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Abstract. In this paper, we consider the generalized equilibrium problems with operator

solutions and derive some existence results for generalized operator equilibrium problems in

Hausdorff topological vector spaces by employing KKM theorem. The results presented of

this paper generalize and unify the corresponding results of the several authors.

1. Introduction

Domokos and Kolumban [4] gave nice interpretation of variational inequal-
ities (VI) and vector variational inequalities (VVI) in Banach spaces setting
in terms of variational inequalities with operator solutions (OVVI). These op-
erator variational inequalities includes not only scalar and vector variational
inequalities as special cases, see, for example, Chen [3], Hadjsavas and Schaible
[9], Yu and Yao [19], Fu [6] but also have sufficient evidence for their impor-
tance to study, see, Domokos and Kolumban [4], Kum [15]. Inspired by the
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work of Domokos and Kolumban [4], Kum [15], developed generalized vec-
tor variational inequality with operator solutions and obtained some existence
results.

On the other hand, Blum and Oettli [2] intensively studied equilibrium prob-
lems where they proposed it as a generalization of optimization and variational
inequality problems. In 2005, Kazmi and Raouf [11], considered and study a
class of operator equilibrium problems (OEP) and derive some existence re-
sults for the solution of (OEP) by employing KKM theorems, which extend
the notion of operator variational inequalities (OVVI) to operator equilibrium
problem (OEP). Recently Kim and Raouf [14] studied the generalized equilib-
rium problems and derive the existence results by using Fan KKM theorems.

Motivated and inspired by the work of Kum [15], Kim and Raouf [14],
Kazmi and Raouf [11], we introduce generalized operator equilibrium problem
(in short, GOEP) which generalize operator equilibrium problem into multi-
valued operator equilibrium problems. Next, by using Fan [5] lemma, we will
prove some new existence results on generalized operator equilibrium problems
(GOEP) which are generalizations and unifications of many well-known results
in the literature, see for example ([1], [8], [14]-[18]).

Throughout the paper unless otherwise stated, let X and Y be two Haus-
dorff topological vector spaces and L(X,Y ) be a space of all continuous linear
operators from X to Y . Let K ⊂ L(X,Y ) be a nonempty convex set and let
C : K → 2Y be a set-valued mapping such that for each f ∈ K, C(f) is a solid

convex open cone and 0 /∈ C(f) and let P =
⋂
f∈K

C(f).

Let Y be an ordered topological vector space. It is clear that the cone
C(f), for each f ∈ K, define on Y a partial ordering ≤C(f) by g ≤C(f) h iff
h− g ∈ C(f).

Consider the following generalized operator equilibrium problem (for short,
GOEP). Find f0 ∈ K such that

G(f0, g) +H(f0, g) 6⊂ −C(f), for all g ∈ K, (1.1)

where G,H : K ×K −→ 2Y be two bi-operators.

2. Preliminaries

In this section, we need the following definitions and results which are
needed for establishment of main results.

Definition 2.1. ([5]) A set-valued mapping F : B ⊂ X −→ 2B is said to be
a KKM− mapping if, for every finite subset {x1, x2, · · · , xn} of B,

con {x1, x2, · · · , xn} ⊆
n⋃
i=1

F (xi),



Operator solutions of generalized equilibrium problems in Hausdorff t.v.s. 63

where con {x1, x2, · · · , xn} denotes the convex hull of {x1, x2, · · · , xn} .

The following well- known Fan theorem will play a crucial role in proving
the existence results for the solution of GOEP in our paper.

Theorem 2.2. ([5]) Let E be a topological vector space, K be a non-empty
subset of E and let F : K → 2E be a KKM− map such that F (x) is closed

for each x ∈ K and is compact for at least one x ∈ K, then
⋂
x∈K

F (x) 6= φ.

Definition 2.3. Let F : B ⊂ X −→ 2Y be a set-valued mapping. Then

(i) F is said to be upper semicontinuous on B, If for each x0 ∈ B and any
open set V of Y containing F (x0), there exists an open neighborhood
U of x0 in B such that F (x) ⊂ V for all x ∈ U.

