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Abstract. In this paper, we study linear differential equations arising from the generating
functions of Mahler and Sheffer-Mahler polynomials. We give explicit identities for the
Mahler and Sheffer-Mahler polynomials. In addition, we investigate the zeros of the Sheffer-

Mabhler polynomials with numerical methods.

1. INTRODUCTION

Recently, nonlinear differential equations arising from the generating func-
tions of special polynomials are studied by Kim and Kim in order to give
explicit identities for special polynomials(see [1, 4]). In this paper, since the
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Mahler polynomial is not a Sheffer sequence, we introduce a new Sheffer-
Mahler polynomials that become sheffer sequence. Next, we study linear dif-
ferential equations arising from the generating functions of the Mahler and
Sheffer-Mahler polynomials. We give explicit identities for the Mahler and
Sheffer-Mahler polynomials. In order to study the Mahler and Sheffer-Mahler
polynomials, we must understand the structure of the Mahler and Sheffer-
Mahler polynomials. Therefore, using computer, a realistic study for the
Mabhler and Sheffer-Mahler polynomials is very interesting. Finally, we ob-
serve an interesting phenomenon of ‘scattering’ of the zeros of the the Mahler
and Sheffer-Mahler polynomials in complex plane.

2. PRELIMINARIES

Mabhler polynomials, g,(z)(n > 0), were introduced by Mahler in his work
on the zeros of the incomplete gamma functions(see [5]). They are defined by
the generating function (see [2, 5, 8]):

t e
Zgn = e, (2.1)

The first few examples of Mahler polynomlals are
go(z) =1, @qi(z) =0, g(z)=-2z, gs(z)=—z,
)= —x+32%, gs(x) = —2 41022, ge(x) = —2 + 252 — 1523,
gr(z) = —x + 562% — 10523, gs(x) = —2 + 11927 — 4902 + 1052*,  (2.2)
) = —x + 24622 — 191823 + 1260z,
gio(x) = —z 4 5012% — 68252 + 94502* — 9452°.

1 1
We observe here that, as 1+t —e! = _Etz §t3 — - -is not a delta series,
the Mahler polynomials g, (z) are not a Sheffer sequence. To remedy this, we

introduce, what we call, the Sheffer-Mahler polynomials M, (z) given by the
generating function:

G =G(t,x) ZM = er(1-t=e") (2.3)

The first few of them are
My(z) =1, M(z) = -2z, My(z)= —x+ 4z
Ms(z) = —x + 62° — 82, My(z) = —z + 112 — 2423 4 1624,
Ms(z) = —z + 202 — 7023 + 80z — 3225,
Mg(z) = —x + 372 — 19523 + 3402 — 2402° + 6425,

(2.4)
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1 1
As1—t—et = -2t — th - §t3 — -+ is a delta series, M,(x) is a Sheffer
sequence. In Section 4, we will display the curves of M, (z)(—1 < z < 1), for
n=1,2,3,...,10, and study the zeros of M, (x), for some values of n.

As is well known, the Bell polynomials Bel,,(z) are given by the generating

function (see [3]):
(e > tn
el — ZBEZ"(:I})H'
n=0

From (2.1), we note that

t o
Zgn($)*‘ = 6x(1+t )
n=0
_ efx(etfl) xt
k=0 m=0
= i z”: " Belj(—z)a" " “
k n!
n=0 \k=0
Thus we get
- n n—k
gn(z) = i Bely(—z)x (n>0). (2.5)
k=0
In the same way, we have
" /n
My (z) =" ( k) Belp(—x)(—z)" % (n>0). (2.6)

k=0

It is not difficult to show that
Bel,(—zx) = Zn: Sa(n,m)(—z)™,
m=0
where Sa(n, m) is the Stirling number of the second kind given by (see [8])
" = Zn: Sa(n,l)(z);.
=0

Here, (z);=2(x —1)---(z —1+1),(l > 1), and (x) = 1.
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3. MAIN RESULTS

In this section, we study linear differential equations arising from the gen-
erating functions of Mahler polynomials.

