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Abstract. Three common stationary point theorems for some multi-valued F -contractions

with δ-distance in bounded complete metric spaces are proved. The results obtained in this

paper are extended or are different from several results in the literature. Three nontrivial

examples are given.

1. Introduction and preliminaries

It is well known that one of the fundamental results in fixed point theory is
the Banach fixed point theorem. Because of its importance in mathematical
theory, this result has been extended and generalized in many directions for
single-valued and multi-valued cases. Fixed point theorems for multi-valued
contractive mappings were studied by using both Hausdorff metric H ([10, 16,
17]) and δ-distance ([6, 12-14, 21]).
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In 1969, Nadler [17] introduced the multi-valued contraction mapping by
using the Huasdorff metric and proved the following result.

Theorem 1.1. ([17]) Let (X, d) be a complete metric space, CB(X) be the
family of all nonempty closed and bounded subsets of X, and S : X → CB(X)
be a mapping satisfying

H(Sx, Sy) ≤ rd(x, y), ∀x, y ∈ X, (1.1)

where r ∈ [0, 1) is a constant. Then S has a fixed point.

Making use of δ-distance, Fisher [6] obtained the following common fixed
point theorem for a pair of multi-valued contractive mappings.

Theorem 1.2. ([6]) Let (X, d) be a bounded complete metric space, B(X) be
the family of all nonempty bounded subsets of X, and S, T : X → B(X) be
commuting mappings satisfying for all x, y ∈ X,

δ(Sx, Ty) ≤ rmax{δ(x, Sx), δ(y, Ty), δ(x, Ty), δ(y, Sx), d(x, y)}, (1.2)

where r ∈ [0, 1) is a constant. Then S and T have a common fixed point.

Let F be the set of all functions F : (0,+∞) → (−∞,+∞) satisfying the
following conditions:

(F1) F is strictly increasing;
(F2) For each sequence {αn}n≥1 of positive numbers, limn→∞ αn = 0 if and

only if limn→∞ F (αn) = −∞;
(F3) There exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

Definition 1.3. ([20]) Let (X, d) be a metric space. A mapping f : X → X
is called F -contraction if there exist τ > 0 and F ∈ F such that

τ + F (d(fx, fy)) ≤ F (d(x, y)), ∀x, y ∈ X with d(fx, fy) > 0.

One of the most interesting generalizations of the Banach fixed point theo-
rem was given by Wardowski [20] in 2012. He proved a new fixed point theorem
for F -contraction. Afterwards, a few researchers [1–4, 11,15,18–20] introduced
new F -contractions for single-valued and multi-valued mappings and proved
the existence of fixed points for these F -contractions. In particular, Acar and
Altun [3] and Acar et al. [4] proved the following fixed point theorems.

Theorem 1.4. ([3]) Let (X, d) be a complete metric space and S : X → B(X)
be a multi-valued mapping. Assume that F ∈ F , F is continuous and Sx is
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closed for all x ∈ X and there exists τ > 0 satisfying

τ + F (δ(Sx, Sy)) ≤ F (M(x, y)),

∀x, y ∈ X with min{δ(Sx, Sy), d(x, y)} > 0,
(1.3)

where

M(x, y) = max

{
d(x, y), d(x, Sx), d(y, Sy),

1

2
[d(x, Sy) + d(y, Sx)]

}
. (1.4)

Then S has a fixed point.

Theorem 1.5. ([4]) Let (X, d) be a complete metric space, K(X) be the family
of all nonempty compact subsets of X, and S : X → K(X) be a multi-valued
mapping. Assume that F ∈ F , F or S is continuous and there exists τ > 0
satisfying

τ + F (H(Sx, Sy)) ≤ F (M(x, y)), ∀x, y ∈ X with H(Sx, Sy) > 0, (1.5)

where M(x, y) is defined by (1.4). Then S has a fixed point.

Motivated and inspired by the results in [1–21], in this paper we introduce
a few multi-valued F -contractions (2.1), (2.13) and (2.14) with δ-distance and
establish the existence and uniqueness of common stationary point for these
multi-valued F -contractions. Three examples are included to illustrate that
the results obtained are extended or are different from results in [3, 4, 6, 12, 17].

Throughout this paper, let N and R denote the set of all positive integers
and all real numbers, respectively, N0 = N ∪ {0} and R+ = [0,+∞). Let
(X, d) be a metric space. It is clear that ∅ 6= K(X) ⊆ CB(X) ⊆ B(X). The
Hausdorff metric H : CB(X)× CB(X)→ [0,+∞) is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
, ∀A,B ⊆ CB(X),

where d(x,B) = inf{d(x, y) : y ∈ B}. For A,B ⊆ X, define

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} and δ(A,A) = δ(A).

If A is singleton {a}, we write δ(A,B) = δ(a,B). Let S, T : X → B(X) and
f : X → X. A point x ∈ X is called a stationary point of S if Sx = {x}. Note
that every stationary point of S is a fixed point of S, but not conversely. A
point x ∈ X is called a common stationary point of S and T if Sx = Tx = {x}.
S and T are said to be commuting if STx = TSx for all x ∈ X. S and f are
said to be commuting if Sfx = fSx for all x ∈ X. Define

Cf = {g : g : X → X satisfies that g and f are commuting}
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and

CS = {G : G : X → B(X) satisfies that G and S are commuting}.

It is clear that CS ⊇ {Sn : n ∈ N0} and Cf ⊇ {fn : n ∈ N0}, where S0 = f0 =
iX and iX denotes the identity mapping in X.