(ii) The graph of F, denoted by G(F ), is

G(F ) = {(x, z) ∈ B × Y : x ∈ B, z ∈ F (x)} .

(iii) The inverse F−1 of F is the set-valued mapping from R(F ), range of
F, to B defined by

x ∈ F−1(y) if and only if y ∈ F (x).

Definition 2.4. ([14]) Let B be a subset of K. A set-valued mapping C :
K −→ 2Y is said to have a closed graph with respect to B if for every net
{fα}α∈Γ ⊂ K and {gα}α∈Γ ⊂ Y such that gα ∈ C(fα), {fα} converges to
f ∈ B with respect to the pointwise convergence and {gα} converges to g ∈ Y,
then g ∈ C(f).

Definition 2.5. ([14]) Let K ⊂ L(X,Y ) be a convex set, C : K −→ 2Y be
a set-valued mapping and C(f) be an open convex solid cone with 0 /∈ C(f),
for all f ∈ K. Then we define the following ordering relationship on sets,
A,B ⊂ Y,

(i) B −A ⊆ C(f)⇐⇒ A ≤C(f) B ⇐⇒ a ≤C(f) b, for all a ∈ A, b ∈ B.
(ii) B −A 6⊆ C(f)⇐⇒ A 6≤C(f) B ⇐⇒ a 6≤C(f) b, for all a ∈ A, b ∈ B.

Definition 2.6. ([2]) Let K and D be two convex subsets of L(X,Y ), with
K ⊂ D. Then CoreDK, the core of K relative to D, is defined through h ∈
CoreDK iff h ∈ K and K ∩ (0, 1] 6= φ, for all g ∈ D \K, where

(f, g] = {h ∈ L(X,Y ) : h = tf + (1− t)g, for t ∈ [0, 1)} .
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Definition 2.7. Let X and Y be two Hausdorff topological vector spaces and
L(X,Y ) be the space of all linear operators from X to Y and let K ⊂ L(X,Y ).
Let F : K −→ 2Y and G : K ×K −→ 2Y be given. nThen

(i) F is said to be P -convex if for any f, g ∈ K, t ∈ [0, 1],

tF (f) + (1− t)F (g) ⊂ F (tf + (1− t)g) + P.

(ii) F is said to be P -concave if for any f, g ∈ K, t ∈ [0, 1],

F (tf + (1− t)g) ⊂ tF (f) + (1− t)F (g) + P.

(iii) G is said to be P -monotone if for any f, g ∈ K,
G(f, g) +G(g, f) ⊂ −P.

3. Main results

In this section, we prove some existence results for the solution of GOEP.
Throughout this section, let X and Y be two Hausdorff topological vector
spaces, D a non-empty, convex closed subset of X.

Lemma 3.1. ([14]) Let X and Y be two Hausdorff topological vector spaces
and K ⊂ L(X,Y ) be a non-empty convex set. Let (Y,C(f)) be an ordered
topological vector space with convex solid cone C(f), 0 6∈ C(f), for each f ∈ K.
Then for all f, g ∈ K, we have

(i) g − f ⊆ C(f) and g 6⊆ C(f) implies f 6⊆ C(f).
(ii) g − f ⊆ −C(f) and g 6⊆ −C(f) implies f 6⊆ −C(f).

Theorem 3.2. Let G,H : D ×D −→ 2Y be two set-valued maps such that

(i) for all f ∈ D, G(f, f) = {0} , H(f, f) = {0} ,
(ii) G is P -monotone,

(iii) for all f ∈ D, the graph of W (f) := Y \ (−C(f)) is closed in Y,
(iv) for any f, g ∈ K, g(t) := G(tg + (1− t)f, g), where t ∈ [0, 1], is upper

semicontinuous with respect to C(f) at t=0,
(v) for any f ∈ D, G(f, .), H(f, .) : K −→ 2Y are P -convex,

(vi) for any f ∈ D, G(f, g) is continuous in g with respect to C(f) on
D and for any fixed g ∈ D,H(f, g) is continuous in f with respect to
C(f) on D,

(vii) there exists a non-empty convex compact set K ⊆ D such that, for any
f ∈ K \ coreDK, one can find a point h ∈ coreDK such that

G(f, h) +H(f, h) ⊂ −P.
Then there exists f0 ∈ K such that

G(f0, g) +H(f0, g) 6⊂ −C(f0), for all g ∈ D.



