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Abstract. In this paper, we study linear differential equations arising from the generating

functions of Mahler and Sheffer-Mahler polynomials. We give explicit identities for the

Mahler and Sheffer-Mahler polynomials. In addition, we investigate the zeros of the Sheffer-

Mahler polynomials with numerical methods.

1. Introduction

Recently, nonlinear differential equations arising from the generating func-
tions of special polynomials are studied by Kim and Kim in order to give
explicit identities for special polynomials(see [1, 4]). In this paper, since the
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Mahler polynomial is not a Sheffer sequence, we introduce a new Sheffer-
Mahler polynomials that become sheffer sequence. Next, we study linear dif-
ferential equations arising from the generating functions of the Mahler and
Sheffer-Mahler polynomials. We give explicit identities for the Mahler and
Sheffer-Mahler polynomials. In order to study the Mahler and Sheffer-Mahler
polynomials, we must understand the structure of the Mahler and Sheffer-
Mahler polynomials. Therefore, using computer, a realistic study for the
Mahler and Sheffer-Mahler polynomials is very interesting. Finally, we ob-
serve an interesting phenomenon of ‘scattering’ of the zeros of the the Mahler
and Sheffer-Mahler polynomials in complex plane.

2. Preliminaries

Mahler polynomials, gn(x)(n ≥ 0), were introduced by Mahler in his work
on the zeros of the incomplete gamma functions(see [5]). They are defined by
the generating function (see [2, 5, 8]):

F = F (t, x) =

∞∑
n=0

gn(x)
tn

n!
= ex(1+t−et). (2.1)

The first few examples of Mahler polynomials are

g0(x) = 1, g1(x) = 0, g2(x) = −x, g3(x) = −x,

g4(x) = −x+ 3x2, g5(x) = −x+ 10x2, g6(x) = −x+ 25x2 − 15x3,

g7(x) = −x+ 56x2 − 105x3, g8(x) = −x+ 119x2 − 490x3 + 105x4,

g9(x) = −x+ 246x2 − 1918x3 + 1260x4,

g10(x) = −x+ 501x2 − 6825x3 + 9450x4 − 945x5.

(2.2)

We observe here that, as 1+ t− et = − 1

2!
t2− 1

3!
t3− · · · is not a delta series,

the Mahler polynomials gn(x) are not a Sheffer sequence. To remedy this, we
introduce, what we call, the Sheffer-Mahler polynomials Mn(x) given by the
generating function:

G = G(t, x) =
∞∑
n=0

Mn(x)
tn

n!
= ex(1−t−et). (2.3)

The first few of them are

M0(x) = 1, M1(x) = −2x, M2(x) = −x+ 4x2,

M3(x) = −x+ 6x2 − 8x3, M4(x) = −x+ 11x2 − 24x3 + 16x4,

M5(x) = −x+ 20x2 − 70x3 + 80x4 − 32x5,

M6(x) = −x+ 37x2 − 195x3 + 340x4 − 240x5 + 64x6.

(2.4)
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As 1 − t − et = −2t − 1

2!
t2 − 1

3!
t3 − · · · is a delta series, Mn(x) is a Sheffer

sequence. In Section 4, we will display the curves of Mn(x)(−1 ≤ x ≤ 1), for
n = 1, 2, 3, . . . , 10, and study the zeros of Mn(x), for some values of n.

As is well known, the Bell polynomials Beln(x) are given by the generating
function (see [3]):

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
.

From (2.1), we note that

∞∑
n=0

gn(x)
tn

n!
= ex(1+t−et)

= e−x(et−1)ext

=

( ∞∑
k=0

Belk(−x)
tk

k!

)( ∞∑
m=0

xm
tm

m!

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

)
Belk(−x)xn−k

)
tn

n!
.

Thus we get

gn(x) =

n∑
k=0

(
n

k

)
Belk(−x)xn−k (n ≥ 0). (2.5)

In the same way, we have

Mn(x) =

n∑
k=0

(
n

k

)
Belk(−x)(−x)n−k (n ≥ 0). (2.6)

It is not difficult to show that

Beln(−x) =

n∑
m=0

S2(n,m)(−x)m,

where S2(n,m) is the Stirling number of the second kind given by (see [8])

xn =
n∑

l=0

S2(n, l)(x)t.