Let F : (0,+∞) → R and η : (0,+∞) → (0,+∞) be two mappings, Λ be
the set of all pairs (F, η) satisfying the following:

(λ1) F is upper semicontinuous and strictly increasing;
(λ2) limn→∞ tn = 0 for each positive sequence {tn}n∈N with limn→∞ F (tn) =

−∞;
(λ3) η is lower semicontinuous nonincreasing and η(tn) 9 0 for each strictly

decreasing sequence {tn}n∈N.

Definition 1.6. ([7]) Let {An}n∈N be a sequence of sets in B(X) and A ∈
B(X). The sequence {An}n∈N is said to converge to the set A if

(1) each point a ∈ A is the limit of some convergent sequence {an}n∈N,
where an ∈ An for n ∈ N;

(2) for arbitrary ε > 0, there exists k ∈ N such that An ⊆ Aε for n > k,
where Aε is the union of all open spheres with centers in A and radius
ε.

Lemma 1.7. ([5]) If {An}n∈N and {Bn}n∈N are sequences of bounded subsets
of a complete metric space (X, d) which converge to the bounded subsets A and
B, respectively, then the sequence {δ(An, Bn)}n∈N converges to δ(A,B).

2. Main results

In this section, we prove stationary point theorems for the multi-valued
F -contractions (2.1), (2.13) and (2.14) below with δ-distance.

Theorem 2.1. Let (X, d) be a bounded complete metric space and S, T : X →
B(X) be continuous and commuting mappings satisfying

F (δ(SpT qx, SiT jy)) ≤ F (δ(∪D∈CST
D{x, y}))−η(δ(∪D∈CST

D{x, y})),
∀x, y ∈ X with δ(SpT qx, SiT jy) > 0,

(2.1)

where (F, η) ∈ Λ and p, q, i, j ∈ N0 with p, j ∈ N or q, i ∈ N. Then

(i) S and T have a unique common stationary point z ∈ X;
(ii) The sequence {SnTnx}n∈N converges to {z} for all x ∈ X.

Proof. Let k = max{p, q}+ max{i, j}, Xn = SnTnX and δn = δ(Xn) for each
n ∈ N0. Clearly,
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Xn+1 ⊆ Xn and δn+1 ≤ δn, ∀n ∈ N0 (2.2)

and

DXn = DSnTnX = SnTnDX ⊆ SnTnX = Xn, ∀(n,D) ∈ N0 × CST . (2.3)

Let A, B ⊆ X. It follows from (2.1) and (F, η) ∈ Λ that for all (a, b) ∈
A×B with δ(SpT qa, SiT jb) > 0

F (δ(SpT qa, SiT jb))

≤ F (δ(∪D∈CST
D{a, b}))− η(δ(∪D∈CST

D{a, b}))
≤ F (δ(∪D∈CST

(DA ∪DB)))− η(δ(∪D∈CST
(DA ∪DB))),

which yields that

F (δ(SpT qA,SiT jB))

≤ F (δ(∪D∈CST
(DA ∪DB)))− η(δ(∪D∈CST

(DA ∪DB)))
(2.4)

for all A,B ⊆ X with δ(SpT qA,SiT jB) > 0.
Assume that there exists n0 ∈ N such that δn0 = 0. It follows that

Sn0Tn0X = {z} for some z ∈ X. (2.3) means that Tz = Sz = {z}. That is,
z ∈ X is common stationary point of S and T . Assume that δn > 0 for all
n ∈ N0. In light of (2.1)-(2.4) and (F, η) ∈ Λ, we deduce that

F (δk) = F (δ(SpT qSk−pT k−qX,SiT jSk−iT k−jX))

≤ F (δ(∪D∈CST
D(Sk−pT k−qX ∪ Sk−iT k−jX)))

− η(δ(∪D∈CST
D(Sk−pT k−qX ∪ Sk−iT k−jX)))

≤ F (δ(X))− η(δ(X))

= F (δ0)− η(δ0)

and
F (δ2k) = F (δ(SpT qSk−pT k−qXk, S

iT jSk−iT k−jXk))

≤ F (δ(∪D∈CST
D(Sk−pT k−qXk ∪ Sk−iT k−jXk)))

− η(δ(∪D∈CST
D(Sk−pT k−qXk ∪ Sk−iT k−jXk)))

≤ F (δk)− η(δk).

Repeating this process, we conclude that

F (δkn) = F (δ(SpT qSk−pT k−qXk(n−1), S
iT jSk−iT k−jXk(n−1)))

≤ F (δ(∪D∈CST
D(Sk−pT k−qXk(n−1) ∪ Sk−iT k−jXk(n−1))))

− η(δ(∪D∈CST
D(Sk−pT k−qXk(n−1) ∪ Sk−iT k−jXk(n−1))))

≤ F (δk(n−1))− η(δk(n−1)), ∀n ∈ N.

(2.5)
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By virtue of (2.5), we get that

η(δk(n−1)) ≤ F (δk(n−1))− F (δkn), ∀n ∈ N. (2.6)

In terms of η(δk(n−1)) > 0 for each n ∈ N, we have F (δk(n−1)) > F (δkn).
It follows from (λ1) that {δkn}n∈N0 is a strictly decreasing positive sequence,
which implies that there exists a constant c ≥ 0 with limn→∞ δkn = c.