Operator solutions of generalized equilibrium problems in Hausdorff t.v.s. 65

To prove the above theorem, we shall first prove the following lemmas:

Lemma 3.3. Let G,H : K × K −→ 2Y be two set-valued maps and K ⊆
L(X,Y ) be a compact subset such that following conditions hold:

(i) For all f ∈ K, G(f, f) = {0} , H(f, f) = {0} .
(ii) The graph of W (f) = Y \ (−C(f)) is closed for all f ∈ K.

(iii) G is P -monotone.
(iv) For any fixed f, g ∈ K, t −→ G(tg + (1 − t)f, g), where t ∈ [0, 1], is

upper semicontinuous at t=0.
(v) for any f ∈ K, G(f, .), H(f, .) : K −→ 2Y are P-convex.

(vi) For fixed f ∈ K, G(f, .) is continuous with respect to C(f) on K, and
for fixed g ∈ K, H(., g) is continuous with respect to C(f) on K.

Then there exists f0 ∈ K such that

G(f0, g) +H(f0, g) 6⊂ −C(f), for all g ∈ K.

Proof. For any g ∈ K, define S : K −→ 2K by

S(g) := {f ∈ K : G(g, f)−H(f, g) 6⊂ C(f)} .

Claim 1: S(g) is closed, for all g ∈ K. For this, let {hi} ⊂ S(g) be such that
hi −→ h with respect to the pointwise convergence. Then h ∈ K. Since, for
all i, hi ∈ S(g),

G(g, hi)−H(hi, g) 6⊂ C(hi),

this implies that

G(g, hi)−H(hi, g) ⊂ Y \ C(hi).

Also, G(g, .)−H(., g) is continuous and Y \ C(f) is closed, for all f ∈ K, we
have

G(g, h)−H(h, g) ⊂ Y \ C(h),

this means that h ∈ S(g). Hence, for all g ∈ K, S(g) is closed. Since, S(g) ⊂ K
and K is compact, S(g) is compact, for all g ∈ K.
Claim 2: S is a KKM -mapping. i.e. for every finite set {g1, g2, · · · , gn} of
K, we have

conv {g1, g2, · · · , gn} ⊆
n⋃
i=1

S(gi).

If possible, let us suppose that there exists a finite set {g1, g2, · · · , gn} of K
and non-negative real numbers t1, t2, · · · , tn with

∑n
i=1 ti = 1 such that

conv {g1, g2, · · · , gn} 6⊆
n⋃
i=1

S(gi).
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Then, there exists h ∈ conv {g1, g2, · · · , gn} such that

h 6∈
n⋃
i=1

S(gi),

this implies that
h 6∈ S(gi), ∀, i = 1, 2, · · · , n.

Hence we have

G(gi, h)−H(h, gi) ⊂ C(h), ∀i = 1, 2, · · · , n.
This implies that

n∑
i=1

tiG(gi, h)−H(h, gi) ⊂ C(h). (3.1)

Next, Since G is P -monotone,

G(gi, h) +G(h, gi) ⊂ −P ⊂ −C(h),

it implies that
G(gi, h) ⊂ −G(h, gi)− C(h).

Hence we have,
n∑
i=1

G(gi, h) ⊂ −
n∑
i=1

G(h, gi)− C(h)

⊂ − [G(h, h) + P ]− C(h)

= −P − C(h)

⊂ −C(h)− C(h)

⊂ −C(h). (3.2)

Also,
n∑
i=1

tiH(h, gi) ⊂ H(h, h) + P ⊂ C(h). (3.3)

From (3.2) and (3.3), we get
n∑
i=1

ti [G(gi, h)−H(h, gi)] ⊂ −C(h)− C(h) ⊆ −C(h). (3.4)

From (3.1) and (3.4), we get
n∑
i=1

ti [G(gi, h)−H(h, gi)] ⊂ C(h) ∩ (−C(h)) = Φ,

which is a contradiction. Hence, S is a KKM -mapping. So, we have

conv {g1, g2 · · · , gn} ⊆
n⋃
i=1

S(gi).
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Therefore by using Ky Fan Lemma, we have⋂
g∈K

S(g) 6= φ.