Here, (x)l = x(x− 1) · · · (x− l + 1), (l ≥ 1), and (x)0 = 1.
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3. Main Results

In this section, we study linear differential equations arising from the gen-
erating functions of Mahler polynomials.

Let

F = F (t, x) = ex(1+t−et). (3.1)

Then, by (3.1), we get

F (1) =
d

dt
F (t, x) =

d

dt

(
ex(1+t−et)

)
= ex(1+t−et)x(1− et)

= x(1− et)F,
(3.2)

F (2) =
d

dt
F (1) = x(−et)F + x(1− et)F (1)

= −xetF + x2(1− et)2F = (x2 − (2x2 + x)et + x2e2t)F,
(3.3)

and

F (3) =
d

dt
F (2) = (x3 − (3x3 + 3x2 + x)et + (3x3 + 3x2)e2t − x3e3t)F.

Continuing this process, we are led to put

F (N) =
( d
dt

)N
F (t, x) =

(
N∑
i=0

ai(N,x)eit

)
F, (N = 0, 1, 2, . . .). (3.4)

Taking the derivative with respect to t in (3.4), we have

F (N+1) =
dF (N)

dt
=

(
N∑
i=0

iai(N, x)eit

)
F +

(
N∑
i=0

ai(N, x)eit

)
F (1)

=

(
N∑
i=0

iai(N, x)eit

)
F +

(
N∑
i=0

ai(N, x)eit

)
(x− xet)F

=

{
N∑
i=0

(x+ i)ai(N,x)eit −
N∑
i=0

xai(N, x)e(i+1)t

}
F

=

{
N∑
i=0

(x+ i)ai(N,x)eit −
N+1∑
i=1

xai−1(N,x)eit

}
F.

(3.5)

On the other hand, by replacing N by N + 1 in (3.4), we get

F (N+1) =

(
N+1∑
i=0

ai(N + 1, x)eit

)
F. (3.6)
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Comparing the coefficients on both sides of (3.5) and (3.6), we obtain

a0(N + 1, x) = xa0(N, x), aN+1(N + 1, x) = −xaN (N, x), (3.7)

and

ai(N + 1, x) = −xai−1(N, x) + (x+ i)ai(N, x), (1 ≤ i ≤ N). (3.8)

In addition, by (3.4), we get

F = F (0) = a0(0, x)F. (3.9)

Thus, by (3.9), we get
a0(0, x) = 1. (3.10)

It is not difficult to show that

(x− xet)F = F (1) =

(
1∑

i=0

ai(1, x)e
it

)
F

=
(
a0(1, x) + a1(1, x)e

t
)
F.

(3.11)

Thus, by (3.11), we also get

a0(1, x) = x, a1(1, x) = −x. (3.12)

From (3.7), we note that

a0(N+1, x) = xa0(N, x) = x2a0(N−1, x) = · · · = xNa0(1, x) = xN+1, (3.13)

and

aN+1(N + 1, x) = −xaN (N, x) = (−x)2aN−1(N − 1, x)

= · · · = (−x)Na1(1, x) = (−x)N+1.
(3.14)

For i = 1, 2, 3 in (3.8), we have

a1(N + 1, x) = −x

N∑
k=0

(x+ 1)ka0(N − k, x), (3.15)

a2(N + 1, x) = −x

N−1∑
k=0

(x+ 2)ka1(N − k, x), (3.16)

and

a3(N + 1, x) = −x
N−2∑
k=0

(x+ 3)ka2(N − k, x). (3.17)

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

ai(N + 1, x) = −x

N−i+1∑
k=0

(x+ i)kai−1(N − k, x). (3.18)
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Theorem 3.1. For N = 0, 1, 2, . . . , the linear functional equations

F (N) =

(
N∑
i=0

ai(N, x)eit

)
F

have a solution

F = F (t, x) = ex(1+t−et),

where

a0(N, x) = xN

and

ai(N, x) = (−x)i
N−i∑
ki=0

N−i−ki∑
ki−1=0

· · ·
N−i−ki−···−k2∑

k1=0

(
i∏

l=1

(x+ l)kl

)
xN−i−

∑i
l=1 kl ,

(1 ≤ i ≤ N).