Next, we show that c = 0. By means of (2.6), we conclude immediately
that

F (δkn) ≤ F (δk(n−1))− η(δk(n−1))

≤ F (δk(n−2))− η(δk(n−2))− η(δk(n−1))

≤ · · ·
≤ F (δ0)− η(δ0)− · · · − η(δk(n−2))− η(δk(n−1)),

that is,

Σn−1
i=0 η(δki) ≤ F (δ0)− F (δkn), ∀n ∈ N. (2.7)

Note that {δkn}n∈N0 is strictly decreasing. Making use of (λ3), we arrive at
η(δkn) 9 0, which gives that Σ∞i=0η(δki) = +∞. It follows from (2.7) that
limn→∞ F (δkn) = −∞. In light of (λ2), we have limn→∞ δkn = 0, which
together with (2.2) yields that

lim
n→∞

δn = lim
n→∞

δkn = 0. (2.8)

Choose xn ∈ Xn for each n ∈ N. In view of (2.2), we infer that

d(xn, xm) ≤ δ(Xn, Xm) ≤ δn, ∀m,n ∈ N with m > n.

Consequently, {xn}n∈N is a Cauchy sequence by (2.8). Since X is complete, it
follows that there exists a point z in X such that limn→∞ xn = z. From (2.2),
we have

δ(z,Xn) ≤ d(z, xm) + δ(xm, Xn)

≤ d(z, xm) + δ(Xm, Xn)

≤ d(z, xm) + δn, ∀m,n ∈ N with m > n.

(2.9)

Letting m tend to infinity in (2.9), we obtain that

δ(z,Xn) ≤ δn, ∀n ∈ N. (2.10)

Since S and T are continuous and limn→∞ xn = z, it follows that {Sxn}n∈N
and {Txn}n∈N converge to {Sz} and {Tz}, respectively. Note that

Sxn ⊆ SSnTnX = SnTnSX ⊆ Xn, ∀n ∈ N,
Txn ⊆ TSnTnX = SnTnTX ⊆ Xn, ∀n ∈ N.

(2.11)

In view of (2.8), (2.10) and (2.11), we deduce that

max{δ(z, Sxn), δ(z, Txn)} ≤ δ(z,Xn) ≤ δn → 0 as n→∞,
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which together with Lemma 1.7 yields that

max{δ(z, Sz), δ(z, Tz)} = 0.

That is, Sz = Tz = {z}.
Suppose that S and T have a second common stationary point ω ∈ X−{z}.

Obviously, {u} = SnTnu ⊆ Xn for each u ∈ {z, ω} and n ∈ N. In view of
(2.8), we infer that

d(z, ω) ≤ δn → 0 as n→∞,

which means that z = ω. Hence S and T have a unique common stationary
point z.

Choose yn ∈ SnTnx for each (x, n) ∈ X × N. By means of (2.10), we have

d(yn, z) ≤ δ(SnTnx, z) ≤ δ(Xn, z) ≤ δn. (2.12)

It follows from (2.8), (2.12) and Definition 1.6 that {SnTnx}n∈N converges to
{z}. This completes the proof. �

As in the arguments of Theorem 2.1, we conclude similarly the following
result and omit its proof.

Theorem 2.2. Let (X, d) be a bounded complete metric space, (F, η) ∈ Λ,
S : X → B(X) be a continuous mapping satisfying

F (δ(Spx, Siy)) ≤ F (δ(∪D∈CS
D{x, y}))− η(δ(∪D∈CS

D{x, y})),
∀x, y ∈ X with δ(Spx, Siy) > 0,

(2.13)

where p, i ∈ N. Then

(i) S has a unique stationary point z ∈ X;
(ii) The sequence {Snx}n∈N converges to {z} for all x ∈ X.

Now we give a common fixed point theorem for two pairs of single-valued
and multi-valued F -contractions.

Theorem 2.3. Let (X, d) be a bounded complete metric space, S, T : X →
B(X) be commuting and f, g : X → X be continuous, f, g ∈ CS ∩ CT and

F (δ(Spx, T qy))

≤ F (max{δ(fx, Spx), δ(gy, T qy), δ(fx, T qy), δ(gy, Spx), d(fx, gy)})
− η(max{δ(fx, Spx), δ(gy, T qy), δ(fx, T qy), δ(gy, Spx), d(fx, gy)}),
∀x, y ∈ X with δ(Spx, T qy) > 0,

(2.14)
where p, q ∈ N and (F, η) ∈ Λ. Then

(i) The sequence {SnTnx}n∈N converges to {z} for all x ∈ X;
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(ii) f , g, Sp and T q have a unique common fixed point z ∈ X with Spz =
T qz = {z}, which is also a unique common fixed point of CS ∩ CT ∩
Cf ∩ Cg.

Proof. Let k = p+ q, Xn = SnTnX and δn = δ(Xn) for each n ∈ N0. Clearly,
(2.2) holds and

hXn = hSnTnX = SnTnhX ⊆ SnTnX = Xn,

∀(n, h) ∈ N0 × (CS ∩ CT ).
(2.15)

As in the proof of Theorem 2.1, we infer that by (2.14) and (F, η) ∈ Λ

F (δ(SpA, T qB))

≤ F (max{δ(fA, SpA), δ(gB, T qB), δ(fA, T qB),

δ(gB, SpA), d(fA, gB)})
− η(max{δ(fA, SpA), δ(gB, T qB), δ(fA, T qB),

δ(gB, SpA), d(fA, gB)}),
∀A,B ⊆ X with δ(SpA, T qB) > 0.