Let
F = F(t,z) = 0=, (3.1)
Then, by (3.1), we get
d d t t
F(l) _°F el r(l+t—e’) ) _ x(l+t—e?) 1 t
il hr) =g (6 ) ‘ 2(l=¢) (3.2)
=x(1—e"F,
FO = L p) ooty p 4 a1 — )P
dt (3-3)
= —ze!F + 22(1 — e)?F = (2% — (22 + 2)e’ + 22e*)F,
and
d
F® = ZF® = (2% — (323 4 322 + 2)e! + (32% + 32%)e? — 2P F.

dt

Continuing this process, we are led to put

N
FN) — (%)NF(t,x) = (Z ai(N,a;)eit> F, (N=0,1,2,...). (3.4)
=0

Taking the derivative with respect to ¢ in (3.4), we have

i1y dAFDY) 2l it ul it =)
F =0 = Zzai(N,x)e F+ Zai(N,a:)e F

=0 i=0
N N
= (Z iai(N,x)eit> F+ (Z ai(N,x)eit> (x — 2z )F
= {Z(x+z)az(]\7 x E::UaZ (N,x)e (’H)t}
i=0 =0
N N+1
:{Z(x—l—zal]\fx ZimleiU }F
=0

On the other hand, by replacing N by N 4 1 in (3.4), we get

N+1 '
FV+D) — (Z a;i(N + 1,m)e“> F. (3.6)

1=0
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Comparing the coefficients on both sides of (3.5) and (3.6), we obtain

ag(N +1,z) = xzag(N,z), any1(N +1,2) = —zan(N,x), (3.7)
and
a;(N +1,2) = —za;—1(N,z) + (z +i)a;(N,z),(1 <i < N). (3.8)
In addition, by (3.4), we get
F=FO = 44(0,2)F. (3.9)

Thus, by (3.9), we get
ap(0,x) = 1. (3.10)
It is not difficult to show that

1
z—ze ) F =F1 = a;(1, z)e"
( JF=F (; i(1, ) >F (3.11)

= (ao(1,z) 4+ a1(1,z)e") F.
Thus, by (3.11), we also get

ap(l,z) =z, ai(l,z)=—=x. (3.12)
From (3.7), we note that
ag(N+1,z) = zag(N,z) = 22ag(N—1,2) = - - - = 2Vap(1,2) = 2V, (3.13)
and
an41(N +1,2) = —zay(N,z) = (—z)?any_1(N — 1, 2) (3.14)
= .= (—2)Na (1,2) = (—2)V L. '
For i =1,2,3 in (3.8), we have
N
ar(N+1,2)=—2) (z+ 1) ap(N — k), (3.15)
k=0
N—1
ay(N+1,2) = —x (z 4+ 2)Fa (N — k, z), (3.16)
k=0
and
N-2
as(N+1,2) = —x (x4 3)*ag(N — k, ). (3.17)
k=0
Continuing this process, we can deduce that, for 1 <i < N,
N—i+1
ai(N+1,z)=—-z Y (z+i)ai1(N—k,z). (3.18)

k=0
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Theorem 3.1. For N =0,1,2,..., the linear functional equations

N
N) = <Zai(N, x)eit> F
i=0

F = F(t,z) = *0+=¢)

have a solution

I

where
ag(N, z) = 2N
and
—i N—i—k;  N—i—kj——kg / i _
ai(N,z) = (—z)° Z Z Z <H(w + l)kz) PNk
ki=0 k;—1=0 k1=0 =1
(1<i<N).

Proof. First, we give explicit expressions for a;(N +1,z). By (3.13)-(3.18), we
get

a1 (N + 1,z) *—Z‘Z (x4 1D ag(N — ki, z)

n (3.19)
=—x Z (x4 1)kgN =k
k1=0
N-1
as(N +1,z) = —x Z (x4 2)%2a1 (N — ko, z)
ka=0
N—1 N—1—ky (3.20)
TS e
ko=0 Fk1=0
and
az3(N +1,z)
N—2
=—x Z (z 4 3)3ay(N — ks, z)
k3=0

N—-2 N—-2—k3z N—2—k3z—

2)° Z Z Z (fU +3)8 (2 4 2)k2 (g + 1)k g N ks ke k12

(3.21)



Differential equations associated with Mahler and Sheffer-Mahler polynomials 99

Continuing this process, we have

az(N + 1, .’L')
N i+1 N—i+1—k; N—i+1—k;——ko 7 )
S S S O
ki—1=0 k1=0 =1

(3.22)
This complete the proof. O

Theorem 3.2. For k,N =0,1,2,..., we have

N kg

PREED 30 Dl () [ AP (3.23)

(1<i<N).