Hence, there exists f0 ∈ K such that

G(g, f0)−H(f0, g) 6⊂ C(f0), for all g ∈ K.
�

Lemma 3.4. Let G,H : D × D −→ 2Y be two set-valued maps and D ⊂
L(X,Y ) be a non-empty, closed and convex subset such that

(i) for all f ∈ D, G(f, f) = {0} , H(f, f) = {0} ,
(ii) the graph of W (f) = Y \ (−C(f)) is closed for all f ∈ D,

(iii) G is P -monotone.
(iv) for any fixed f, g, h ∈ D, t −→ G(tf + (1− t)g, h), where t ∈ [0, 1], is

upper semicontinuous with respect to C(f) at t=0,
(v) for any f ∈ D, G(f, .), H(f, .) : D −→ 2Y are P-convex.

Then the following statements are equivalent:

(a) For f ∈ D, G(g, f)−H(f, g) 6⊂ C(f), for all g ∈ D.
(b) For f ∈ D, G(f, g) +H(f, g) 6⊂ −C(f), for all g ∈ D.

Proof. (a)⇒ (b) : Suppose that there exist f ∈ D such that

G(g, f)−H(f, g) 6⊂ C(f), for all g ∈ D.
For any g ∈ D and t ∈ (0, 1], ft = tg + (1− t)f ∈ D. Hence we have

G(ft, f)−H(f, ft) 6⊂ C(f).

Since G(f, .) is P -convex, it follows that

tG(ft, g) + (1− t)G(ft, f) ⊆ G(ft, ft) + P = P. (3.5)

Also, H(f, .) is P -convex, we have

tH(f, g) ⊆ tH(f, g) + (1− t)H(f, f) ⊆ H(f, ft) + P,

that is,
tH(f, g)−H(f, ft) ⊆ P. (3.6)

Adding (3.5) and (3.6), we get

tG(ft, g) + (1− t)G(ft, f) + t(1− t)H(f, g)− (1− t)H(f, ft) ⊆ P ⊆ C(f),

it implies that

(t− 1) [G(ft, f)−H(f, ft)]− [tG(ft, g) + t(1− t)H(f, g)] ⊆ P ⊆ C(f).

Hence we have,
G(ft, f) + (1− t)H(f, g) 6⊂ −C(f).
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Letting t→ 0+ and ft → f with respect to pointwise convergence. Since W (f)
is closed and G is hemicontinuous in the first argument, we have

G(f, g) +H(f, g) 6⊂ −C(f).

(b)⇒ (a) : Suppose (b) holds. Then ther exists f ∈ K such that

G(f, g) +H(f, g) 6⊂ −C(f), ∀g ∈ D.

If possible, suppose that there exists g0 ∈ D such that

G(g0, f)−H(f, g0) ⊂ C(f).

Then we have

H(f, g0) ≤C(f) G(g0, f). (3.7)

Also, since G is P -monotone

G(g0, f) +G(f, g0) ≤P 0.

It implies that

G(g0, f) +G(f, g0) ⊂ −P.
Hence we have

G(g0, f) +G(f, g0) ⊂ −C(f),

that is,

G(g0, f) ≤C(f) −G(f, g0). (3.8)

From (3.7) and (3.8), we get

H(f, g0) ≤C(f) −G(f, g0),

that is,

H(f, g0)−G(f, g0) ≤C(f) 0.

Therefore, we have

H(f, g0)−G(f, g0) ⊂ −C(f),

which is a contradiction. Hence, there exists f ∈ D such that

G(g, f)−H(f, g) 6⊂ C(f), ∀g ∈ D.

�

Lemma 3.5. Let K ⊂ D be as in Theorem 3.2, and let Φ : D −→ 2Y be given.
Assume that

(i) Φ is P -convex,
(ii) f ∈ CoreDK, Φ(f) ⊂ −C(f),
(iii) ∀g ∈ K, Φ(g) 6⊂ −C(f).

