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Abstract. In this paper, we proved some fixed point results with different types of contrac-

tion in Rectangular b-metric space. Our results extend very recent results of Fora et. al. [7]

and extend and generalize many existing results in the literature.

1. Introduction

In 2000, Branciari [2] introduced a concept of generalized metric space where
the triangle inequality of a metric space has been replaced by an inequality
involving three terms instead of two. As such, any metric space is a generalized
metric space but the converse is not true [2]. He proved the Banach’s fixed
point theorem in such a space. After that, many fixed point results were
established for this interesting space. For more, the reader can refer to [10, 3].
It is also known that common fixed point theorems are generalizations of
fixed point theorems. Recently, there have been many researchers who have
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interested in generalizing fixed point theorems to coincidence point theorems
and common fixed point theorems.

George et. al. [9] introduced the concept of rectangular b-metric space,
which is not necessarily Hausdorff and which generalizes the concepts of met-
ric space, rectangular metric space and b-metric space. Note that spaces with
non-Hausdorff topology plays an importnat role in Tarskian approach to pro-
gramming language semantics used in computer science (For some details see
[17]). An analog of the Banach contraction principle as well as the Kannan
type fixed point theorem in rectangular b-metric spaces are also proved in [9].

2. Preliminaries

The following definitions are introduced in [1, 2, 4, 9] and [15], respectively.

Definition 2.1. ([1, 4]) Let X be a nonempty set and s ≥ 1 be a given real
number. A functional d : X×X −→ R+ is called a b- metric if for x, y, z ∈ X,
the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ s[d(x, z) + d(z, y)] (b-triangular inequality).

A pair (X, d) is called a b-metric space (with constant s).

Definition 2.2. ([2]) LetX be a nonempty set. A functional d : X×X −→ R+

is called a rectangular metric if for all x, y ∈ X and for all distinct points
u, v ∈ X each of them different from x and y, the following conditions are
satisfied:

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

A pair (X, d) is called a rectangular metric space or generalized metric spaces
(g.m.s.) or Branciari’s space.

For all properties and definitions of notions in Branciari’s spaces see [2, 6,
8, 11, 12, 13, 15].

Definition 2.3. ([9, 15]) Let X be a nonempty set, s ≥ 1 be a given real
number and d : X ×X −→ R+ be a mapping such that for all x, y ∈ X and
all distinct points u, v ∈ X each distinct from x and y:

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] (b-rectangular inequality).
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Then (X, d) is called a rectangular b-metric space (with constant s) or a b-
generalized metric space (RbMS).

Note that every metric space is a rectangular metric space and every rect-
angular metric space is a rectangular b-metric space (with coefficient s = 1).
However the converse of the above implication is not necessarily true (See
Examples 1.4 and 1.5 [9]).

The following gives some easy examples of RbMS’s.

Example 2.4. Let X = N, define d : X ×X −→ R+ by

d(x, y) =

 0 if x = y,
4α if x, y ∈ {1, 2} and x 6= y,
α if x or y /∈ {1, 2} and x 6= y,

where α > 0 is a constant. Then (X, d) is a rectangular b-metric space with
coefficient s = 4

3 > 1, but (X, d) is not a rectangular metric space, as

d(1, 2) = 4α > 3α = d(1, 3) + d(3, 4) + d(4, 2).

Example 2.5. Let (X, ρ) be a g.m.s., and p ≥ 1 be a real number. Let
d(x, y) = (ρ(x, y))p. Evidently, from the convexity of function f(x) = xp for
x ≥ 0 and by Jensen inequality we have

(a+ b+ c)p ≤ 3p−1(ap + bp + cp)

for nonnegative real numbers a, b, c. So, it is easy to obtain that (X, d) is a
b-g.m.s with s ≤ 3p−1.

Note that every b-metric space with coefficient s is a RbMS with coefficient
s2 but the converse is not necessarily true. (See Example 1.7 [9]).

For any x ∈ X we define the open ball with center x and radius r > 0 by
Br(x) = {y ∈ X : d(x, y) < r}. The open balls in RbMS are not necessarily
open (See Example 1.7 [9]). Let U be the collection of all subsets A of X
satisfying the condition that for each x ∈ A there exist r > 0 such that
Br(x) ⊆ A. Then U defines a topology for the RbMS (X, d), which is not
necessarily Hausdorff (See Example 1.7 [9]).

