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Abstract. In this paper we consider the problem of quadratic linear min-max regulator

problem on a UMD (Unconditional Martingale Differences) Banach space where the system

is to be regulated by output feedback subject to measurement uncertainty. The problem is to

find an optimal feedback policy (an operator valued function) that minimizes the maximum

risk (or loss). We prove existence of an optimal policy, as an output feedback operator valued

function, and present the necessary conditions of optimality. Also we present a convergence

theorem based on the necessary conditions of optimality. The results presented here are new

even in the Hilbert space setting.

1. Introduction

In this paper we consider a class of linear stochastic systems on Banach
spaces subject to measurement uncertainty (noise) and regulated by output
feedback control. This is very different from the classical regulator problem
on two different fronts. First, the optimal policy is based on output feedback
rather than state feedback. Second, the output measurement is noisy or un-
certain but bounded with no probabilistic structure assumed. The feedback
operator must be chosen as a strongly measurable operator valued function
taking values from a bounded subset of the space of Linear operators endowed
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with the strong operator topology. The objective is to find the optimal feed-
back control law that minimizes the maximum risk or, equivalently, minimizes
the maximum loss. In a recent paper [2] we studied similar problems for infinite
dimensional deterministic uncertain systems. The question of existence of op-
timal feedback controls have been studied in [5] and more recently in [1]. Here
we consider an infinite dimensional uncertain stochastic system and develop
necessary conditions for min-max problems. The min-max problems involving
uncertain stochastic dynamic systems considered here are rarely studied in the
literature though such problems are more realistic and natural. The proba-
ble reason is the difficulty encountered in constructing optimal strategies for
mini-max problems with stochastic dynamic constraints.

The rest of the paper is organized as follows. In section 2, we introduce
the system model and present the problem considered in the paper. In section
3, we present the basic assumptions including a brief discussion on the ques-
tion of existence and uniqueness of solutions. In section 4, we present some
preparatory results in terms of necessary conditions for potentially extreme
uncertainty in the system and their characterization. In section 5, we present
the major results of this paper proving existence of optimal policies (optimal
output feedback operator valued functions) and present the necessary condi-
tions of optimality. Also we present some results extending the uncertainty
set from the closed unit ball B1(Y ) to a ball Br(Y ), r ≥ 0. In section 6, we
present a result on the convergence of an algorithm based on the necessary
conditions of optimality developed in section 5.

2. System model and formulation of control problem

The system is governed by the following set of equations:

dx = Axdt+B(t)udt+ σ(t)dWH(t), x(0) = x0, (2.1)

y(t) = L(t)x+ ξ(t) (2.2)

u(t) = K(t)y(t), t ∈ I, (2.3)

on a Banach space E. The first equation represents the dynamic system (to be
controlled), a linear stochastic evolution equation on a Banach space E, the
second equation represents the sensor observing the sate x in an uncertain or
noisy environment ξ, and the third equation represents the controller that uses
the output data y to deliver the control signal. The operator valued function
B represents the actuator (controller), σ represents the diffusion operator, WH

represents the H-Brownian motion where H is a separable Hilbert space; L
represents the observer (or the measurement operator) of the state x , ξ rep-
resents uncertainty in the observed (or measured) output y, and K represents



Min-max strategy for LQR problem on Banach spaces 129

the output feedback controller. The objective (cost) functional is given by

J(K, ξ) ≡ (1/2)E

{∫ T

0
< Q(t)x, x > dt+ < Mx(T ), x(T ) >

}
(2.4)

where E(·) denotes the expectation operation, Q is a positive and symmetric
operator valued function taking values from B0(I,L(E,E∗)) and the operator
M ∈ L(E,E∗) is also positive and symmetric. The objective is to find a
controller K that minimizes the maximum loss (or penalty). This is equivalent
to minimizing the maximum risk and hence we are faced with the min-max
problem:

inf
K∈Bad

sup
ξ∈D

J(K, ξ) ≡ inf{sup{J(K, ξ), ξ ∈ D},K ∈ Bad}, (2.5)

where D denotes the set (class) of measurement uncertainties and Bad denotes
the class of admissible feedback operators to be defined shortly.