Proof. First, we give explicit expressions for ai(N +1, x). By (3.13)-(3.18), we
get

a1(N + 1, x) = −x

N∑
k1=0

(x+ 1)k1a0(N − k1, x)

= −x
N∑

k1=0

(x+ 1)k1xN−k1 ,

(3.19)

a2(N + 1, x) = −x

N−1∑
k2=0

(x+ 2)k2a1(N − k2, x)

= (−x)2
N−1∑
k2=0

N−1−k2∑
k1=0

(x+ 2)k2(x+ 1)k1xN−k2−k1−1

(3.20)

and

a3(N + 1, x)

= −x

N−2∑
k3=0

(x+ 3)k3a2(N − k3, x)

= (−x)3
N−2∑
k3=0

N−2−k3∑
k2=0

N−2−k3−k2∑
k1=0

(x+ 3)k3(x+ 2)k2(x+ 1)k1xN−k3−k2−k1−2.

(3.21)
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Continuing this process, we have

ai(N + 1, x)

= (−x)i
N−i+1∑
ki=0

N−i+1−ki∑
ki−1=0

· · ·
N−i+1−ki−···−k2∑

k1=0

(
i∏

l=1

(x+ l)kl

)
xN−i+1−

∑i
l=1 kl .

(3.22)
This complete the proof. �

Theorem 3.2. For k,N = 0, 1, 2, . . . , we have

gk+N (x) =

N∑
i=0

k∑
m=0

(
k

m

)
ik−mai(N, x)gm(x), (3.23)

where

a0(N, x) = xN ,

ai(N, x) = (−x)i
N−i∑
ki=0

N−i−ki∑
ki−1=0

· · ·
N−i−ki−···−k2∑

k1=0

(
i∏

l=1

(x+ l)kl

)
xN−i−

∑i
l=1 kl ,

(1 ≤ i ≤ N).

Proof. From (2.1), we note that

F (N) =
( d
dt

)N
F (t, x) =

∞∑
k=0

gk+N (x)
tk

k!
. (3.24)

From Theorem 3.1 and (3.24), we can derive the following equation:

∞∑
k=0

gk+N (x)
tk

k!
= F (N) =

(
N∑
i=0

ai(N, x)eit

)
F

=
N∑
i=0

ai(N, x)

( ∞∑
l=0

il
tl

l!

)( ∞∑
m=0

gm(x)
tm

m!

)

=
N∑
i=0

ai(N, x)

( ∞∑
k=0

k∑
m=0

(
k

m

)
ik−mgm(x)

tk

k!

)

=
∞∑
k=0

(
N∑
i=0

k∑
m=0

(
k

m

)
ik−mai(N,x)gm(x)

)
tk

k!
.

(3.25)

By comparing the coefficients on both sides of (3.25), we get assertion (3.23).
�
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Corollary 3.3. For N = 0, 1, 2, . . . , we have

gN (x) =
N∑
i=0

ai(N, x).

Proof. Let us take k = 0 in (3.23). This complete the proof of Corollary
3.3. �

Here we consider the Sheffer-Mahler polynomials Mn(x) given by the gen-
erating function

G = G(t, x) = ex(1−t−et) =

∞∑
n=0

Mn(x)
tn

n!
. (3.26)

As was noted in Section 1, while the Mahler polynomials gn(x) are not Shef-
fer polynomials, the newly introduced Sheffer-Mahler polynomials Mn(x) are.
Clearly, they are Sheffer polynomials associated to the delta series f(t), with
the compositional inverse f̄(t) of f(t) given by

f̄(t) = 1− t− et. (3.27)

We will be as brief as possible and leave the details to the reader, as everything
can be carried out analogously to Section 2.