Definition 2.6. Let (X, d) be a rectangular b-metric space, {xn} be a se-
quence in X and x ∈ X. Then

(a) The sequence {xn} is said to be convergent to x ∈ X, if for every ε > 0
there exists n0 ∈ N such that d(xn, x) < ε for all n > n0 and this fact
is represented by lim

n→+∞
xn = x or xn −→ x as n −→ +∞.
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(b) The sequence {xn} is said to be Cauchy in X, if for every ε > 0 there
exists n0 ∈ N such that d(xn, xm) < ε for all n,m > n0, or equivalently,
if

lim
n,m→+∞

d(xn, xm) = 0.

(c) (X, d) is said to be a complete rectangular b-metric space if every
Cauchy sequence in X converges to some x ∈ X.

Note that limit of sequence in a rectangular b-metric space (the same as in
a rectangular metric space (g.m.s)) is not necessarily unique and also every
rectangular b-metric convergent sequence in a rectangular b-metric space is
not necessarily rectangular b-metric-Cauchy (See [9], Example 2.7).

Lemma 2.7. ([15]) Let (X, d) be a rectangular b-metric space with s ≥ 1 and
let {xn} be a rectangular Cauchy sequence in X such that xn 6= xm whenever
n 6= m. Then {xn} can converge to at most one point.

Let T : X → X be a mapping where (X, d) is RbMS. For each x ∈ X let
O(x) = {x, Tx, T 2x, T 3x, · · · } which will be called the orbit of T at x. O(x)
is called T-orbitally complete if and only if every Cauchy sequence in O(x)
converges to a point in X.

Let Φ denote the class of all nondecreasing upper semicontinuous functions

ϕ : R+ → R+ such that

+∞∑
n=1

snϕn(t) < +∞ for all t > 0 where ϕn is the nth

iterate of ϕ. Since
+∞∑
n=1

snϕn(t) < +∞ and ϕn(t) ≤ snϕn(t) for all t ≥ 0, so

+∞∑
n=1

ϕn(t) < +∞.

Lemma 2.8. ([7]) Let ϕ : R+ → R+ be a nondecreasing function such that
the sequence {ϕn(t)} converges to 0 for all t > 0. Then

(i) ϕ(t) < t for all t > 0;
(ii) ϕ(0) = 0.

3. Main results

Theorem 3.1. Let (X, d) be a rectangular b-metric space with coefficient s ≥ 1
and let T : X −→ X be a mapping such that:

d(Tx, Ty) ≤ ϕ(max{d(x, y), d(x, Tx),
1

s
d(y, Ty), d(y, Tx)}) (3.1)
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where ϕ ∈ Φ. If there exists x ∈ X such that O(x) is orbitally complete, then
T has a unique fixed point in X.

Proof. Define the sequence {xn} inductively as follows: x0 = x, xn = Txn−1 =
Tnx for all n ∈ N. Setting d(xn, xn+1) = dn, it follows from (3.1) that

d(Tnx, Tn+1x) ≤ ϕ(max{d(Tn−1x, Tnx), d(Tn−1x, Tnx),
1
sd(Tnx, Tn+1x), d(Tnx, Tnx)})

which implies that

dn = d(Tnx, Tn+1x) ≤ ϕ(d(Tn−1x, Tnx)) = ϕ(dn−1). (3.2)

Then, for all n ∈ N,

dn = d(Tnx, Tn+1x) ≤ ϕn(d(x, Tx)). (3.3)

If there exists n < m such that xn = xm, let y = Tnx then T ky = y where
k = m− n. Since k ≥ 1, we have

d(y, Ty) = d(T ky, T k+1y) ≤ ϕk(d(y, Ty)).

Since ϕ(t) < t for all t > 0, so d(y, Ty) = 0 and hence y is a fixed point of T .
Assume that xn 6= xm for all n 6= m, so we have

d(Tx, T 3x) ≤ ϕ
(

max{d(x, T 2x), d(x, Tx),
1

s
d(T 2x, T 3x), d(T 2x, Tx)}

)
.