Proof. From (2.1), we note that
d s k
(N) _ (24N _ 7
FU = () Fltw) = go g4 () 7 (3.24)

From Theorem 3.1 and (3.24), we can derive the following equation:

00 tk N 4
ng+N(x)g = FN) = (Z a;(N, fﬂ)en) F
k=0 ’

i=0
N o] tl o tm
= Zaz(]\f,x) (Zwﬂy) (Z gm(x)m|>
z;(] =0 . m=0 (325)
> k t
= Zaz(N,x) (Z Z ( )zkmgm(x)k'>
=0 k=0 m=0
tk
-3 (23 () ratensinno) g

By comparing the coefficients on both sides of (3.25), we get assertion (3.23).
O
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Corollary 3.3. For N =0,1,2,..., we have

N
gn(z) = Zai(N, x).
i=0
Proof. Let us take k = 0 in (3.23). This complete the proof of Corollary
3.3. O

Here we consider the Sheffer-Mahler polynomials M, (x) given by the gen-
erating function
o
G=G(t,2) =7 = 3" My (2)

n=0

t?’l,
o (3.26)
As was noted in Section 1, while the Mahler polynomials g, (z) are not Shef-
fer polynomials, the newly introduced Sheffer-Mahler polynomials M, (x) are.
Clearly, they are Sheffer polynomials associated to the delta series f(t), with
the compositional inverse f(t) of f(t) given by

fi#)=1—t—¢" (3.27)

We will be as brief as possible and leave the details to the reader, as everything
can be carried out analogously to Section 2.
By taking the derivatives of G in (3.26), we get

d
aW) = %G(t’x) =(—xz— xet)G (3.28)
and
d\2

G = (dt) G(t,x) = (2% + (222 — z)e' + 2% G. (3.29)

From (3.28) and (3.29), we can guess that

o _ (4)" 3
_(a _ , it '

G = (dt> G(t, ) (; bi(N, z)e ) G. (3.30)

Taking the derivative of (3.30) with respect to ¢ gives

N N+1
GIN+L) _ {Z(Z — 2)b;(N, z)e' — Z xb;_1(N, a:)e"t} G. (3.31)

i=0 i=1
On the other hand, by replacing N by N + 1 in (3.30), we obtain

N+1 ‘
G+ — (Z bi(N + 1,x)e“> G. (3.32)
=0
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Comparing (3.31) and (3.32), we have the following recurrence relations:
bo(N + 1,2) = —zbo(N,z), byi1(N +1,2) = —zby(N,x), (3.33)
and
bi(N +1,2) = —xzbj_1(N,z) + (i — 2)bj(N,z), (1<i<N). (3.34)
In addition, from (3.30) with N = 0,1 and (3.28), we easily get

bo(0,2) =1, bo(l,z) =bi(1l,2) = —=. (3.35)
From (3.33) and (3.34), we obtain
bo(N +1,2) = (—2)¥, by a (N + 1) = (~2)V+, (3.36)

Also, proceeding just as in Section 2, from (3.34) we can deduce that, for
1<i<N,
N—i+1
(N+1,2)=-2 > (i—2)"_1(N -k ). (3.37)
k=0
In turn, from (3.37) we can get the following explicit expressions for b;(N +
1,z).
bi(N +1,x)
N—itl N—itl—k;  N—itl—ki—-—ky / i
SE YD SR SR
k=0  ki_1=0 k1=0
(1<i<N+1).
(3.38)

Theorem 3.4. For N =0,1,2,..., the family of linear functional equations

N
G = (Z bi(N,as)eit> G
i=0

have a solution G = G(t,z) = 171 where

bo(N,z) = (—2)",
N—i N—i—Fk; N—i—k;j—--—ko ( [

bi(N, .CC) = (—:L’)l Z e Z H(_x + l)kl> (_aj)N*i*Z§=1 kl’

ki=0 k;—1=0 k1=0 =1
(1<i<N).

Proof. Note here that (3.38) is also valid for i = N + 1(see (3.36)). Thus, from
(3.33), (3.38), and (3.30), this complete the proof of Theorem 3.4. O
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Theorem 3.5. For k,N =0,1,2,..., we have

In particular, for k =0,

N
My(z) =) b(N,z), (N=0,1,2,...).
=0
Proof. From (3.26) we get
GWN) = a\" G= ZM )tk (3.39)
- dt k+N L .

On the other hand, from Theorem 3.4 we have

N
GWN) = (Z bi (N, x)eit> G

=0

N 00 t sm
=> bi(N,z) Z i (@) — (3.40)
=0 =0 m=
00 k tk
-3 (L3 (F) o) &
=0 l= 0
Comparing (3.39) with (3.40) gives Theorem 3.5. O

4. ZEROS OF THE SHEFFER-MAHLER POLYNOMIALS

This section aims to demonstrate the benefit of using numerical investiga-
tion to support theoretical prediction and to discover new interesting pattern
of the zeros of the Sheffer-Mahler polynomials M, (z). By using computer,
the Sheffer-Mahler polynomials M,,(x) can be determined explicitly. A few of
them are
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(z) = —x + 2022 — 702° + 80z — 3227,

