minimizer of f,
whence the conclusion. ¤

If we suppose, in addition, that f has bounded level sets with respect to the
linear subspace generated by e, we still have that (xn) generated by (3.2) is
well-defined, bounded and weakly convergent to a weak minimizer of f . This
is true because in such a case the level sets of ϕe ◦ f are bounded and closed,
whence weakly compact, because X is in particular a reflexive Banach space.
Since ϕe ◦ f is a proper convex lower semicontinuous function, it admits a
minimum point and the conclusion follows. Also, the fact that the level sets
with respect to the linear subspace generated by e are bounded is equivalent
with the boundedness of all the level sets of f , as an easy calculus shows.

Let us compare the above result with some existing results in literature.
In [6, Section 4.2] the authors propose a similar scalarization technique to
construct a generalized proximal point algorithm for vector equilibrium prob-
lems. However, they work on finite dimensional spaces and with an exact
version of the algorithm. In [1] the authors proposed an algorithm similar
with our construction. The differences are that the algorithm in [1] is more
flexible in a sense (it allows to choose xn+1 among the weak minimal points
of f(·) + λn

2 ‖xn − ·‖2 en where (en) ⊂ intK) and, in contrast, our algorithm,
which is essentially a scalar one, works under some different assumptions and
requires at every step the calculation of a solution of a scalar problem which is
technically easier to be done than the calculation of a weak minimum point of a
vectorial program. Let us denote by 〈·, ·〉 the canonical duality pairing between
Y and its dual Y ∗ and by K∗ the dual polar cone of K. Then remark that for
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any y ∈ Y, {x ∈ X | f(x) ≤K y} =
⋂

y∗∈K∗
{x ∈ X | (y∗ ◦ f)(x) ≤ 〈y, y∗〉}, hence

if f is supposed (as in [1]) to be positive lower semicontinuous, i.e. y∗ ◦ f is
lower semicontinuous for every y∗ ∈ K∗, then f has closed level sets, whence
(A2) is fulfilled. Moreover, the scalarization technique we use here could suc-
cessfully replace the scalarization functional presented in [7] in order to derive
a steepest descent method for vector optimization problems. Finally, let us
quote here as well the paper [2] where the authors consider some inexact vec-
torial algorithms in some very similar conditions, statements and proofs as in
[1].

The notion of sharp minimum for vector-valued functions have been defined
(see, e.g., [9]) by means of the oriented distance function. We remind that if
y ∈ Y and M ⊂ Y , the oriented distance function is defined as ∆(y,M) :=
d(y, M)−d(y, Y \M). A point x ∈ X is termed sharp minimum for the vector-
valued function f : X → Y ∪ {+∞K} if x ∈ dom f and there exists γ > 0
s.t. for every x ∈ dom f, ∆(f(x) − f(x),−K) ≥ γ ‖x− x‖ . In [4] it is shown
that x is a sharp minimum for f if and only if there exists µ > 0 s.t. for every
x ∈ dom f

ϕe(f(x)− f(x)) ≥ µ ‖x− x‖ . (3.4)

From this characterization one can deduce that x is a sharp minimum for the
vectorial function f if and only if it is a sharp minimum for the scalar function
ϕe(f(·)− f(x)) (note that ϕe(0) = 0). Since, in general,

ϕe(f(x)− f(x)) ≥ (ϕe ◦ f)(x)− (ϕe ◦ f)(x)

one observes that, unfortunately, the above mentioned notion of sharp mini-
mum in the vectorial setting which do not ensures the uniqueness of the min-
imum, is not enough to ensure the finite termination of algorithm (3.2). For
this reason we introduce here a stronger notion in order to fulfill the desired
task. One says that x is a strong sharp minimum for f if is sharp minimum
for the scalar function ϕe ◦f . In other words, one says that x is a strong sharp
minimum for f if there exists µ > 0 s.t. for every x ∈ dom f

(ϕe ◦ f)(x)− (ϕe ◦ f)(x) ≥ µ ‖x− x‖ . (3.5)

In particular, the relation (3.5) ensures the uniqueness of the strong sharp
minimum. Observe that both sharp and strong sharp concepts cover the notion
of sharp minimum in the scalar case, because if X = R, K = R+ and e = 1,
then ϕe(y) = y for any y ∈ R. Consequently, one has the following result.

Theorem 3.4. Suppose that f admits a strong sharp minimum. Then, un-
der assumptions (A1) and (A2), the recursion (3.2) reaches the strong sharp
minimum after a finite number of iterates.
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Proof. As in the previous theorem, the function ϕe ◦ f is convex and since
it admits a sharp minimum, one can apply the mentioned fact about finite
termination of PPA in the scalar case. ¤

We end the convex case with a brief discussion on the practical possibility
to apply the vectorial algorithm (3.2) introduced by means of the functional
ϕe. In our opinion, this algorithm is a very natural one because, if compares
with the classical scalar case, it supposes, in addition, to solve at every step
a rather easy (in view of the properties of ϕe) scalar problem. For example,
observe that if Y = Rq (q ∈ N, q ≥ 1), the natural choice for the cone K is the
usual ordering convex cone Rq

+ := {(x1, x2, ..., xq) ∈ Rq | xi ≥ 0, ∀i ∈ 1, q} and
in this case, for e = (1, 1, ..., 1), one has:

ϕe(y) = max(y1, y2, ..., yq).

