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Abstract. In this paper, we obtain several common coupled coincidence point results and

coupled fixed point results for two mappings satisfying certain contractive condition on

complete cone b-metric spaces over Banach algebra, using the properties of spectral radiuses.

Also we give two simple examples and obtain the existence and uniqueness of solution for

some equations by using our results.

1. Introduction

In 2007, Huang and Zhang [4] introduced the concept of cone metric space
which is the generalization of metric space by replacing the set of real num-
bers with an ordering Banach space, and proved some fixed point theorems
for contractive mappings on these spaces. Recently, in ([1], [3], [4], [8]-[10],
[12]-[15]), some common fixed point theorems have been proved for contrac-
tive maps on cone metric spaces. Gnana Bhaskar and Lakshmikantham [2]
introduced the concept of coupled fixed point of a mapping F : X ×X → X
and investigated some coupled fixed point theorems in partially ordered sets.
Since then this new concept is used in various directions and also extended in
various spaces like metric space, partially ordered metric space, fuzzy metric
space, cone metric space, etc [7].
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Very recently, Liu and Xu [6] introduced the concept of cone metric space
over Banach algebra by replacing Banach space with Banach algebra and
proved some fixed point theorems of generalized Lipschitz mappings with
weaker and natural conditions on generalized Lipschitz constant k by means of
spectral radius and pointed out that it is significant to introduce this concept
because it can be proved that cone metric spaces over Banach algebras are
not equivalent to metric spaces in terms of the existence of the fixed points of
the generalized Lipschitz mappings. In the past three years, some researchers
started to study the existence problems of (coupled) fixed points for some
contractions in cone metric spaces over Banach algebras (see [5], [6], [11], [13],
[14]).

Motivated by the above works, in this paper, we obtain several common
coupled coincidence point results and coupled fixed point results for two map-
pings satisfying certain contractive condition on complete cone b-metric spaces
over Banach algebra, using the properties of spectral radiuses. Also we give
two simple examples and obtain the existence and uniqueness of solution for
some equations by using our results. Our results generalize the corresponding
results in cone metric spaces obtained by Nashie et. al. [7], Liu et. al. [6] or
Xu et. al. [10].

Let A always be a real Banach algebra. That is, A is a real Banach space
in which an operation of multiplication is defined, subject to the following
properties (for all x, y, z ∈ A, α ∈ R):

(1) (xy)z = x(yz);
(2) x(y + z) = xy + xz and (x+ y)z = xz + yz;
(3) α(xy) = (αx)y = x(αy);
(4) ‖xy‖ ≤ ‖x‖‖y‖.

In this paper, we shall assume that A is a real Banach algebra with a unit
(i.e., a multiplicative identity) e. An element x ∈ A is said to be invertible if
there is an inverse element y ∈ A such that xy = yx = e. The inverse of x is
denoted by x−1.

Let A be a real Banach algebra with a unit e and θ the zero element of A.
A nonempty closed subset P of Banach algebra A is called a cone if

(1) {θ, e} ⊂ P ;
(2) αP + βyP ⊂ P for all nonnegative real numbers α, β ;
(3) P 2 = PP ⊂ P ;
(4) P ∩ (−P ) = {θ} i.e, x ∈ P and −x ∈ P imply x = θ.

For any cone P ⊆ A, we can define a partial ordering � with respect to P
by x � y if and only if y− x ∈ P . x ≺ y stands for x � y but x 6= y. Also, we
use x � y to indicate that y − x ∈ intP , where intP denotes the interior of
P . If intP 6= ∅ then P is called a solid cone.
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Definition 1.1. Let X be a nonempty set, s ≥ 1 be a constant and A be
a real Banach algebra. Suppose the mapping d : X × X → A satisfies the
following conditions:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, y) � s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric
space over Banach algebra A.

Example 1.2. Let A = C[a, b] be the set of continuous functions on [a, b]
with the supremum. Define the multiplication in the usual way. Then A is
a Banach algebra with a unit 1. Set P = {x ∈ A : x(t) ≥ 0, t ∈ [a, b]} and
X = R. We define a mapping d : X × X → A by d(x, y)(t) = |x − y|pet for
all x, y ∈ X and for each t ∈ [a, b], where p > 1 is a constant. This makes
(X, d) into a cone b-metric space over Banach algebra A with the coefficient
s = 2p−1. But it is not a cone metric space over Banach algebra since it does
not satisfy the triangle inequality.

In the following, we always assume that (X, d) is a cone b-metric space over
Banach algebra A.

Definition 1.3. Let {xn} be a sequence in (X, d) and x ∈ X.

(1) If for every c ∈ A with θ � c, there exists a natural number N such
that d(xn, x)� c for all n > N , then {xn} is said to be convergent and
{xn} converges to x, and the point x is the limit of {xn}. We denote
this by

lim
n→∞

xn = x or xn → x (n→∞).

(2) If for all c ∈ A with θ � c, there exists a positive integer N such that
d(xn, xm)� c for all m,n > N , then {xn} is called a Cauchy sequence
in X.

(3) A cone metric space (X, d) is said to be complete if every Cauchy
sequence in X is convergent.

Definition 1.4. Let E be a real Banach space with a solid cone P . A sequence
{xn} ⊂ P is called a c−sequence if for any c ∈ A with θ � c, there exists a
positive integer N such that xn � c for all n ≥ N .