(2.16)

Assume that there exists n0 ∈ N such that δn0 = 0. It follows that

Sn0Tn0X = {z}

for some z ∈ X and

hz = hSn0Tn0X = Sn0Tn0hX ⊆ Sn0Tn0X = {z},

for all h ∈ {f, g, Sp, T q}. That is, z ∈ X is a common fixed point of f , g, Sp

and T q. Assume that δn > 0 for all n ∈ N0. In light of (2.2), (2.14)-(2.16) and
(F, η) ∈ Λ, we deduce that

F (δk) = F (δ(SpSqT kX,T qSkT pX))

≤ F (max{δ(fSqT kX,SpSqT kX), δ(gSkT pX,T qSkT pX),

δ(fSqT kX,T qSkT pX), δ(gSkT pX,SpSqT kX),

δ(fSqT kX, gSkT pX)})

− η(max{δ(fSqT kX,SpSqT kX), δ(gSkT pX,T qSkT pX),

δ(fSqT kX,T qSkT pX), δ(gSkT pX,SpSqT kX),

δ(fSqT kX, gSkT pX)})
≤ F (δ(X))− η(δ(X))

= F (δ0)− η(δ0)
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and

F (δ2k) = F (δ(SpSqT kXk, T
qSkT pXk))

≤ F (max{δ(fSqT kXk, S
pSqT kXk), δ(gS

kT pXk, T
qSkT pXk),

δ(fSqT kXk, T
qSkT pXk), δ(gS

kT pXk, S
pSqT kXk),

δ(fSqT kXk, gS
kT pXk)})

− η(max{δ(fSqT kXk, S
pSqT kXk), δ(gS

kT pXk, T
qSkT pXk),

δ(fSqT kXk, T
qSkT pXk), δ(gS

kT pXk, S
pSqT kXk),

δ(fSqT kXk, gS
kT pXk)})

≤ F (δk)− η(δk).

Repeating this process, we obtain that

F (δkn)

= F (δ(SpSqT kXk(n−1), T
qSkT pXk(n−1)))

≤ F (max{δ(fSqT kXk(n−1), S
pSqT kXk(n−1)),

δ(gSkT pXk(n−1), T
qSkT pXk(n−1)), δ(fS

qT kXk(n−1), T
qSkT pXk(n−1)),

δ(gSkT pXk(n−1), S
pSqT kXk(n−1)), δ(fS

qT kXk(n−1), gS
kT pXk(n−1))})

− η(max{δ(fSqT kXk(n−1), S
pSqT kXk(n−1)),

δ(gSkT pXk(n−1), T
qSkT pXk(n−1)), δ(fS

qT kXk(n−1), T
qSkT pXk(n−1)),

δ(gSkT pXk(n−1), S
pSqT kXk(n−1)), δ(fS

qT kXk(n−1), gS
kT pXk(n−1))})

≤ F (δk(n−1))− η(δk(n−1)), ∀n ∈ N.
(2.17)

It follows from (2.17) that

η(δk(n−1)) ≤ F (δk(n−1))− F (δkn), ∀n ∈ N.

Proceeding as in the proof of Theorem 2.1, we obtain that (2.8) holds and
{xn}n∈N is a Cauchy sequence. Since X is complete, it is clear that there
exists a point z in X such that limn→∞ xn = z. For each n ∈ N, choose a
point xn ∈ Xn. It follows that

fxn ∈ fSnTnX = SnTnfX ⊆ SnTnX, ∀n ∈ N. (2.18)

Similarly, gxn ∈ SnTnX for each n ∈ N. The continuity of f and g ensures
that fxn → fz and gxn → gz as n → ∞. Consequently, by means of (2.18),
we have

0 ≤ d(fz, gz) ≤ d(fz, fxn) + d(fxn, gxn) + d(gxn, gz)

≤ d(fz, fxn) + δn + d(gxn, gz), ∀n ∈ N.
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Letting n tend to infinity and using (2.8), we obtain that d(fz, gz) = 0, that
is, fz = gz.

We next show that z is a common fixed point of f , g, Sp and T q. It follows
from (2.18) that

0 ≤ d(z, fz) ≤ d(z, xn) + d(xn, fxn) + d(fxn, fz)

≤ d(z, xn) + δn + d(fxn, fz), ∀n ∈ N.

As n→∞ we conclude that d(z, fz) = 0, that is, z = fz = gz.
We now assert that δ(z, T qz) = 0. Otherwise δ(z, T qz) > 0. By virtue of

(2.2) and (2.18), we get that

δ(z, T qz) ≤ d(z, gxm) + δ(gxm, T
qz)

≤ d(z, gxm) + δ(SmTmX,T qz)

≤ d(z, gxm) + δ(SnTnX,T qz), ∀m,n ∈ N with m > n.

Letting m tend to infinity, we obtain that

δ(z, T qz) ≤ δ(SnTnX,T qz), ∀n ∈ N. (2.19)

It follows from (2.14)-(2.16), (2.19), (F, η) ∈ Λ and gz = z that

δ(fSn−pTnX,T qz) ≤ δ(Sn−pTn−pfT pX, gxn−p) + d(gxn−p, z) + δ(z, T qz)

≤ δn−p + d(gxn−p, z) + δ(z, T qz),

δ(gz, SpSn−pTnX) ≤ d(gz, gxn) + δ(gxn, S
nTnX) ≤ d(z, gxn) + δn,

δ(fSn−pTnX, gz) ≤ δ(Sn−pTn−pfT pX, gxn−p) + d(gxn−p, gz)

≤ δn−p + d(gxn−p, z)

and ∀n > p

F (δ(z, T qz))