By taking the derivatives of G in (3.26), we get

G(1) =
d

dt
G(t, x) = (−x− xet)G (3.28)

and

G(2) =

(
d

dt

)2

G(t, x) = (x2 + (2x2 − x)et + x2e2t)G. (3.29)

From (3.28) and (3.29), we can guess that

G(N) =

(
d

dt

)N

G(t, x) =

(
N∑
i=0

bi(N, x)eit

)
G. (3.30)

Taking the derivative of (3.30) with respect to t gives

G(N+1) =

{
N∑
i=0

(i− x)bi(N, x)eit −
N+1∑
i=1

xbi−1(N,x)eit

}
G. (3.31)

On the other hand, by replacing N by N + 1 in (3.30), we obtain

G(N+1) =

(
N+1∑
i=0

bi(N + 1, x)eit

)
G. (3.32)
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Comparing (3.31) and (3.32), we have the following recurrence relations:

b0(N + 1, x) = −xb0(N,x), bN+1(N + 1, x) = −xbN (N, x), (3.33)

and

bi(N + 1, x) = −xbi−1(N, x) + (i− x)bi(N, x), (1 ≤ i ≤ N). (3.34)

In addition, from (3.30) with N = 0, 1 and (3.28), we easily get

b0(0, x) = 1, b0(1, x) = b1(1, x) = −x. (3.35)

From (3.33) and (3.34), we obtain

b0(N + 1, x) = (−x)N+1, bN+1(N + 1, x) = (−x)N+1. (3.36)

Also, proceeding just as in Section 2, from (3.34) we can deduce that, for
1 ≤ i ≤ N,

bi(N + 1, x) = −x

N−i+1∑
k=0

(i− x)kbi−1(N − k, x). (3.37)

In turn, from (3.37) we can get the following explicit expressions for bi(N +
1, x).

bi(N + 1, x)

= (−x)i
N−i+1∑
ki=0

N−i+1−ki∑
ki−1=0

· · ·
N−i+1−ki−···−k2∑

k1=0

(
i∏

l=1

(−x+ l)kl

)
(−x)N−i+1−

∑i
l=1 kl ,

(1 ≤ i ≤ N + 1).
(3.38)

Theorem 3.4. For N = 0, 1, 2, . . . , the family of linear functional equations

G(N) =

(
N∑
i=0

bi(N,x)eit

)
G

have a solution G = G(t, x) = ex(1−t−et), where

b0(N, x) = (−x)N ,

bi(N, x) = (−x)i
N−i∑
ki=0

N−i−ki∑
ki−1=0

· · ·
N−i−ki−···−k2∑

k1=0

(
i∏

l=1

(−x+ l)kl

)
(−x)N−i−

∑i
l=1 kl ,

(1 ≤ i ≤ N).

Proof. Note here that (3.38) is also valid for i = N+1(see (3.36)). Thus, from
(3.33), (3.38), and (3.30), this complete the proof of Theorem 3.4. �
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Theorem 3.5. For k,N = 0, 1, 2, . . . , we have

Mk+N (x) =

N∑
i=0

k∑
l=0

(
k

l

)
ilbi(N,x)Mk−l(x).

In particular, for k = 0,

MN (x) =
N∑
i=0

bi(N,x), (N = 0, 1, 2, . . .).

Proof. From (3.26) we get

G(N) =

(
d

dt

)N

G =
N∑
k=0

Mk+N (x)
tk

k!
. (3.39)

On the other hand, from Theorem 3.4 we have

G(N) =

(
N∑
i=0

bi(N, x)eit

)
G

=

N∑
i=0

bi(N,x)

∞∑
l=0

il
tl

l!

∞∑
m=0

Mm(x)
tm

m!

=

∞∑
k=0

(
N∑
i=0

k∑
l=0

(
k

l

)
ilbi(N,x)Mk−l(x)

)
tk

k!
.

(3.40)

Comparing (3.39) with (3.40) gives Theorem 3.5. �

4. Zeros of the Sheffer-Mahler polynomials

This section aims to demonstrate the benefit of using numerical investiga-
tion to support theoretical prediction and to discover new interesting pattern
of the zeros of the Sheffer-Mahler polynomials Mn(x). By using computer,
the Sheffer-Mahler polynomials Mn(x) can be determined explicitly. A few of
them are

M0(x) = 1,

M1(x) = −2x,

M2(x) = −x+ 4x2,

M3(x) = −x+ 6x2 − 8x3,

M4(x) = −x+ 11x2 − 24x3 + 16x4,
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M5(x) = −x+ 20x2 − 70x3 + 80x4 − 32x5,

M6(x) = −x+ 37x2 − 195x3 + 340x4 − 240x5 + 64x6,

M7(x) = −x+ 70x2 − 539x3 + 1330x4 − 1400x5 + 672x6 − 128x7,

M8(x) = −x+ 135x2 − 1498x3 + 5033x4 − 7280x5 + 5152x6 − 1792x7 + 256x8.