Lemma 1.5. ([8]) Let E be a real Banach space with a cone P . Then

(1) If a� b and b� c, then a� c.
(2) If a � b and b� c, then a� c.
(3) If a � b+ c for each θ � c, then a � b.
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(4) If {xn}, {yn} are sequences in E such that xn → x, yn → y and xn � yn
for all n ≥ 1, then x � y.

Lemma 1.6. ([10]) Let A ba a real Banach algebra with a unit e and P be a
solid cone in A. We define the spectral radius r(x) of x ∈ A by

r(x) = lim
n→∞

‖xn‖1/n = inf
n≥1
‖xn‖1/n.

(1) If 0 ≤ r(x) < 1, then e− x is invertible,

(e− x)−1 =
∞∑
i=0

xi and r((e− x)−1) ≤ 1

1− r(x)
.

(2) If r(x) < 1, then ‖xn‖ → 0 as n→∞.
(3) If x ∈ P and r(x) < 1, then (e− x)−1 ∈ P .
(4) If k, u ∈ P , r(k) < 1 and u � ku, then u = θ.
(5) r(x) ≤ ‖x‖ for all x ∈ A.
(6) If x, y ∈ A and x, y commute, then the following holds:

(a) r(xy) ≤ r(x)r(y),
(b) r(x+ y) ≤ r(x) + r(y) and
(c) |r(x)− r(y)| ≤ r(x− y).

Lemma 1.7. ([8], [10]) Let (X, d) be a complete cone b-metric space over
Banach algebra A and let P be a solid cone in A. Let {xn} be a sequence in
X. Then

(1) If ‖xn‖ → 0 as n→∞, then {xn} is a c−sequence.
(2) If k ∈ P is any vector and {xn} is c−sequence in P , then {kxn} is a

c−sequence.
(3) If x, y ∈ A, a ∈ P and x � y, then ax � ay.
(4) If {xn} converges to x ∈ X, then {d(xn, x)}, {d(xn, xn+p)} are c-

sequences for any p ∈ N.

Lemma 1.8. ([10]) Let P be a solid cone in a real Banach algebra A and
k ∈ P . If r(k) < 1,then the following assertions hold true:

(1) If u ∈ P and u � ku, then u = θ.
(2) If k � θ,then (e− k)−1 � θ.

Definition 1.9. ([2], [10]) Let (X, d) be a cone b-metric space over Banach
algebra A.

(1) An element (x, y) ∈ X×X is called a coupled fixed point of F : X×X →
X if x = F (x, y) and y = F (y, x).
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(2) An element (x, y) ∈ X × X is called a coupled coincidence point of
mappings F : X × X → X and g : X → X if g(x) = F (x, y) and
g(y) = F (y, x), and (gx, gy) is called coupled point of coincidence;

(3) An element (x, y) ∈ X ×X is called a common coupled fixed point of
mappings F : X ×X → X and g : X → X if x = g(x) = F (x, y) and
y = g(y) = F (y, x).

(4) The mappings F : X × X → X and g : X × X are called weakly
compatible if g(F (x, y)) = F (gx, gy) whenever g(x) = F (x, y) and
g(y) = F (y, x).

2. Main results

In this section, we give common coupled coincidence point results and cou-
pled fixed point results for two mappings S, T : X × X → X under some
natural and certain contractive condition given by fixed mapping g defined on
a complete cone b-metric space X over Banach algebra. The following results
generalize the corresponding results in cone metric spaces obtained by Nashie
et. al. [7].

Theorem 2.1. Let (X, d) be a complete cone b-metric space over Banach
algebra A and let P be a solid cone in A. Suppose that S, T : X×X → X and
g : X → X are mappings satisfying the condition:

d(S(x, y), T (u, v)) � a1d(gx, gu) + a2d(gy, gv) (2.1)

+a3d(S(x, y), gx) + a4d(T (u, v), gu)

+a5d(S(x, y), gu) + a6d(T (u, v), gx)

for all x, y, u, v ∈ X, where ai ∈ P commute for (i = 1, 2, 3, 4, 5, 6) and

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) < 1.

If S(X ×X), T (X ×X) ⊆ g(X) and g(X) is a complete subspace of X, then
S, T and g have a common coupled coincidence point in X.

Proof. Let x0 and y0 be two arbitrary elements in X. Since S(X×X) ⊆ g(X),
we can choose x1, y1 ∈ X such that gx1 = S(x0, y0) and gy1 = S(y0, x0). Again
noting T (X×X) ⊆ g(X), we can choose x2, y2 ∈ X such that gx2 = T (x1, y1)
and gy2 = T (y1, x1). Continuing this process, we construct two sequences {xn}
and {yn} in X such that gx2n+1 = S(x2n, y2n), gy2n+1 = S(y2n, x2n), gx2n+2 =
T (x2n+1, y2n+1) and gy2n+2 = T (y2n+1, x2n+1). For each n ∈ N, by the given
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conditions, we have

d(gx2k+1, gx2k+2) = d(S(x2k, y2k), T (x2k+1, y2k+1))

� a1d(gx2k, gx2k+1) + a2d(gy2k, gy2k+1)

+ a3d(S(x2k, y2k), gx2k)+a4d(T (x2k+1, y2k+1), gx2k+1)

+ a5d(S(x2k, y2k), gx2k+1)+a6d(T (x2k+1, y2k+1), gx2k)

= a1d(gx2k, gx2k+1) + a2d(gy2k, gy2k+1)

+ a3d(gx2k+1, gx2k) + a4d(gx2k+2, gx2k+1)

+ a5d(gx2k+1, gx2k+1) + a6d(gx2k+2, gx2k)

� a1d(gx2k, gx2k+1) + a2d(gy2k, gy2k+1)

+ a3d(gx2k+1, gx2k) + a4d(gx2k+2, gx2k+1) + a5 · θ
+ sa6[d(gx2k, gx2k+1) + d(gx2k+1, gx2k+2)],

which implies that

(e− a4 − sa6)d(gx2k+1, gx2k+2) � (a1 + a3 + sa6)d(gx2k, gx2k+1)

+a2d(gy2k, gy2k+1).