≤ F (δ(SnTnX,T qz)) = F (δ(SpSn−pTnX,T qz))

≤ F (max{δ(fSn−pTnX,SpSn−pTnX), δ(gz, T qz),

δ(fSn−pTnX,T qz), δ(gz, SpSn−pTnX), δ(fSn−pTnX, gz)})
− η(max{δ(fSn−pTnX,SpSn−pTnX), δ(gz, T qz),

δ(fSn−pTnX,T qz), δ(gz, SpSn−pTnX), δ(fSn−pTnX, gz)})
≤ F (max{δn−p, δ(z, T qz), δn−p + d(gxn−p, z) + δ(z, T qz),

d(z, gxn) + δn, δn−p + d(gxn−p, z)})
− η(max{δn−p, δ(z, T qz), δn−p + d(gxn−p, z) + δ(z, T qz),

d(z, gxn) + δn, δn−p + d(gxn−p, z)})
= F (max{δn−p + d(gxn−p, z) + δ(z, T qz), d(z, gxn) + δn})
− η(max{δn−p + d(gxn−p, z) + δ(z, T qz), d(z, gxn) + δn}).

(2.20)
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Letting n tend to infinity in (2.20) and using (2.8) and (F, η) ∈ Λ, we get that

F (δ(z, T qz)) ≤ F (δ(z, T qz))− η(δ(z, T qz))

< F (δ(z, T qz)),

which is a contradiction. Hence δ(z, T qz) = 0. Consequently, T qz = {z}.
Similarly, Spz = {z}. That is, Spz = T qz = {z}.

For each (n, x) ∈ N×X, choose yn ∈ SnTnx. It is clear that

d(yn, z) ≤ δ(SnTnx, z) ≤ δ(Xn, z) ≤ δn, ∀(n, x) ∈ N×X.

Letting n tend to infinity and using (2.8) and Definition 1.6, we conclude that
{SnTnx}n∈N converges to {z}.

We next show that z is the unique common fixed point of f , g, Sp and T q

with

Spz = T qz = {fz} = {gz} = {z}. (2.21)

Suppose that f , g, Sp and T q have a second common fixed point ω ∈ X−{z}.
If δ(Spω, T qω) > 0, it follows from (2.14), (2.15) and (F, η) ∈ Λ that

F (δ(Spω, T qω))

≤ F (max{δ(fω, Spω), δ(gω, T qω), δ(fω, T qω), δ(gω, Spω), d(fω, gω)})
− η(max{δ(fω, Spω), δ(gω, T qω), δ(fω, T qω), δ(gω, Spω), d(fω, gω)})
≤ F (δ(T qω, Spω))− η(δ(T qω, Spω))

< F (δ(Spω, T qω)),

which is a contradiction. Therefore δ(Spω, T qω) = 0. Note that ω ∈ Spω∩T qω.
Consequently, Spω = T qω = {ω}. Using (2.14), (2.15) and (F, η) ∈ Λ again,
we get that

F (δ(z, ω))

= F (δ(Spz, T qω))

≤ F (max{δ(fz, Spz), δ(gω, T qω), δ(fz, T qω), δ(gω, Spz), δ(fz, gω))})
− η(max{δ(fz, Spz), δ(gω, T qω), δ(fz, T qω), δ(gω, Spz), δ(fz, gω))})

= F (δ(z, ω))− η(δ(z, ω))

< F (δ(z, ω)),

which is impossible. Therefore z is the unique common fixed point of f , g, Sp

and T q with (2.21).
Finally we prove that z is also a unique common fixed point of CS ∩ CT ∩

Cf ∩ Cg. For each h ∈ CS ∩ CT ∩ Cf ∩ Cg, we infer that by (2.21)

Sphz = hSpz = {hz} = hT qz = T qhz = h{fz} = {fhz} = h{gz} = {ghz},
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which means that hz is a common fixed point of f , g, Sp and T q. Thus the
uniqueness of the common fixed point of f , g, Sp and T q yields that hz = z.
This completes the proof. �

3. Examples

In this section, we give three examples to show that Theorem 2.1 is different
from Theorems 1.1, 1.4 and 1.5 in the first section and Theorem 2.3 extends
indeed Theorem 1.2.

Remark 3.1. The following example manifests that Theorem 2.1 differs from
Theorems 1.1 and 1.4 in the first section.

Example 3.2. Let X = [0, 1] ∪ {2} be endowed with the Euclidean metric
d = | · |. Define S, T : X → K(X), F : (0,+∞) → R and η : (0,+∞) →
(0,+∞) by

Sx =

{[
0, x2

]
, ∀x ∈ [0, 1],

{1}, x = 2,
Tx = {x}, ∀x ∈ X,

F (t) = ln t+ t and η(t) = 1, ∀t ∈ (0,+∞).

Take p = j = 2, q = i = 3. Obviously, (X, d) is a bounded complete metric
space, S and T are continuous and commuting, (F, η) ∈ Λ and

S2x = ∪y∈SxSy = ∪y∈[0,x
2
]

[
0,
y

2

]
=

[
0,
x

4

]
, S3x =

[
0,
x

8

]
, ∀x ∈ [0, 1],

S22 = S1 =

[
0,

1

2

]
, S32 =

[
0,

1

4

]
.