(z) = —x + 372? — 19523 4 3402* — 2402° + 6425,

(z) = —x 4 7022 — 53923 + 133021 — 14002° + 67225 — 12827,

Mg(z) = —x + 1352% — 149823 + 5033z — 72802° + 51522° — 179227 + 25625,

We display the shapes of the Sheffer-Mahler polynomials M, (z) and investi-
gate the zeros of the Sheffer-Mahler polynomials M, (x). For n = 1,--- 10,
we can draw a plot of the Sheffer-Mahler polynomials M, (z), respectively.
This shows the ten plots combined into one. We display the shape of M, (x),
—1 < 2 < 1. (Figurel). We investigate the beautiful zeros of the Sheffer-

X

SEE

200 - b

100 - b

Mn(X)

-100 - b

-200 - b

-10 -05 0.0 05 1.0

X

FIGURE 1. Curve of the Sheffer-Mahler polynomials M, (x)

Mabhler polynomials M, (z) by using a computer. We plot the zeros of the
M, (z) for n = 5,10,15,20 and = € C(Figure 2). In Figure 2(top-left), we
choose n = 5. In Figure 2(top-right), we choose n = 10. In Figure 2(bottom-
left), we choose n = 15. In Figure 2(bottom-right), we choose n = 20. Prove
that M, (z),z € C, has Im(x) = 0 reflection symmetry analytic complex func-
tions(see Figure 2). Stacks of zeros of the Sheffer-Mahler polynomials M, (z)
for 1 <n < 20 from a 3-D structure are presented(Figure 3). Our numerical
results for approximate solutions of real zeros of the Sheffer-Mahler polyno-
mials M, (x) are displayed(Tables 1, 2).
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Table 1. Numbers of real and complex zeros of M, (z)
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FIGURE 2. Zeros of M,(z)
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FIGURE 3. Stacks of zeros of M, (z),1 <n <20

Plot of real zeros of M,(x) for 1 < n < 30 structure are presented(Figure
4). We observe a remarkable regular structure of the complex roots of the

20ree o [} [} [} [ ) [ ) [ )
o0 © [ J [ J [ ] [ ] [ ]
o0 O [ J [ J [ ] [ ] [ ] [ ]
e @ [ J [ J [ J [ ] [ ] [ ]
e @ [ J [ J [ ] [ ] [ ]

15 @0 @ [ J [ ] [ ] [ ]
o0 O [ J [ ] [ ]
X X J [ J [ J [ ] [ ] [ ]
o @ [ J [ J [ ] [ ]

n o @ [ J [ ] [ ]

10 re® [ J [ J [ ]
X X} [ J [ ]
o @ [ J [ ] [ ]
o @ [ ] [ ]
5_J [ ] [ ]

5 o0 [ ]
o @
= J [ ] [ ]
@ [ ]
@
0 1 2 3

Re(x)

FIGURE 4. Real zeros of M, (z) for 1 <n <20

Sheffer-Mahler polynomials M, (x). We hope to verify a remarkable regular
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structure of the complex roots of the Sheffer-Mahler polynomials M, (z) (Table
1). Next, we calculated an approximate solution satisfying M, (x) =0,z € C.
The results are given in Table 2.

Table 2. Approximate solutions of M, (z) =0,z € C

degree n x
1 0
2 0, 0.25000
3 0, 0.25000, 0.50000
4 0, 0.11966,
0.69017 — 0.21447¢, 0.69017 + 0.21447:
) 0, 0.062862, 0.41719,
1.00998 — 0.41418i, 1.00998 4 0.414184
6 0, 0.032188, 0.29492, 0.76667,
1.3281 — 0.6189¢, 1.3281 + 0.61891
7 0, 0.016235, 0.20182, 0.63436, 1.0966,
1.6505 — 0.8386¢, 1.6505 + 0.83864
8 0, 0.0081192, 0.13688, 0.48452, 1.0598, 1.3520,
1.9794 — 1.0701, 1.9794 + 1.0701¢

Remark 4.1. We can consider the more general problems based on numerical
experiments. How many zeros does M, (x) have? We are not able to decide if
M, (z) = 0 has n distinct solutions(see Table 2). We would also like to know
the number of complex zeros Cyy,, () of M, (x), Im(z) # 0. Since n is the degree
of the polynomial M, (), the number of real zeros Ry, () lying on the real line
Im(x) = 01is then Ry, (z) = n— Cyy,(2), Where Cyy,, () denotes complex zeros.
See Table 1 for tabulated values of Ry, (,) and Cyy, (). The authors have no
doubt that investigations along these line will lead to a new approach employ-
ing numerical method in the research field of the Sheffer-Mahler polynomials
M,,(xz) which appear in applied mathematics and mathematical physics(see

(6], [7])-
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