We display the shapes of the Sheffer-Mahler polynomials Mn(x) and investi-
gate the zeros of the Sheffer-Mahler polynomials Mn(x). For n = 1, · · · , 10,
we can draw a plot of the Sheffer-Mahler polynomials Mn(x), respectively.
This shows the ten plots combined into one. We display the shape of Mn(x),
−1 ≤ x ≤ 1. (Figure1). We investigate the beautiful zeros of the Sheffer-

-1.0 -0.5 0.0 0.5 1.0

-200

-100

0

100

200

x

MnHxL

Figure 1. Curve of the Sheffer-Mahler polynomials Mn(x)

Mahler polynomials Mn(x) by using a computer. We plot the zeros of the
Mn(x) for n = 5, 10, 15, 20 and x ∈ C(Figure 2). In Figure 2(top-left), we
choose n = 5. In Figure 2(top-right), we choose n = 10. In Figure 2(bottom-
left), we choose n = 15. In Figure 2(bottom-right), we choose n = 20. Prove
that Mn(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex func-
tions(see Figure 2). Stacks of zeros of the Sheffer-Mahler polynomials Mn(x)
for 1 ≤ n ≤ 20 from a 3-D structure are presented(Figure 3). Our numerical
results for approximate solutions of real zeros of the Sheffer-Mahler polyno-
mials Mn(x) are displayed(Tables 1, 2).
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0.0
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0 1 2 3 4 5
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

ReHxL

ImHxL

Figure 2. Zeros of Mn(x)

Table 1. Numbers of real and complex zeros of Mn(x)

degree n real zeros complex zeros

1 1 0
2 2 0
3 3 0
4 2 2
5 3 2
6 4 2
7 5 2
8 6 2
9 5 4
10 6 4
11 7 4
12 8 4
13 9 4
14 8 6
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6

ReHxL

-4
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ImHxL

5
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15

20

n

Figure 3. Stacks of zeros of Mn(x), 1 ≤ n ≤ 20

Plot of real zeros of Mn(x) for 1 ≤ n ≤ 30 structure are presented(Figure
4). We observe a remarkable regular structure of the complex roots of the

0 1 2 3
ReHxL

5

10

15

20

n

Figure 4. Real zeros of Mn(x) for 1 ≤ n ≤ 20

Sheffer-Mahler polynomials Mn(x). We hope to verify a remarkable regular
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structure of the complex roots of the Sheffer-Mahler polynomialsMn(x) (Table
1). Next, we calculated an approximate solution satisfying Mn(x) = 0, x ∈ C.
The results are given in Table 2.

Table 2. Approximate solutions of Mn(x) = 0, x ∈ C

degree n x

1 0

2 0, 0.25000

3 0, 0.25000, 0.50000

4 0, 0.11966,

0.69017− 0.21447i, 0.69017 + 0.21447i

5 0, 0.062862, 0.41719,

1.00998− 0.41418i, 1.00998 + 0.41418i

6 0, 0.032188, 0.29492, 0.76667,

1.3281− 0.6189i, 1.3281 + 0.6189i

7 0, 0.016235, 0.20182, 0.63436, 1.0966,

1.6505− 0.8386i, 1.6505 + 0.8386i

8 0, 0.0081192, 0.13688, 0.48452, 1.0598, 1.3520,

1.9794− 1.0701i, 1.9794 + 1.0701i

Remark 4.1. We can consider the more general problems based on numerical
experiments. How many zeros does Mn(x) have? We are not able to decide if
Mn(x) = 0 has n distinct solutions(see Table 2). We would also like to know
the number of complex zeros CMn(x) ofMn(x), Im(x) ̸= 0. Since n is the degree
of the polynomial Mn(x), the number of real zeros RMn(x) lying on the real line
Im(x) = 0 is then RMn(x) = n−CMn(x), where CMn(x) denotes complex zeros.
See Table 1 for tabulated values of RMn(x) and CMn(x). The authors have no
doubt that investigations along these line will lead to a new approach employ-
ing numerical method in the research field of the Sheffer-Mahler polynomials
Mn(x) which appear in applied mathematics and mathematical physics(see
[6], [7]).
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