Since r(a4+sa6) < 1, by hypothesis and Lemma 1.6, e−(a4+sa6) is invertible.
Putting

α = (e− a4 − sa6)−1(a1 + a3 + sa6), β = (e− a4 − sa6)−1a2,
we have

d(gx2k+1, gx2k+2) � αd(gx2k, gx2k+1) + βd(gy2k, gy2k+1). (2.2)

Similarly, we have

d(gy2k+1, gy2k+2) = d(S(y2k, x2k), T (y2k+1, x2k+1))

� a1d(gy2k, gy2k+1) + a2d(gx2k, gx2k+1)

+ a3d(S(y2k, y2k), gy2k) + a4d(T (y2k+1, x2k+1), gy2k+1)

+ a5d(S(y2k, x2k), gy2k+1) + a6d(T (y2k+1, x2k+1), gy2k)

= a1d(gy2k, gy2k+1) + a2d(gx2k, gx2k+1)

+ a3d(gy2k+1, gy2k) + a4d(gy2k+2, gy2k+1)

+ a5d(gy2k+1, gy2k+1) + a6d(gy2k+2, gy2k)

� a1d(gy2k, gy2k+1) + a2d(gx2k, gx2k+1)

+ a3d(gy2k+1, gy2k) + a4d(gy2k+2, gy2k+1) + a5 · θ
+ sa6[d(gy2k, gy2k+1) + d(gy2k+1, gy2k+2)],

which implies that

d(gy2k+1, gy2k+2) � αd(gy2k, gy2k+1) + βd(gx2k, gx2k+1). (2.3)
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Adding both inequalities, we have

d(gx2k+1, gx2k+2) + d(gy2k+1, gy2k+2)

� (α+ β)[d(gx2k, gx2k+1) + d(gy2k, gy2k+1)]

= h[d(gx2k, gx2k+1) + d(gy2k, gy2k+1)]

where h = α+ β = (e− a4 − sa6)−1(a1 + a2 + a3 + sa6).
Also we have

d(gx2k+2, gx2k+3)+d(gy2k+2, gy2k+3)=h[d(gx2k+1, gx2k+2)+d(gy2k+1, gy2k+2)].

Therefore

d(gxn, gxn+1) + d(gyn, gyn+1) � h[d(gxn−1, gxn) + d(gyn−1, gyn)]

...

� hn[d(gx0, gx1) + d(gy0, gy1)].

By hypothesis and Lemma 1.6, we have

r(h) ≤ r((e− a4 − sa6)−1)r(a1 + a2 + a3 + sa6)

≤ r(a1) + r(a2) + r(a3) + sr(a6)

1− r(a4)− sr(a6)
, <

1

s

which means that e − h is invertible, (e − h)−1 =
∑∞

i=0 h
n and ‖hn‖ → 0 as

n→∞.
Now if δn = d(gxn, gxn+1) + d(gyn, gyn+1), then the above relation implies

δn � hδn−1 � · · · � hnδ0.
For m > n, we have

d(gxn, gxm) + d(gyn, gym) � s[d(gxn, gxn+1) + d(gxn+1, gxm)]

+ s[d(gyn, gyn+1) + d(gyn+1, dym)]

� sd(gxn, gxn+1) + s2d(gxn+1, gxn+2)

+ s2d(gxn+2, gxm) + sd(gyn, gyn+1)

+ s2d(gyn+1, gyn+2) + s2d(gyn+2, gym)

� · · ·
� sδn + s2δn+1 + · · ·+ sm−nδm−1

� s(hn + shn+1 + · · ·+ sm−n−1hm−1)δ0

= shn[e+ sh+ (sh)2 + · · ·+ (sh)m−n−1]δ0

� shn(

∞∑
i=0

(sh)i)δ0

= (e− sh)−1shnδ0,
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since r(sh) < 1 and P is closed. Since r(h) < 1, ‖hn‖ → 0 as n→∞ and so

‖(e− sh)−1shnδ0‖ ≤ ‖(e− sh)−1s‖‖hn‖‖δ0‖ → 0.

Thus for any c ∈ A with θ � c, there exists N ∈ N such that for any
n > m > N , we have

d(gxn, gxm) + d(gyn, gym) � (e− h)−1shnδ0 � c.