This implies that

d(Tx, T 3x) ≤ ϕ(M)

where M = max{d(x, T 2x), d(x, Tx)}. In general, if n is a positive integer,
then

d(Tnx, Tn+2x) ≤ ϕn(M). (3.4)

For the sequence {xn} we consider d(xn, xn+p) in two cases.
If p is odd say 2m+ 1 then using (3.2) and (3.3) we obtain
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d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2)
+d(xn+2, xn+2m+1)]

≤ s[dn + dn+1] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)
+d(xn+4, xn+2m+1)]

≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5]
+ · · ·+ smdn+2m

≤ s[ϕn(d(x, Tx)) + ϕn+1(d(x, Tx))]
+s2[ϕn+2(d(x, Tx)) + ϕn+3(d(x, Tx))]
+s3[ϕn+4(d(x, Tx)) + ϕn+5(d(x, Tx))]
+ · · ·+ smϕn+2m(d(x, Tx))

≤ snϕn(d(x, Tx)) + sn+1ϕn+1(d(x, Tx))
+sn+2ϕn+2(d(x, Tx))
+sn+3ϕn+3(d(x, Tx)) + sn+4ϕn+4(d(x, Tx))
+sn+5ϕn+5(d(x, Tx))
+ · · ·+ sn+2mϕn+2m(d(x, Tx)).

Therefore, we have

d(xn, xn+2m+1) ≤
k=n+2m∑

k=n

skϕk(d(x, Tx). (3.5)

If p is even say 2m then using (3.2) and (3.3) we obtain

d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]
≤ s[dn + dn+1] + s2[d(xn+2, xn+3)

+d(xn+3, xn+4) + d(xn+4, xn+2m)]
≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5]

+ · · ·+ sm−1[dn+2m−4 + dn+2m−3]
+sm−1d(xn+2m−2, xn+2m)

≤ s[ϕn(d(x, Tx)) + ϕn+1(d(x, Tx))]
+s2[ϕn+2(d(x, Tx)) + ϕn+3(d(x, Tx))]
+s3[ϕn+4(d(x, Tx)) + ϕn+5(d(x, Tx))]
+ · · ·+ sm−1[ϕn+2m−4(d(x, Tx)) + ϕn+2m−3(d(x, Tx))]
+sm−1d(xn+2m−2, xn+2m)

≤ snϕn(d(x, Tx)) + sn+1ϕn+1(d(x, Tx))
+sn+2ϕn+2(d(x, Tx)) + sn+3ϕn+3(d(x, Tx))
+sn+4ϕn+4(d(x, Tx))
+sn+5ϕn+5(d(x, Tx))
+ · · ·+ sn+2m−4ϕn+2m−4(d(x, Tx))
+sn+2m−3ϕn+2m−3(d(x, Tx))
+sm−1d(xn+2m−2, xn+2m).
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Using (3.4), for all p > 0 we obtain

d(xn, xn+2m) ≤
k=n+2m−3∑

k=n

skϕk(d(x, Tx)) + sm−1ϕn+2m−2(M). (3.6)

Thus, by (3.3), (3.4), (3.5), and (3.6) we have

d(xn, xn+p) ≤
n+p−1∑
k=n

skϕk(M).

Since lim
n→+∞

+∞∑
k=n

skϕk(M) = 0, we have

lim
n→+∞

d(xn, xn+p) = 0,

for all p > 0. Thus it is clearly verified that {xn} is a Cauchy sequence. Since
O(x) is T-orbitally complete, {xn} converges to z ∈ X.

The point z is a fixed point of T . To see this we have two cases under
consideration.

Case 1. If {xn} does not converge to Tz, then there exists a subsequence
{xnk

} of {xn} such that xnk
6= Tz for all k ∈ N. Hence

d(z, Tz) ≤ s
[
d(z, xnk−1) + d(xnk−1, xnk

) + d(xnk
, T z)

]
.