Then Φ(g) 6⊂ C(f), ∀g ∈ D.
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Proof. Assume on the contrary, that there exists g ∈ D \K such that Φ(g) ⊃
−C(f). Let h ∈ (f, g], h = tf + (1− t)g, for some t ∈ [0, 1). Then, since Φ is
convex, we have

tΦ(f) + (1− t)Φ(g) ⊆ Φ(h) + P.

Hence, we have

−Φ(h) ⊆ −tΦ(f) + (1− t)Φ(g) + P

⊆ tC(f) + (1− t)C(f) + P

⊆ C(f) + C(f) + C(f)

⊂ C(f),

that is,
Φ(h) ⊆ −C(f), for all h ∈ (f, g].

Since f ∈ CoreDK, there exists h0 ∈ (f, g] ∩K. Hence Φ(h0) ⊂ −C(f). This
contradicts Φ(g) 6⊂ −C(f), for all g ∈ K and the result is complete.

Proof of the Theorem 3.2: By Lemma 3.5, there exists f ∈ K such that

G(g, f)−H(f, g) 6⊂ C(f), ∀ g ∈ K.
It follow from Lemma 3.5, that

G(f, g) +H(f, g) 6⊂ −C(f), ∀g ∈ K.
Let Φ(g) = G(f, g) + H(f, g), for all g ∈ D. Then Φ is P-convex. Also from
above, we have

Φ(g) 6⊂ −C(f), ∀g ∈ K.
If f0 ∈ CoreDK, we set f = f0, otherwise, we set f = h, where h is from
assumption (vi). Then we always have Φ(f) ⊂ −C(f). Using Lemma 3.4, we
conclude Φ(g) 6⊂ −C(f), foa all g ∈ D. That is,

G(f0, g) +H(f0, g) 6⊂ −C(f0), ∀g ∈ D.
�

Remark 3.6. We can replace the assumption (vii) in Theorem 3.2 by the
following assumption:

(vii)′ There exist a non-empty, convex compact subset B ⊂ D such that, for
all f ∈ D \B, there exists f0 ∈ B such that

G(h, f) +H(f, h) ⊂ −C(f0). (3.9)

Theorem 3.7. Suppose the assumptions (i)- (vii) of Theorem 3.2 and (vii)′

hold.Then there exists f0 ∈ B such that

G(f0, g) +H(f0, g) 6⊂ −C(f0), for all g ∈ D.
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Proof. For g ∈ D, define

F (g) = {f0 ∈ B : G(f0, g)−H(f0, g) 6⊂ −C(f0), ∀g ∈ D}. (3.10)

Then F has the finite intersection property. In fact, let K = conv(B ∪
{g1, g2, · · · , gn} ⊂ D. Then K is a compact convex subset of D. Applying
the hypotheses of Lemma 3.3, there exists f0 ∈ K such that

G(g, f0)−H(f0, g) 6⊂ −C(f0), ∀g ∈ D.
If f0 ∈ K \B, then by the condition (vii)′, there exists h ∈ K such that

G(h, f0)−H(f0, h) ⊂ C(f0),

which is a contradiction to (3.10). We conclude that f0 ∈ B. Hence f0 ∈⋂n
i=1 F (gi), that is, F (g) has finite intersection property. Since B is compact,

we have f0 ∈
⋂
g∈D F (g). Thus, f0 ∈ B and

G(g, f0)−H(f0, g) 6⊂ C(f0), ∀g ∈ D.
By Lemma 3.4, it follows that

G(f0, g) +H(f0, g) 6⊂ −C(f0), ∀g ∈ D.
Thia completes the proof. �

Remark 3.8.

(i) When G and H are single-valued and K ⊂ X, then Theorem 3.2 and
Theorem 3.7 reduces to Theorem 7 and Theorem 11, respectively of
Kazmi [10].

(ii) When G and H are single valued, then Theorem 3.2 and Theorem 3.7
reduces to Theorem 3.1 and Theorem 3.2, respectively of Kazmi and
Raouf [12].
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