Thus {d(gxn, gxm) + d(gyn, gym)} is a c-sequence in P . Since

θ � d(gxn, gxm), d(gyn, gym) � d(gxn, gxm) + d(gyn, gym),

{d(gxn, gxm)} and {d(gyn, gym)} are c-sequences and so Cauchy sequence in
X. Since X is complete, there exists x ∈ X and y ∈ X such that gxn → gx
and gyn → gy as n → ∞. Now we show that gx = S(x, y) and gy = S(y, x).
Then

d(gx, S(x, y)) � sd(gx, gx2k+2) + sd(gx2k+2, S(x, y))

= sd(gx, gx2k+2) + sd(T (x2k+1, gy2k+1), S(x, y))

� sd(gx, gx2k+2) + sa1d(gx, gx2k+1) + sa2d(gy, gy2k+1)

+ sa3d(S(x, y), gx) + sa4d(T (x2k+1, y2k+1), gx2k+1)

+ sa5d(S(x, y), gx2k+1) + sa6d(T (x2k+1, y2k+1), gx)

= sd(gx, gx2k+2) + sa1d(gx, gx2k+1) + sa2d(gy, gy2k+1)

+ sa3d(S(x, y), gx) + sa4d(gx2k+2, gx2k+1)

+ sa5d(S(x, y), gx2k+1) + sa6d(gx2k+2, gx),

which implies that

d(x, S(x, y)) � s(e+ a6)d(gx, gx2k+2) + sa1d(gx, gx2k+1)

+ sa2d(gy, gy2k+1) + sa3d(gx, S(x, y))

+ sa4d(gx2k+2, gx2k+1) + sa5d(S(x, y), gx2k+1).

Since d(S(x, y), gx2k+1) � sd(S(x, y), gx) + sd(gx, gx2k+1), we have

(e− sa3 − s2a5)d(gx, S(x, y)) � (sa1 + s2a5)d(gx, x2k+1)

+ (se+ a6)d(gx, x2k+2) (2.4)

+ sa4d(gx2k+1, gx2k+2) + sa2d(gy, y2k+1)

Since r(sa3 + s2a5) < 1, e − sa3 − s2a5 is invertible. By Lemma 1.6 and
Lemma 1.7, the right-hand side of (2.4) is a c-sequence and so d(x, S(x, y)) = θ.
Therefore gx = S(x, y). Similarly

(e− sa3 − s2a5)d(gy, S(x, y)) � (sa1 + s2a5)d(gy, gy2k+1)

+ (se+ a6)d(gy, y2k+2) (2.5)

+ sa4d(gy2k+1, gy2k+2)+sa2d(gx, gx2k+1)
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and so we can prove that gy = S(y, x). It follows similarly that

gx = T (x, y) and gy = T (y, x).

Therefore (x, y) is a common coupled coincidence point of S and T .
In order to prove the uniqueness, let (x′, y′) ∈ X ×X be another common

coupled coincidence point of S and T . Then

d(gx, gx′) = d(S(x, y), T (x′, y′))

� a1d(gx, gx′) + a2d(gy, gy′) + a3d(S(x, y), gx)

+ a4d(T (x′, y′), gx′) + a5d(S(x, y), gx′) + a6d(T (x′, y′), gx)

= a1d(gx, gx′) + a2d(gy, gy′) + a3d(gx, gx)

+ a4d(gx′, gx′) + a5d(gx, gx′) + a6d(gx′, gx)

= (a1 + a5 + a6)d(gx′, gx) + a2d(gy, gy′)

which implies that

(e− a1 − a5 − a6)d(gx, gx′) � a2d(gy, gy′).

Since r(a1 + a5 + a6) < 1, e− (a1 + a5 + a6) is invertible and

d(gx, gx′) � (e− a1 − a5 − a6)−1a2d(gy, gy′).

Similarly we can prove that

d(gy, gy′) � (e− a1 − a5 − a6)−1a2d(gx, gx′).

Adding both sides, we get

d(gx, gx′) + d(y, y′) � (e− a1 − a5 − a6)−1a2[d(gx, gx′) + d(gy, gy′)].

Since r((e− a1 − a5 − a6)−1a2) < 1, by Lemma 1.8, we have

d(gx, gx′) + d(gy, gy′) = θ.

Therefore gx = gx′ and gy = gy′. �

Corollary 2.2. Let (X, d) be a complete cone metric space over Banach al-
gebra A and let P be a solid cone in A. Suppose that S, T : X ×X → X and
g : X → X are mappings satisfying the condition

d(S(x, y), T (u, v)) � a1d(gx, gu) + a2d(gy, gv)

+ a3d(S(x, y), gx) + a4d(T (u, v), gu)

+ a5d(S(x, y), gu) + a6d(T (u, v), gx)

for all x, y, u, v ∈ X, where ai ∈ P commute for i = 1, 2, 3, 4, 5, 6 and

r(a1) + r(a2) + r(a3) + r(a4) + r(a5) + 2r(a6) < 1.

If S(X ×X), T (X ×X) ⊆ g(X) and g(X) is a complete subspace of X, then
S, T and g have a common coupled coincidence point in X.
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Proof. Taking s = 1 in Theorem 2.1, we get the required result. �

The following results generalize the corresponding results in cone metric
spaces obtained by Nashie, Rohen and Thokchom [7].

Corollary 2.3. Let (X, d) be a complete b-cone metric space over Banach
algebra A and let P be a solid cone in A. Suppose that S, T : X ×X → X are
mappings satisfying the condition:

d(S(x, y), T (u, v)) � a1d(x, u) + a2d(y, v) + a3d(S(x, y), x)

+ a4d(T (u, v), u) + a5d(S(x, y), u) + a6d(T (u, v), x)

for all x, y, u, v ∈ X, where ai ∈ P commute for i = 1, 2, 3, 4, 5, 6 and

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) < 1.