Stochastic convolutions are well defined in the class of general UMD (un-
conditional martingale difference sequences) Banach spaces as discussed in
Neerven, Veraar, Weis,[9]. For simplicity we consider UMD-type-2 Banach
spaces only. However we believe that the results presented here also hold for
general UMD spaces. For details on UMD spaces see also [Burkholder, 13].
Since UMD spaces are reflexive, it is clear that both Q(t), t ∈ I, and M, along
with their duals, take values in L(E,E∗).

3. Basic Assumptions and Existence of Solutions

Let H be a separable real Hilbert space and WH a H-cylindrical Brownian
motion on a complete filtered probability space (Ω,F ,Ft≥0, P ) where Ft≥0

is a nondecreasing family of subsigma algebras of the sigma algebra F . We
introduce the following assumptions:

(A1) : The operator A is the infinitesimal generator of a C0 semigroup
S(t), t ≥ 0, on a Banach space E where E is a UMD-type-2 Banach
space.

(A2) : The operator valued function B is measurable in the strong operator
topology and belongs to the space B0(I,L(U,E)) where U is another
real Hilbert space.

(A3) : The operator valued function σ ∈ B0(I, γ(H,E)) the space of bounded
strongly measurable operator valued functions taking values in the
space of γ-Radonifying operators γ(H,E)).

(A4) : The output space Y is a reflexive Banach space and L is a strongly
measurable operator valued function with values in B0(I,L(E, Y )) and
ξ is any strongly measurable function with values in the closed unit
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ball B1(Y ). We denote this class of (measurement) uncertainty by D ≡
B0(I,B1(Y )).

(A5) : The output feedback operators {K} are strongly measurable func-
tions defined on I and taking values in Λ ⊂ L(Y,U), a closed bounded
convex set, which is compact with respect to the strong operator topol-
ogy τso. Let Bad ≡ B(I,Λ) denote the admissible class of feedback
operators equipped with the Tychnoff product topology denoted by
τtp.

Combining the equations (2.1)-(2.3) we obtain the following linear stochastic
system:

dx = Axdt+BKLxdt+BKξdt+ σdWH , x(0) = x0, t ∈ I ≡ [0, T ], (3.1)

where all the operators are functions of time except the unbounded operator A
which is assumed to be the infinitesimal generator of a C0-semigroup S(t), t ≥
0, on the Banach space E. Using the semigroup we can reformulate this as an
integral equation as follows:

x(t) = S(t)x0 +

∫ t

0
S(t− s)B(s)K(s)L(s)x(s)ds

+

∫ t

0
S(t− s)B(s)K(s)ξ(s)ds

+

∫ t

0
S(t− s)σ(s)dWH(s), t ∈ I. (3.2)

Clearly, this is a linear stochastic integral equation. Since all the operators
{B,K,L, σ} are assumed to be bounded and measurable in the strong oper-
ator topology, and ξ is absolutely norm bounded, and σ ∈ B0(I, γ(H,E)),
using Banach fixed point theorem it is easy to verify that, for each F0-
measurable initial state x0 ∈ L2(Ω, E) and ξ ∈ D and K ∈ Bad, this equation
has a unique Ft-adapted solution x ∈ C(I, E) P -a.s. and further we have
E ‖ x ‖2C(I,E)< ∞. Thus x ∈ La2(Ω, C(I, E)) where La2(Ω, C(I, E)) denotes

the space of Ft-adapted stochastic processes with values in the Banach space
E having continuous (version) sample paths and possessing finite second mo-
ments. The fact that, pathwise, the process x(·) ≡ x(·, ω) ∈ C(I, E) follows
from the regularity of the stochastic convolution:

v(t) ≡
∫ t

0
S(t− s)σ(s)dWH(s), t ∈ I.

In Hilbert space setting, the most well known regularity result is due to
Prato, Kwapien and Zabczyk [6] and this is based on factorization technique
where the Ito integral is written as
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v(t) =
sin(απ)

π

∫
(t− s)α−1S(t− s)$(s)ds, t ∈ I,

where,

$(t) =

∫ t

0
(t− s)−αS(t− s)σ(s)dWH(s), t ∈ I.

4. Necessary conditions for extremality of uncertainty

Notice that in order to solve the problem (2.5) we must first solve the
extremality problem:

J0(K) ≡ sup{J(K, ξ), ξ ∈ D}. (4.1)

This is because, in general, inf sup 6= sup inf . Generally the following inequal-
ity holds,

inf
K∈Bad

sup
ξ∈D

J(K, ξ) ≥ sup
ξ∈D

inf
K∈Bad

J(K, ξ).