Put x, y ∈ X. In order to verify (2.1), we need to consider four possible cases
as follows:

Case 1. (x, y) ∈ [0, 1]× [0, 1]− (0, 0). It follows that

F (δ(S2T 3x, S3T 2y))

= F

(
δ

([
0,
x

4

]
,

[
0,
y

8

]))
= F

(
max

{
x

4
,
y

8

})
= ln

(
max

{
x

4
,
y

8

})
+ max

{
x

4
,
y

8

}
≤ ln(max{x, y}) + max{x, y} − 1

= ln

(
δ

([
0,
x

4

]
∪
[
0,
y

4

]
∪ {x, y}

))
+ δ

([
0,
x

4

]
∪
[
0,
y

4

]
∪ {x, y}

)
− 1

≤ ln(δ(∪D∈CST
D{x, y})) + δ(∪D∈CST

D{x, y})− 1

= F (δ(∪D∈CST
D{x, y}))− η(δ(∪D∈CST

D{x, y}));
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Case 2. x = y = 2. It is clear that

F (δ(S2T 3x, S3T 2y))

= F

(
δ

([
0,

1

2

]
,

[
0,

1

4

]))
= F

(
1

2

)
= ln

1

2
+

1

2
≤ ln 2 + 2− 1

= ln

(
δ

([
0,

1

2

]
∪ {2}

))
+ δ

([
0,

1

2

]
∪ {2}

)
− 1

≤ ln(δ(∪D∈CST
D{x, y})) + δ(∪D∈CST

D{x, y})− 1

= F (δ(∪D∈CST
D{x, y}))− η(δ(∪D∈CST

D{x, y}));

Case 3. (x, y) ∈ [0, 1]× {2}. It is easy to see that

F (δ(S2T 3x, S3T 2y))

= F

(
δ

([
0,
x

4

]
,

[
0,

1

4

]))
= F

(
1

4

)
= ln

1

4
+

1

4
≤ ln 2 + 2− 1

= ln

(
δ

([
0,
x

4

]
∪
[
0,

1

2

]
∪ {x, 2}

))
+ δ

([
0,
x

4

]
∪
[
0,

1

2

]
∪ {x, 2}

)
− 1

≤ ln(δ(∪D∈CST
D{x, y})) + δ(∪D∈CST

D{x, y})− 1

= F (δ(∪D∈CST
D{x, y}))− η(δ(∪D∈CST

D{x, y}));

Case 4. (x, y) ∈ {2} × [0, 1]. It is easy to verify that

F (δ(S2T 3x, S3T 2y))

= F

(
δ

([
0,

1

2

]
,

[
0,
y

8

]))
= F

(
1

2

)
= ln

1

2
+

1

2
≤ ln 2 + 2− 1

= ln

(
δ

([
0,

1

2

]
∪
[
0,
y

4

]
∪ {2, y}

))
+ δ

([
0,

1

2

]
∪
[
0,
y

4

]
∪ {2, y}

)
− 1

≤ ln(δ(∪D∈CST
D{x, y})) + δ(∪D∈CST

D{x, y})− 1

= F (δ(∪D∈CST
D{x, y}))− η(δ(∪D∈CST

D{x, y})).

Hence, (2.1) holds. That is, the conditions of Theorem 2.1 are satisfied. It
follows from Theorem 2.1 that S and T have a unique common stationary
point 0 ∈ X and the sequence {SnTnx}n∈N converges to {0} for all x ∈ X.

However, we don’t invoke Theorems 1.1 and 1.4 in the first section to show
the existence of fixed points of S in X. Suppose that S satisfies the conditions
of Theorem 1.1. That is, there exists r ∈ [0, 1) satisfying (1.1). By virtue of
(1.1), we deduce that

1 = H

([
0,

1

2

]
, {1}

)
= H(S1, S2) ≤ rd(1, 2) = r < 1,

which is a contradiction.
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Suppose that S satisfies the conditions of Theorem 1.4. It follows that there
exists τ > 0 satisfying (1.3) and (1.4). In view of (1.3) and (1.4), we infer that

M(1, 2) = max

{
d(1, 2), d(1, S1), d(2, S2),

1

2
[d(1, S2) + d(2, S1)]

}
= max

{
d(1, 2), d

(
1,

[
0,

1

2

])
, d(2, 1),

1

2

[
d(1, 1) + d

(
2,

[
0,

1

2

])]}
= max

{
1,

1

2
, 1,

1

2

(
0 +

3

2

)}
= 1

and

τ + F (1) = τ + F

(
δ

([
0,

1

2

]
, {1}

))
= τ + F (δ(S1, S2))

≤ F (M(1, 2)) = F (1),

which is impossible.

Remark 3.3. The below example demonstrates that Theorem 2.1 is different
from Theorem 1.5 in the first section.

Example 3.4. Let X = [1, 52 ] be endowed with the Euclidean metric d = | · |.
Define S, T : X → K(X), F : (0,+∞)→ R and η : (0,+∞)→ (0,+∞) by

Sx =

{[
1, x2 + 1

2

]
, ∀x ∈ [1, 2],[

1, x− 1
2

]
, ∀x ∈ (2, 52 ],

Tx =

{[
1, x3 + 2

3

]
, ∀x ∈ [1, 2],[

1, 23x
]
, ∀x ∈ (2, 52 ],

F (t) = ln t and η(t) = ln
4

3
, ∀t ∈ (0,+∞).

Take p = j = 1 and q = i = 0. Obviously, (X, d) is a bounded complete metric
space, S and T are continuous and commuting, (F, η) ∈ Λ and

STx =

{[
1, x6 + 5

6

]
, ∀x ∈ [1, 2],[

1, x3 + 1
2

]
, ∀x ∈ (2, 52 ].