Then S and T have a common coupled fixed point in X.

Proof. Taking g = I in Theorem 2.1, we get the required result. �

Corollary 2.4. ([7]) Let (X, d) be a complete metric space. Suppose that
S, T : X ×X → X are two mappings satisfying the condition:

d(S(x, y), T (u, v)) � a1d(x, u) + a2d(y, v) + a3d(S(x, y), x)

+ a4d(T (u, v), u) + a5d(S(x, y), u) + a6d(T (u, v), x)

for all x, y, u, v ∈ X, where ai (i = 1, 2, 3, 4, 5, 6) are non-negative real numbers

such that
∑5

i=1 ai+2a6 < 1. Then S and T have a common coupled fixed point
in X.

Proof. Taking A = R, s = 1 and g = I in Theorem 2.1, we get the required
result. �

Corollary 2.5. Let (X, d) be a complete cone b-metric space over the Banach
algebra A and let P be a solid cone. Suppose that T : X × X → X and
g : X → X are mappings satisfying the condition:

d(T (x, y), T (u, v)) � a1d(gx, gu) + a2d(gy, gv)

+ a3d(T (x, y), gx) + a4d(T (u, v), gu)

+ a5d(T (x, y), gu) + a6d(T (u, v), gx)

for all x, y, u, v ∈ X, where ai ∈ P (i = 1, 2, 3, 4, 5, 6) commute and

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) < 1.

If T (X × X) ⊆ g(X) and g(X) is a complete subspace of X, then T and g
have a coupled coincidence point in X.

Proof. Taking S = T in Theorem 2.1, we get the required result. �
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Corollary 2.6. Let (X, d) be a complete cone b-metric space over the Banach
algebra A and let P be a solid cone. Suppose that S : X × X → X and
g : X → X are mappings satisfying the condition:

d(S(x, y), S(u, v)) � αd(gx, gu) + βd(gy, gv)

for all x, y, u, v ∈ X, where α, β ∈ P commute and r(α) + r(β) < 1
s . If

S(X ×X) ⊆ g(X) and g(X) is a complete subspace of X, then S and g have
a coupled coincidence point in X.

Proof. Taking T = S and a1 = α, a2 = β, a3 = a4 = a5 = a6 = θ in Theorem
2.1, we get the required result. �

Corollary 2.7. Let (X, d) be a complete cone b-metric space over the Banach
algebra A and let P be a solid cone. Suppose that S, T : X × X → X and
g : X → X are mappings satisfying the condition:

d(S(x, y), T (u, v)) � ad(gx, gu) + bd(gy, gv)

+ c[d(S(x, y), gx) + d(T (u, v), gu)]

+ e[d(S(x, y), gu) + d(T (u, v), gx)]

for all x, y, u, v ∈ X, where a, b, c, e ∈ P commute and

s(r(a) + r(b)) + (s+ 1)r(c) + (2s2 + s)r(e) < 1.

If S(X ×X), T (X ×X) ⊆ g(X) and g(X) is a complete subspace of X, then
S, T and g have a common coupled coincidence point in X.

Proof. Taking a1 = a, a2 = b, a3 = a4 = c, a5 = a6 = d in Theorem 2.1, we get
the required result. �

Corollary 2.8. Let (X, d) be a complete cone metric space over the Banach
algebra A and let P be a solid cone. Suppose that T : X × X → X and
g : X → X are mappings satisfying the condition:

d(T (x, y), T (u, v)) � ad(gx, gu) + bd(gy, gv)

+ c[d(T (x, y), gx) + d(T (u, v), gu)]

+ e[d(T (x, y), gu) + d(T (u, v), gx)]

for all x, y, u, v ∈ X, where a, b, c, e ∈ P commute and

s(r(a) + r(b)) + (s+ 1)r(c) + (2s2 + s)r(e) < 1.

If T (X × X) ⊆ g(X) and g(X) is a complete subspace of X, then T and g
have a coupled coincidence point in X.

Proof. Taking S = T in Corollary 2.7, we get the required result. �
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Theorem 2.9. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let
F,G : X×X → X and g : X → X be mappings which satisfy all the conditions
of Theorem 2.1. If F,G and g are weakly compatible, then F,G and g have
a unique common coupled fixed point. Moreover, common fixed point of F,G
and g is of the form (u, u) for some u ∈ X.

Proof. First we claim that coupled point of coincidence is unique. Suppose
that (x, y), (x∗, y∗) ∈ X ×X with

gx = F (x, y) = G(x, y), gy = F (y, x) = G(y, x)

and

gx∗ = F (x∗, y∗) = G(x∗, y∗), gy∗ = F (y∗, x∗) = G(y∗, x∗).

Using (2.2), we get

d(gx, gx∗) = d(F (x, y), G(x∗, y∗)) � a1d(gx, gx∗) + a2d(gy, gy∗)

+ a3d(F (x, y), gx) + a4d(G(x∗, y∗), gx∗)

+ a5d(F (x, y), gx∗) + a6d(G(x∗, y∗), gx)

= (a1 + a5 + a6)d(gx, gx∗) + a2d(gy, gy∗)

and so

d(gx, gx∗) � (a1 + a5 + a6)d(gx, gx∗) + a2d(gy, gy∗). (2.6)

Similarly, we have

d(gy, gy∗) � (a1 + a5 + a6)d(gy, gy∗) + a2d(gx, gx∗). (2.7)

Thus

d(gx, gx∗) + d(gy, gy∗) � (a1 + a2 + a5 + a6)(d(gx, gx∗) + d(gy, gy∗)).