If k → +∞, we get

d(z, Tz) ≤ s. lim sup
k→+∞

d(xnk
, T z). (3.7)

On the other hand, we have from (3.1)

d(xn, T z) = d(Txn−1, T z)
≤ ϕ(max{d(xn−1, z), d(xn−1, xn), 1

sd(z, Tz), d(z, xn)}).

Let n→ +∞, we get

lim sup
n→+∞

d(xn, T z) ≤ ϕ
(1

s
d(z, Tz)

)
<

1

s
d(z, Tz). (3.8)

Hence, by (3.7) and (3.8), we have d(z, Tz) = 0 and z = Tz.

Case 2. Let {xn} be convergent to Tz. Suppose that z 6= Tz. Then there
exists a subsequence {xnk

} such that xnk
∈ X − {z, Tz} for all k ∈ N, hence

d(z, Tz) ≤ s[d(z, xnk
) + d(xnk

, xnk+1) + d(xnk+1, T z)
]
. (3.9)

As k → +∞ in (3.9), we get Tz = z, a contradiction. Then in all cases z is a
fixed point of T . For the uniqueness, assume that w 6= z is also a fixed point
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of T . From (3.1),

d(z, w) = d(Tz, Tw) ≤ ϕ
(

max{d(z, w), d(z, Tz),
1

s
d(w, Tw), d(w, Tz)}

)
which implies that

d(z, w) ≤ ϕ(d(z, w)),

hence z = w, a contradiction. Therefore, T has a unique fixed point z. �

Corollary 3.2. Let (X, d) be a RbMS and let T : X → X be a mapping such
that

d(Tx, Ty) ≤ qmax{d(x, y), d(x, Tx),
1

s
d(y, Ty), d(y, Tx)}

where 0 ≤ sq < 1. If there exists x ∈ X such that O(x) is orbitally complete,
then T has a unique fixed point in X.

Proof. Put ϕ(t) = qt in Theorem 3.1. �

The condition ”there exists x ∈ X such that O(x) is orbitally complete” is
necessary; to see this, consider the next example.

Example 3.3. Let X = (0, 1], d(x, y) = |x − y|, and let T : X → X be a
mapping such that Tx = x

2 for all x ∈ X. So, O(a) = {a, a2 ,
a
22
, · · · , a

2n , · · · }
for all a ∈ X. Let xn = a

2n , n ∈ N. Then {xn} is a Cauchy sequence in
O(a), but {xn} does not converge. Hence O(a) is not complete. Moreover, T
satisfies the condition (3.1) where ϕ(t) = 1

2 t, and does not have a fixed point
in X.

For the next result, let Ψ denote the class of all functions ψ : R+ → R+

which are nondecreasing and

+∞∑
n=1

snψn(t) < +∞ for all t > 0.

Theorem 3.4. Let (X, d) be a RbMS and let T : X → X be a continuous
mapping such that

d(Tx, T 2x) ≤ ψ(d(x, Tx)), d(Tx, T 3x) ≤ ψ(d(x, T 2x)) (3.10)

where ψ ∈ Ψ. If there exists x ∈ X such that O(x) is orbitally complete, then
T has a fixed point in X.

Proof. Define the sequence {xn} inductively as follows: x0 = x, xn = Txn−1
for all n ≥ 1. For all n ∈ N, we have

dn = d(Tnx, Tn+1x) ≤ ψn(d(x, Tx)). (3.11)

If xn = xm for some m > n, then Tnx is a fixed point of T .
Now, assume that xn 6= xm for all n 6= m. For all n ∈ N, we have

d(Tnx, Tn+2x) ≤ ψn(d(x, T 2x)). (3.12)



Fixed point theory concerning rectangular b-metric spaces 57

For the sequence {xn} we consider d(xn, xn+p) in two cases:

Case 1. If p is odd say 2m+ 1 then using (3.10) and (3.11) we obtain

d(xn, xn+2m+1) ≤ s[dn+dn+1]+s
2[dn+2+dn+3]+s

3[dn+4+dn+5]+· · ·+smdn+2m.

Therefore,

d(xn, xn+2m+1) ≤
k=n+2m∑

k=n

skψk(d(x, Tx)). (3.13)

Case 2. If p is even say 2m then using (3.11) we obtain

d(xn, xn+2m) ≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5] + · · ·
+sm−1[dn+2m−4 + dn+2m−3] + sm−1d(xn+2m−2, xn+2m).