In case the reverse inequality holds, we have a saddle point. For the existence
of saddle point we need much stronger conditions on the functional J which
we usually don’t have. So first we concentrate on the extremality problem
(4.1). Since Y is a reflexive Banach space the closed unit ball B1(Y ) is weakly
compact. Thus D ≡ B0(I,B1(Y )), equipped with the Tychonoff product
topology ττπ is compact (Hausdorff). Using the integral equation (3.2) and
Gronwall inequality one can easily verify that for each K ∈ Bad, ξ −→ J(K, ξ)
is continuous on D with respect to the Tychonoff product topology ττπ. Hence,
for each K ∈ Bad, there exists a ξo ≡ ξo(K) ∈ D dependent on K such that

J(K, ξo) ≥ J(K, ξ) ∀ξ ∈ D.

Thus J0(K) is well defined. Here we are interested in the necessary conditions
of extremality of ξo.

Lemma 4.1. Consider the system (2.1)-(2.3) or equivalently the system (3.1)
and suppose the assumptions (A1)-(A5) hold. Then in order that ξo be the
extremal (optimal), it is necessary that there exists a ϕ ∈ La2(Ω, C(I, E∗))
and xo ∈ La2(Ω, C(I, E)) such that the triple {ξo, xo, ϕ} satisfies the following
inequality and the evolution equations:

E

∫ T

0
< B(t)K(t)ξo(t), ϕ(t) >E,E∗ dt

≥ E

∫ T

0
< B(t)K(t)ξ(t), ϕ(t) >E,E∗ dt, ∀ ξ ∈ D, (4.2)
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dxo = Axodt+BKLxodt+BKξodt+ σdWH , x
o(0) = x0, (4.3)

−dϕ = A∗ϕdt+ L∗K∗B∗ϕdt+Qxodt, ϕ(T ) = Mxo(T ). (4.4)

Proof. Fix K ∈ Bad and let ξo ∈ D be the maximizer of the functional ξ −→
J(K, ξ) given by the expression (2.4). Since D is convex, it is clear that
ξε ≡ ξo + ε(ξ − ξo) ∈ D for all ε ∈ [0, 1] and all ξ ∈ D. Thus we have the
following inequality:

Jo(K) ≡ J(K, ξo) ≥ J(K, ξo + ε(ξ − ξo)), ∀ε ∈ [0, 1] and ξ ∈ D. (4.5)

Let {xε, xo} denote the (mild) solutions of the evolution equation (3.1) cor-
responding to {ξε, ξo} respectively. Subtracting equation (3.2) corresponding
to ξo, from the same equation corresponding to ξε, and taking the limit ε→ 0,
and defining the process z given by z(t) ≡ lim(1/ε)(xε(t) − xo(t)), t ∈ I, we
obtain the following integral equation:

z(t) =

∫ t

0
S(t− s)B(s)K(s)L(s)z(s)ds

+

∫ t

0
S(t− s)B(s)K(s)(ξ(s)− ξo(s))ds, t ∈ I. (4.6)

In other words, z is the mild solution of the variational equation:

dz = Azdt+BKLzdt+BK(ξ − ξo)dt, z(0) = 0. (4.7)

Note that the above equation is an ordinary differential equation (not an
Îto differential equation) with random input BK(ξ − ξo). Since the operators
{B,K,L} satisfy the assumptions (A2)-(A5), it follows from the above equa-
tion that the map BK(ξ − ξo) −→ z is a bounded linear hence continuous
map from B0(I, E) to itself P -a.s. Now, for the fixed K ∈ Bad, using the cost
functional J given by (2.4) and carrying out some elementary computations,
we obtain the Gâteaux differential dJ(K, ξo, ξ − ξo) of J at ξo ∈ D in the
direction (ξ − ξo). Further, it follows from (4.5) that it satisfies the following
inequality,

dJ(K, ξo; ξ − ξo) = E

{∫ T

0
< Q(s)xo(s), z(s) >E∗,E ds

+ < Mxo(T ), z(T ) >E∗,E

}
≤ 0 (4.8)

for all ξ ∈ D. Define the functional `(z) as follows:

`(z) ≡ E

{∫ T

0
< Q(s)xo(s), z(s) >E∗,E ds + < Mxo(T ), z(T ) >E∗,E

}
. (4.9)