Since s ≥ 1 and r(a1) + r(a2) + r(a5) + r(a6) < 1, by Lemma 1.8(1), we
have d(gx, gx∗) + d(gy, gy∗) = θ, which implies that gx = gx∗ and gy = gy∗.
Similarly we prove that gx = gy∗ and gy = gx∗. Thus gx = gy. Therefore
(gx, gx) is a unique coupled point of coincidence of F,G and g.

Now, let g(x) = u. Then we have u = g(x) = F (x, x) = G(x, x). By weak
compatibility of F,G and g, we have

g(u) = g(g(x)) = g(F (x, x)) = F (gx, gx) = F (u, u),

g(u) = g(g(x)) = g(G(x, x)) = G(gx, gx) = G(u, u).

Then (gu, gu) is a coupled point of coincidence of F,G and g. Consequently
gu = gx. Therefore u = gu = F (u, u) = G(u, u). Hence (u, u) is a unique
common coupled fixed point of F,G and g. This completes the proof. �

Now we give two examples as an application of the main result.



Common coupled coincidence point results for two maps 85

Example 2.10. Let A = C1
R[0, 1] and define a norm on A by ‖x‖ = ‖x‖∞ +

‖x′‖∞ for x ∈ A. Define multiplication in A as just pointwise multiplication.
Then A is a real Banach algebra with unit e = 1(e(t) = 1 for all t ∈ [0, 1]).
The set P = {x ∈ A : x ≥ 0} is a cone in A. Moreover, P is not normal.

Let X = {1, 2, 3}. Define d : X ×X → A by

d(1, 2)(t) = d(2, 1)(t) = d(2, 3)(t) = d(3, 2)(t) = et,

d(1, 3)(t) = d(3, 1)(t) = 2et, d(x, x)(t) = θ

for all t ∈ [0, 1] and for each x ∈ X. Then (X, d) is a solid cone metric space
over Banach algebra without normality [10].

Define two mappings S, T : X × X → X by S(x, y) = 1 for any (x, y) ∈
X ×X, and

T (x, y) =

{
2, (x, y) = (3, 1)

1, otherwise.

Let g = I be the identity mapping and let a1, a2, a3, a4, a5, a6 ∈ P defined
with

a1(t) = a2(t) = a4(t) = 0.11, a3(t) = a6(t) = 0.1, a5(t) = 0.35

for all t ∈ [0, 1]. Then, by definition of spectral radius,

r(a1) = r(a2) = r(a4) = 0.11, r(a3) = r(a6) = 0.1, r(a5) = 0.35

and so
∑5

i=1 r(ai) + 2r(a6) < 1. Since

d(S(x, y), T (3, 1))(t) = d(1, 2)(t)) = et

for any x, y ∈ X, by careful calculations, we can get that for any x, y, u, v ∈ X,
S and T satisfy the contractive condition (2.2) of Theorem 2.1. Hence the
hypotheses are satisfied and so by Theorem 2.1, S and T have a common
coupled fixed point in X. Since S(1, 1) = 1 = T (1, 1), (1, 1) is a unique
coupled fixed point of S and T .

Now we present an example showing that Corollary 2.5 is a proper extension
of known results. In this example, the conditions of Corollary 2.5 are fulfilled.

Example 2.11. (The case of normal cone) Let A = R2 and define a norm on
A by ‖(x1, x2)‖ = |x1| + |x2| for x = (x1, x2) ∈ A. Define the multiplication
in A by

(x1, x2)(y1, y2) = (x1y1, x2y2).

Put P = {x = (x1, x2) ∈ A : x1, x2 ≥ 0}. Then P is a normal cone and A is a
real Banach algebra with unit e = (1, 1).

Let X = [0,∞). Define a mapping d : X ×X → A by

d(x, y) = (|x− y|2, |x− y|2)



86 Young-Oh Yang

for each x, y ∈ X. Then (X, d) is a complete cone b-metric space over Banach
algebra with the coefficient s = 2. But it is not a cone metric space over
Banach algebra since it does not satisfy the triangle inequality.

Consider the mappings S : X ×X → X and g : X → X defined by

S(x, y) = x+
| sin y|

2
and g(x) = 3x.

Then S(X ×X) ⊆ g(X) = X. Let a1, a2, a3, a4, a5, a6 ∈ P defined with

a1 = (
2

9
,
2

9
), a2 = (

1

18
,

1

18
), a3 = (

1

54
,

1

54
),

a4 = (
1

27
,

1

27
), a5 = (

1

108
,

1

108
), a6 = (

111

2, 000
,

111

2, 000
).

Then, by definition of spectral radius,

r(a1) =
2

9
, r(a2) =

1

18
, r(a3) =

1

54
,

r(a4) =
1

27
, r(a5) =

1

108
, r(a6) =

111

2, 000
,

and so

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) = 0.9996 < 1.

By careful calculations, it is easy to verify that for any x, y, u, v ∈ X, S and
g satisfy the contractive condition of Corollary 2.5. Thus by Corollary 2.5, S
and g have a coupled coincidence point in a complete cone b-metric space X
over Banach algebra A = R2. Since S(0, 0) = g0 = 0, (0, 0) is the common
coupled coincidence point of F and g.