Using (3.12) we obtain

d(xn, xn+2m) ≤
k=n+2m−3∑

k=n

skψk(d(x, Tx)) + sm−1ψn+2m−2(d(x, T 2x)). (3.14)

Thus, by (3.11), (3.12), (3.13), and (3.14) we have

d(xn, xn+p) ≤
n+p−1∑
k=n

skψk(R),

where R = max{d(x, Tx), d(x, T 2x)}. Since

+∞∑
k=1

skψk < +∞, {xn} is a Cauchy

sequence. Since O(x) is T-orbitally complete, {xn} converges to z ∈ X, and
by the continuity of T , we have {xn} converges also to Tz. Hence z is a fixed
point of T . �

Corollary 3.5. Let (X, d) be a RbMS and let T : X → X be a continuous
mapping such that

min{d(Tx, Ty),max{d(x, Tx), d(y, Ty)}} ≤ ψ(d(x, y))
and

d(x, T 2x) ≤ d(x, Tx)
(3.15)

where ψ ∈ Ψ. If there exists x ∈ X such that O(x) is orbitale complete, then
T has a fixed point in X.

Proof. By setting y = Tx in (3.15), we get

min{d(Tx, T 2x), max{d(x, Tx), d(Tx, T 2x)}} ≤ ψ(d(x, Tx))

which implies that

d(Tx, T 2x) ≤ ψ(d(x, Tx))
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for all x ∈ X. Similarly, if we put y = T 2x in (3.15), we get

min{d(Tx, T 3x), max{d(x, Tx), d(T 2x, T 3x)}} ≤ ψ(d(x, T 2x))

hence

min{d(Tx, T 3x), d(x, Tx)} ≤ ψ(d(x, T 2x))

for all x ∈ X, which implies that

d(Tx, T 3x) ≤ ψ(d(x, T 2x)).

Then by Theorem 3.4, T has a fixed point. �

Example 3.6. Let X = A∪B, where A = { 1n : n ∈ {2, 3, 4, 5}} and B = [1, 2].
Define d : X ×X → [0, 1) such that d(x, y) = d(y, x) for all x, y ∈ X and

d(12 ,
1
3) = d(14 ,

1
5) = 0, 03;

d(12 ,
1
5) = d(13 ,

1
4) = 0, 02;

d(12 ,
1
4) = d(15 ,

1
3) = 0, 6;

d(x, y) = |x− y|2 otherwise.

Then (X, d) is a rectangular b-metric space with coefficient s = 4 > 1. But
(X, d) is neither a metric space nor a rectangular metric space. Let T : X → X
be defined as :

Tx =

{
1
4 x ∈ A;
1
5 x ∈ B,

ψ(t) = 1
5 t for all t ∈ R+, Then

+∞∑
n=1

snψn(t) =
+∞∑
n=1

(
4

5
)nt < +∞ for all t ∈ R+.

If x ∈ A then Tx = T 2x = T 3x = 1
4 ,

d(Tx, T 2x) = d(
1

4
,
1

4
) = 0 ≤ ψ(d(x, Tx))

and

d(Tx, T 3x) = 0 ≤ ψ(d(x, T 2x)).

If x ∈ B then Tx = 1
5 , T 2x = T 3x = 1

4 ,

d(Tx, T 2x) = d(
1

5
,
1

4
) = 0, 03 ≤ ψ(d(x, Tx)) =

1

5
(x− 1

5
)2

because 1
5(x− 1

5)2 ≥ 16
125 > 0, 03 and

d(Tx, T 3x) = 0, 03 ≤ ψ(d(x, T 2x)) =
1

5
(x− 1

4
)2

because 1
5(x− 1

4)2 ≥ 9
80 > 0, 03.

There exist x = 1
2 ∈ X such that O(x) = {12 ,

1
4 ,

1
4 , . . . ,

1
4 , . . .} orbitale complete.

Then T satisfies the condition of Theorem 3.4 and has a unique fixed point
x = 1

4 .
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