Then the vectorial algorithm has the same computational properties as the
scalar algorithm. Moreover for q = 1 one gets exactly the scalar algorithm.

Now we point out how the same technique of scalarization can be used to
adapt to the vectorial case the scalar algorithm in Subsection 2.2. Let X be
a reflexive Banach space and f : X → Y be a vectorial Lipschitz function.
To adapt the previous result concerning nonconvex case, we need another
assumption, namely:

(A2’): f has bounded and weakly closed level sets with respect to the
linear subspace generated by e (i.e. the set

{x ∈ X | f(x) ≤K λe}
is closed bounded and weakly closed for every λ ∈ R).

In the convex case, (A2′) is equivalent with the fact that f has bounded and
closed level sets, hence admits a minimum point. Suppose that f satisfies (A2′)
and let ψ : X×X → R+ be as in Subsection 2.2. Consider a bounded sequence
(λn) of positive real numbers, a sequence (εn) of positive real numbers such

that,
∞∑

n=0

εn < ∞, an element x0 ∈ X and e ∈ intK; denote:

An := argminx∈X ((ϕe ◦ f)(x) + λnψ(xn, x))
and take xn+1 ∈ X s.t. d(xn+1, An) < εn.

Proposition 3.5. Suppose, in the above assumptions, that λn → 0. Then the
sequence (xn) generated as above is bounded and every accumulation point of
it is a weak minimizer of f.

Proof. Under our assumptions the function ϕe ◦ f is Lipschitz (take into ac-
count that ϕe is Lipschitz too) and has weakly compact level sets. We can
apply Proposition 2.2 and Lemma 3.2 to get the conclusion. ¤
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We end our discussion by coming back to the infinite dimensional setting
and assuming that intK = ∅. Then we cannot speak anymore about weak
minima, but only about Pareto minima. In this case we make use of another
scalarizing functional, namely the function d̃−K : Y ∪ {+∞K} → R ∪ {+∞}
given by:

d̃−K(y) :=
{

d(y,−K), if y ∈ Y
+∞, if y = +∞K .

It is easy to see that this function is sublinear and Lipschitz on Y. Let f :
X → Y ∪ {+∞K} that satisfies (A1). We have that the composite function
d̃−K ◦ f : X → R ∪ {+∞} is convex and we consider now the IPPA for it:
take a bounded sequence of positive real numbers (λn), let (εn) be a sequence

of positive real numbers s.t.
∞∑

n=0

εn < ∞, consider x0 ∈ X arbitrarily, and at

every step take x̃n+1 as

x̃n+1 = argminx∈X

(
(d̃−K ◦ f)(x) +

λn

2
‖xn − x‖2

)
. (3.6)

Subsequently consider xn+1 ∈ X s.t. ‖xn+1 − x̃n+1‖ < εn. We have the fol-
lowing result.

Theorem 3.6. Suppose that f satisfies (A1) and d̃−K ◦f is lower semicontin-
uous and has a unique minimum point. Then the sequence generated by (3.6)
is well-defined, bounded and weakly convergent to a Pareto minimizer of f .

Proof. We will prove that the function d̃−K ◦ f is convex. For this, take
y1, y2 ∈ Y s.t. y1 ≤K y2; this shows that y2 − y1 + K ⊂ K and consequently:

d̃−K(y1) = inf
k∈K

‖y1 + k‖ ≤ inf
k∈y2−y1+K

‖y1 + k‖

= inf
k′∈K

∥∥y1 + y2 − y1 + k′
∥∥ = d̃−K(y2),

hence d̃−K is increasing on Y with respect to K. Take now x1, x2 ∈ X and
α ∈ (0, 1); if f(x1) or f(x2) is +∞K , there is nothing to prove. Suppose then
that x1, x2 ∈ dom f ; because of (A1), we have that

f(αx1 + (1− α)x2) ≤K αf(x1) + (1− α)f(x2),

hence f(αx1 + (1 − α)x2) ∈ Y. Using the fact that d̃−K is increasing on Y

with respect to K and the sublinearity of d̃−K on Y , we have the convexity of
d̃−K ◦ f .

Whence, the scalar function d̃−K ◦ f fulfills the conditions in the IPPA, i.e.
is convex, lower semicontinuous and admits a minimum. Then (xn) is well-
defined, bounded and weakly convergent to the unique minimum point (say,
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x) of d̃−K ◦ f. We show that x is a Pareto minimizer of f . Indeed, taking into
account the subaditivity of d̃−K one has that for every x ∈ X \ {x}

0 < (d̃−K ◦ f)(x)− (d̃−K ◦ f)(x) ≤ d̃−K(f(x)− f(x))

which yields that f(x) − f(x) /∈ −K for every x ∈ X \ {x}, whence the
conclusion. ¤
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