Theorem 2.12. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f, h : X → X and g : X → X satisfy

d(fx, hu) � a1d(gx, gu) + a2d(gy, gv) + a3d(fx, gx)

+ a4d(hu, gu) + a5d(fx, gu) + a6d(hu, gx) (2.8)

for all x, y, u, v ∈ X, where ai ∈ P commute for i = 1, 2, 3, 4, 5, 6 and

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) < 1.

If f(X), h(X) ⊆ g(X) and g(X) is a complete subspace of X, then f, h and g
have a common coupled coincidence point.

Moreover, if f, h and g are weakly compatible, then f, h and g have a unique
common coupled fixed point.
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Proof. Let f, h : X → X be mappings satisfying the hypotheses. Define the
mappings S, T : X ×X → X by

S(x, y) = fx, T (x, y) = hx, x, y ∈ X.
From (2.8), we get

d(S(x, y), T (u, v)) � a1d(gx, gu) + a2d(gy, gv)

+ a3d(S(x, y), gx) + a4d(T (u, v), gu)

+ a5d(S(x, y), gu) + a6d(T (u, v), gx)

for all x, y, u, v ∈ X. Thus the contractive condition (2.2) is satisfied.
On the other hand, from the definitions of S and T , we have S(X ×X) =

f(X) ⊆ g(X) and T (X × X) = h(X) ⊆ g(X). Also, g(X) is a complete
subspace of (X, d). Now, applying Theorem 2.1, we obtain that S, T and g
have a coupled coincidence point in X, that is, there exists (x, y) ∈ X×X such
that gx = S(x, y) = T (x, y) and gy = S(y, x) = T (y, x). From the definitions
of S and T , this implies that gx = fx = hx, that is, x is a coincidence point
of f, h and g.

If f, h and g are weakly compatible, then S, T and g are weakly compatible.
By Theorem 2.9, S, T and g have a unique common coupled fixed point and
so f, h and g have a unique common coupled fixed point. �

Corollary 2.13. Let (X, d) be a complete cone metric space over Banach
algebra A with the underlying solid cone P . Let the mappings f, h : X → X
and g : X → X satisfy

d(fx, hu) � a1d(gx, gu) + a2d(gy, gv) + a3d(fx, gx)

+ a4d(hu, gu) + a5d(fx, gu) + a6d(hu, gx)

for all x, y, u, v ∈ X, where ai ∈ P commute for i = 1, 2, 3, 4, 5, 6 and

r(a1) + r(a2) + r(a3) + r(a4) + r(a5) + 2r(a6) < 1.

If f(X), h(X) ⊆ g(X) and g(X) is a complete subspace of X, then f, h and g
have a common coupled coincidence point.

Proof. The proof follows by taking s = 1 in Theorem 2.12. �

Corollary 2.14. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f : X → X and g : X → X satisfy

d(fx, fu) � a1d(gx, gu) + a2d(gy, gv) + a3d(fx, gx)

+ a4d(fu, gu) + a5d(fx, gu) + a6d(fu, gx)
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for all x, y, u, v ∈ X, where ai ∈ P commute for i = 1, 2, 3, 4, 5, 6 and

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) < 1.

If f(X) ⊆ g(X) and g(X) is a complete subspace of X, then f and g have a
coupled coincidence point.

Proof. The proof follows by taking h = f in Theorem 2.12.
�

Corollary 2.15. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f, h : X → X satisfy

d(fx, hu) � a1d(x, u) + a2d(y, v) + a3d(fx, x)

+ a4d(hu, u) + a5d(fx, u) + a6d(hu, x)

for all x, y, u, v ∈ X, where ai ∈ P commute for i = 1, 2, 3, 4, 5, 6 and

s[r(a1) + r(a2) + r(a3)] + r(a4) + s2r(a5) + (s2 + s)r(a6) < 1.

Then f and h have a common coupled fixed point.

Proof. The proof follows by taking g = I in Theorem 2.12. �

The following Corollary is a generalization of Theorem 2.1 of Liu et. al. [6]
or Theorem 3.1 of Xu et. al. [10] or Corollary 2.10 of Huang and Radenovic
[5].

Corollary 2.16. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f, h : X → X and g : X → X satisfy

d(fx, hy) � kd(gx, gy)

for all x, y ∈ X, where k ∈ P and r(k) < 1
s . If f(X), h(X) ⊆ g(X) and g(X) is

a complete subspace of X, then f, h and g have a common coupled coincidence
point.

Proof. The proof follows by taking a1 = k, a2 = a3 = a4 = a5 = a6 = θ in
Theorem 2.12. �

If g = I in the above Corollary, then f and h have a common fixed point.

Corollary 2.17. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let
f : X → X be a self-map of X satisfying

d(fx, fy) � k[d(x, fmz) + d(y, fmz)] (2.9)
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for some m ∈ N and all x, y, z ∈ X, where k ∈ P and r(k) < 1
s . Then f has a

unique fixed point in X.