Put x, y ∈ X. In order to verify (2.1), we need to consider four possible cases
as follows:
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Case 1. (x, y) ∈ [1, 2]× [1, 2]− (1, 1). It follows that

F (δ(Sx, Ty))

= F

(
δ

([
1,
x

2
+

1

2

]
,

[
1,
y

3
+

2

3

]))
= ln

(
max

{
1

2
(x− 1),

1

3
(y − 1)

})
≤ ln(max{x− 1, y − 1})− ln

4

3

= ln

(
δ

([
1,
x

6
+

5

6

]
∪
[
1,
y

6
+

5

6

]
∪ {x, y}

))
− ln

4

3

≤ ln(δ(∪D∈CST
D{x, y}))− ln

4

3
= F (δ(∪D∈CST

D{x, y}))− η(δ(∪D∈CST
D{x, y}));

Case 2. (x, y) ∈ (2, 52 ]× (2, 52 ]. It is clear that

F (δ(Sx, Ty))

= F

(
δ

([
1, x− 1

2

]
,

[
1,

2

3
y

]))
= ln

(
max

{
x− 3

2
,
2

3
y − 1

})
≤ ln(max{x− 1, y − 1})− ln

4

3

= ln

(
δ

([
1,
x

3
+

1

2

]
∪
[
1,
y

3
+

1

2

]
∪ {x, y}

))
− ln

4

3

≤ ln(δ(∪D∈CST
D{x, y}))− ln

4

3
= F (δ(∪D∈CST

D{x, y}))− η(δ(∪D∈CST
D{x, y}));

Case 3. (x, y) ∈ [1, 2]× (2, 52 ]. It is easy to verify that

F (δ(Sx, Ty))

= F

(
δ

([
1,
x

2
+

1

2

]
,

[
1,

2

3
y

]))
= ln

(
max

{
x

2
− 1

2
,
2

3
y − 1

})
≤ ln(y − 1)− ln

4

3

= ln

(
δ

([
1,
x

6
+

5

6

]
∪
[
1,
y

3
+

1

2

]
∪ {x, y}

))
− ln

4

3

≤ ln(δ(∪D∈CST
D{x, y}))− ln

4

3
= F (δ(∪D∈CST

D{x, y}))− η(δ(∪D∈CST
D{x, y}));
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Case 4. (x, y) ∈ (2, 52 ]× [1, 2]. It is easy to verify that

F (δ(Sx, Ty))

= F

(
δ

([
x− 1

2

]
,

[
1,
y

3
+

2

3

]))
= ln

(
x− 3

2

)
≤ ln(x− 1)− ln

4

3

= ln

(
δ

([
1,
x

3
+

1

2
] ∪
[
1,
y

6
+

5

6

]
∪ {x, y}

))
− ln

4

3

≤ ln(δ(∪D∈CST
D{x, y}))− ln

4

3
= F (δ(∪D∈CST

D{x, y}))− η(δ(∪D∈CST
D{x, y})).

Hence, (2.1) holds. That is, the conditions of Theorem 2.1 are satisfied. It
follows from Theorem 2.1 that S and T have a unique common stationary
point 1 ∈ X and the sequence {SnTnx}n∈N converges to {1} for all x ∈ X.

Now we claim that Theorem 1.5 in the first section is useless in proving the
existence of fixed points of S in X. Suppose that S satisfies the conditions of
Theorem 1.5. It follows that there exists τ > 0 satisfying (1.4) and (1.5). By
means of (1.4) and (1.5), we have

M

(
2,

5

2

)
= max

{
d

(
2,

5

2

)
, d(2, S2), d

(
5

2
, S

5

2

)
,
1

2

[
d

(
2, S

5

2

)
+ d

(
5

2
, S2

)]}
= max

{
d

(
2,

5

2

)
, d

(
2,

[
1,

3

2

])
, d

(
5

2
, [1, 2]

)
,

1

2

[
d(2, [1, 2]) + d

(
5

2
,

[
1,

3

2

])]}
= max

{
1

2
,
1

2
,
1

2
,
1

2
(0 + 1)

}
=

1

2

and

τ + F

(
1

2

)
= τ + F

(
H

([
1,

3

2

]
, [1, 2]

))
= τ + F

(
H

(
S2, S

5

2

))
≤ F

(
M

(
2,

5

2

))
= F

(
1

2

)
,

which is impossible.

Remark 3.5. (a1) if r = 0 in Theorem 1.2, it follows from (1.2) that

δ(Sx, Ty) ≤ rmax{δ(x, Sx), δ(y, Ty), δ(x, Ty), δ(y, Sx), d(x, y)}
= 0, ∀x, y ∈ X,

which implies that there exists some a ∈ X with Sx = Tx = {a}, which yields
that (1.2) holds for each r ∈ (0, 1), that is, in Theorem 1.2, ”r ∈ [0, 1) is a
constant” is equivalent to ”r ∈ (0, 1) is a constant”;
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(a2) (1.2) is equivalent to

δ(Sx, Ty) ≤ rmax{δ(x, Sx), δ(y, Ty), δ(x, Ty), δ(y, Sx), d(x, y)},
∀x, y ∈ X with δ(Sx, Ty) > 0.

(3.1)

In fact, it is easy to see that (1.2) implies (3.1). Conversely, for any x, y ∈ X,
if δ(Sx, Ty) > 0, it follows from (3.1) that

δ(Sx, Ty) ≤ rmax{δ(x, Sx), δ(y, Ty), δ(x, Ty), δ(y, Sx), d(x, y)}; (3.2)

if δ(Sx, Ty) = 0, it is clear that

δ(Sx, Ty) = 0 ≤ rmax{δ(x, Sx), δ(y, Ty), δ(x, Ty), δ(y, Sx), d(x, y)}. (3.3)

Thus (1.2) follows from (3.2) and (3.3).

Remark 3.6. If p = q = 1, f = g = iX , F (t) = ln t, η(t) = ln 1
r , ∀t ∈ (0,+∞),

where r ∈ (0, 1) is a constant, in Theorem 2.3, it is easy to verify that (2.14)
implies (3.1). It follows from Remark 3.5 that Theorem 2.3 extends Theorem
1.2.

Remark 3.7. The following example reveals that Theorem 2.3 generalizes
indeed Theorem 1.2 in the first section and differs from Theorem 1 in [12].

Example 3.8. Let X = {1, 2, 5, 7, 9} be endowed with the Euclidean metric
d = | · |. Define f, g : X → X, S, T : X → B(X), F : (0,+∞) → R and
η : (0,+∞)→ (0,+∞) by

f1 = f2 = f5 = f7 = 2, f9 = 1, gx = x, ∀x ∈ X,
S1 = S2 = S7 = {2}, S5 = {2, 7}, S9 = {5}, T = S,

F (t) = ln t and η(t) = ln
11 + t

10 + t
, ∀t ∈ (0,+∞).

Take p = 2, q = 3. Obviously, (X, d) is a bounded complete metric space,
(F, η) ∈ Λ, S and T are commuting, f and g are continuous and belong to
CS ∩ CT .

Put x, y ∈ X. Clearly, δ(S2x, T 3y) = |2−2| = 0 for all (x, y) ∈ {1, 2, 5, 7}×
{1, 2, 5, 7, 9}. In order to verify (2.14), we need to consider two possible cases
as follows:



46 Z. Liu, Y. Liu and S. M. Kang

Case 1. x = 9, y ∈ {1, 2, 5, 7}. It follows that

F (δ(S29, T 3y))

= F (δ({2, 7}, 2)) = F (5) = ln 5 < ln
96

17
= F (6)− η

(
11 + 6

10 + 6

)
= F (max{δ(1, {2, 7}), δ(y, 2), δ(1, 2), δ(y, {2, 7}), d(1, y)})
− η(max{δ(1, {2, 7}), δ(y, 2), δ(1, 2), δ(y, {2, 7}), d(1, y)})

= F (max{δ(f9, S29), δ(gy, T 3y), δ(f9, T 3y), δ(gy, S29), d(f9, gy)})
− η(max{δ(f9, S29), δ(gy, T 3y), δ(f9, T 3y), δ(gy, S29), d(f9, gy)});

Case 2. x = y = 9. Notice that

F (δ(S29, T 39))

= F (δ({2, 7}, 2)) = F (5) = ln 5 < ln
144

19
= F (8)− η

(
11 + 8

10 + 8

)
= F (max{δ(1, {2, 7}), δ(9, 2), δ(1, 2), δ(9, {2, 7}), d(1, 9)})
− η(max{δ(1, {2, 7}), δ(9, 2), δ(1, 2), δ(9, {2, 7}), d(1, 9)})

= F (max{δ(f9, S29), δ(g9, T 39), δ(f9, T 39), δ(g9, S29), d(f9, g9)})
− η(max{δ(f9, S29), δ(g9, T 39), δ(f9, T 39), δ(g9, S29), d(f9, g9)}).

Hence, (2.14) holds. That is, the conditions of Theorem 2.3 are fulfilled. It
follows from Theorem 2.3 that f , g, S2 and T 3 have a unique common fixed
point 2 ∈ X.

However, Theorem 1.2 in the first section and Theorem 1 in [12] cannot
be used to prove the existence of stationary points of S, common stationary
points of S and T in X and common fixed points of f, g, S and T in X,
respectively. Suppose that S and T satisfy the conditions of Theorem 1.2.
That is, there exists r ∈ [0, 1) satisfying (1.2). By virtue of (1.2), we deduce
that

5 = δ({2, 7}, {2}) = δ(S5, T2)

≤ rmax(δ(5, S5), δ(2, T2), δ(5, T2), δ(2, S5), d(5, 2))

= rmax{δ(5, {2, 7}), δ(2, {2}}, δ(5, {2}), δ(2, {2, 7}), d(5, 2))

= rmax{3, 0, 3, 5, 3} = 5r < 5,

which is impossible.
Suppose that f, g, S and T satisfy the conditions of Theorem 1 in [12]. That

is, there exists ϕ ∈ Φ satisfying ∀x, y ∈ X,

δ(Sx, Ty) ≤ ϕ(δ(fx, Sx), δ(gy, Ty), δ(fx, Ty), δ(gy, Sx), d(fx, gy)}, (3.4)
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where Φ = {ϕ : ϕ : (R+)5 → R+ is upper semicontinuous, nondecreasing in
each coordinate variable and ϕ(t, t, t, t, t) < t for any t > 0}.

It follows from (3.4) that

5 = δ({2, 7}, {2}) = δ(S5, T2)

≤ ϕ(δ(f5, S5), δ(g2, T2), δ(f5, T2), δ(g2, S5), d(f5, g2))

= ϕ(δ(2, {2, 7}), δ(2, {2}), δ(2, {2}), δ(2, {2, 7}), d(2, 2))

= ϕ(5, 0, 0, 5, 0)

≤ ϕ(5, 5, 5, 5, 5)

< 5,

which is a contradiction.
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