Proof. Let u ∈ X. In (2.9), put x = fm−1u, y = fmu, z = u. Then we have
d(Tmu, Tm+1u) � kd(Tm−1u, Tmu) which is a special case of Corollary 2.16.
Thus f has a fixed point p in X. Condition (2.9) implies uniqueness. �

Corollary 2.18. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f, h : X → X and g : X → X satisfy

d(fx, hu) � k[d(gx, gu) + d(gy, gv)]

for all x, y, u, v ∈ X, where k ∈ P and r(k) < 1
2s . If f(X), h(X) ⊆ g(X) and

g(X) is a complete subspace of X, then f, h and g have a common coupled
coincidence point.

Proof. The proof follows by taking a1 = a2 = k, a3 = a4 = a5 = a6 = θ in
Theorem 2.12. �

The following Corollary is a generalization of Theorem 2.3 of Liu et. al. [6]
or Theorem 3.3 of Xu et. al. [10] or Corollary 2.11 of Huang and Radenovic
[5].

Corollary 2.19. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f, h : X → X and g : X → X satisfy

d(fx, hy) � k[d(fx, gx) + d(hy, gy)]

for all x, y ∈ X, where k ∈ P and r(k) < 1
s+1 . If f(X), h(X) ⊆ g(X) and

g(X) is a complete subspace of X, then f, h and g have a common coupled
coincidence point.

Proof. The proof follows by taking a1 = a2 = a5 = a6 = θ, a3 = a4 = k in
Theorem 2.12. �

Corollary 2.20. ([5]) Let (X, d) be a complete cone b-metric space over Ba-
nach algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let
the mappings f : X → X and g : X → X satisfy

d(fx, fy) � k[d(fx, gx) + d(fy, gy)]

for all x, y ∈ X, where k ∈ P and r(k) < 1
s+1 . If f(X) ⊆ g(X) and g(X) is a

complete subspace of X, then f and g have a coupled coincidence point.

Proof. The proof follows by taking h = f in Corollary 2.19. �
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If g = I in the above Corollary, then f has a fixed point.

The following corollary is a generalization of Theorem 2.2 of Liu et. al. [6]
or Theorem 3.2 of Xu et. al. [10].

Corollary 2.21. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mappings f, h : X → X and g : X → X satisfy

d(fx, hy) � k[d(fx, gy) + d(hy, gx)]

for all x, y ∈ X, where k ∈ P and (2s2 + s)r(k) < 1. If f(X), h(X) ⊆ g(X)
and g(X) is a complete subspace of X, then f, h and g have a common coupled
coincidence point.

Proof. The proof follows by taking a1 = a2 = a3 = a4 = θ, a5 = a6 = k in
Theorem 2.12. �

Corollary 2.22. Let (X, d) be a complete cone b-metric space over Banach
algebra A with the coefficient s ≥ 1 and the underlying solid cone P . Let the
mapping f : X → X satisfy

d(fx, fy) � k[d(fx, y) + d(fy, x)]

for all x, y ∈ X, where k ∈ P and (2s2 + s)r(k) < 1. Then f has a fixed point.

Proof. The proof follows by taking h = f and g = I in Corollary 2.21. �

3. Applications

In this section, we shall apply the obtained conclusions to deal with the
existence and uniqueness of solution for some equations. First of all, we refer
to the following coupled equations:{

F (x, y) = 0,

G(x, y) = 0,
(3.1)

where F,G : R2 → R are two mappings.

Theorem 3.1. For (3.1), if there exists 0 < L < 1
2 such that for all the pairs

(x1y1), (x2, y2) ∈ R2, it satisfies that

|F (x1, y1)− F (x2, y2) + x1 − x2| ≤
√
L|x1 − x2|,

|G(x1, y1)−G(x2, y2) + y1 − y2| ≤
√
L|y1 − y2|.

Then the coupled equation (3.1) has a unique common solution in R2.
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Proof. Let A = R2 with the norm ‖(u1, u2)‖ = |u1|+|u2| and the multiplication
by

uv = (u1, u2)(v1, v2) = (u1v1, u2v2).

Let P = {u = (u1, u2) ∈ A : u1, u2 ≥ 0}. It is clear that P is a normal cone
and A is a Banach algebra with a unit e = (1, 1). Put X = R2 and define a
mapping d : X ×X → A by

d((x1, y1), (x2, y2)) = (|x1 − x2|2, |y1 − y2|2).
It is easy to see that (X, d) is a complete cone b-metric space over Banach
algebra A with the coefficient s = 2. Now define the mappings S, T : X → X
by

S(x, y) = (x, y), T (x, y) = (F (x, y) + x,G(x, y) + y).

Then

d(T (x1, y1), T (x2, y2)) = d((F (x1, y1) + x1, G(x1, y1) + y1),

(F (x2, y2) + x2, G(x2, y2) + y2))

= (|F (x1, y1)− F (x2, y2) + x1 − x2|2,
|G(x1, y1)−G(x2, y2) + y1 − y2|2)

� (L|x1 − x2|2, L|y1 − y2|2)
= (L,L)(|x1 − x2|2, |y1 − y2|2)
= (L,L)d(S(x1, y1), S(x2, y2)).

Since

‖(L,L)n‖1/n = ‖(Ln, Ln)‖1/n = (Ln + Ln)1/n = 21/nL→ L <
1

2

as n → ∞, we have r((L,L)) < 1
2 . Now if we choose k = (L,L), then all

conditions of Corollary 2.16 are satisfied. Hence, by Corollary 2.16, S and T
have a unique common fixed point in X. In other words, the coupled equation
(3.1) has a unique common solution in R2. �
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