Since by assumption Q ∈ B0(I,L(E,E∗)) and M ∈ L(E,E∗), it is easy to
verify that z −→ `(z) is a continuous linear functional on La2(Ω, C(I, E)) ⊂
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La2(Ω, B0(I, E)). As the operators {B,K} are bounded and strongly measur-
able (strong operator topology) and ξ is also a strongly measurable function on
I with values in B1(Y ), it is clear that BK(ξ−ξo) ∈ La2(Ω, B0(I, E)). Thus the
composition map BK(ξ − ξo) −→ z −→ `(z) is a continuous linear functional
on La2(Ω, B0(I, E)). Hence by duality, there exists a µ ∈ La2(Ω,Mfa(I, E

∗)) so
that

`(z) ≡ ˜̀(BK(ξ − ξo)) ≡ E

∫ T

0
< BK(ξ − ξo), µ(dt) > (4.10)

where Mfa(I, E
∗) ≡Mfa(Σ(I), E∗) denotes the space of finitely additive vec-

tor measures defined on the sigma algebra Σ(I) (of all Lebesgue measurable
subsets of the set I) with values in the dual E∗ of the space E. For details
on vector measures see Dunford and Schwartz [7] and Diestel and Uhl Jr [18].
In a recent paper [14, Theorem 4.5, p481] Bongiornio, Piazza and Musial
have proved that, under some mild conditions, finitely additive measures with
values in Banach spaces satisfying weak Radon-Nikodym property (WRNP)
posses densities which are Henstock-Kurzweil-Pettis integrable. We denote
the space of Henstock-Kurzweil-Pettis integrable functions with values in a
Banach space X by LHKP (I,X). Since, in our case, E is a reflexive Banach
space, its dual is also a reflexive Banach space and therefore E satisfies RNP
(Radon Nikodym Property). Thus evidently E also satisfies the weak Radon-
Nikodym property (WRNP). Hence the measure µ with values in E∗ has a
density and there exists a ϕ ∈ LHKP (I, E∗) P−a.s so that µ(dt) = ϕ(t)dt.
Thus the expression (4.10) can be rewritten as

`(z) = E

∫ T

0
< BK(ξ − ξo), ϕ(t) > dt. (4.11)

Now consider the Itô differential of the duality product (z(t), ϕ(t))E,E∗ .
Since equation (4.7) is actually an ordinary differential equation on the Banach
space E, the Itô derivative of (z(t), ϕ(t)) is given by

d(z, ϕ) = (dz, ϕ) + (z, dϕ) + (<< dz, dϕ >>= 0). (4.12)

In other words, the quadratic variation term is identically zero. Since z(0) = 0,
integrating the above equation we obtain

E(z(T ), ϕ(T )) = E

∫ T

0
(Az +BKLz +BK(ξ − ξo), ϕ)dt

+E

∫ T

0
(z, dϕ) (4.13)
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and hence integrating by parts formally (as justified below) we arrive at the
following expression,

E(z(T ), ϕ(T )) = E

∫ T

0
(z, dϕ+A∗ϕdt+ L∗K∗B∗ϕdt)

+E

∫ T

0
(BK(ξ − ξo), ϕ)E,E∗dt. (4.14)

Since we are interested in the mild solutions, this can be justified by use
of Yosida approximation of the identity In ≡ nR(n,A) where R(n,A) is the
resolvent of the unbounded operator A for n ∈ ρ(A) (the resolvent set of
A). We rewrite the variational equation (4.7) by its Yosida approximation as
follows:

dzn = Azndt+ InBKLzndt+ InBK(ξ − ξo)dt, zn(0) = 0.

It is easy to verify that the mild solution zn of the above equation satisfies the

following properties: zn(t) ∈ D(A) for all t ∈ I, and that zn(t)
s−→ z(t) in E

uniformly in t ∈ I, P-a.s. Letting I∗n denote the adjoint of the operator In,
and by replacing z by zn and ϕ by I∗nϕ in equation (4.12) and carrying out
the integration by parts we obtain

(zn(T ), I∗nϕ(T )) =

∫ T

0
(zn(t), d(I∗nϕ) +A∗(I∗nϕ)dt+ (In(BKL))∗I∗nϕdt)

+

∫ T

0
(InBK(ξ − ξo), I∗nϕ)dt.

Since both In and I∗n converge in the strong operator topology to the identity
in E and E∗ respectively, by letting n→∞ in the above expression, we obtain
equation (4.14). Now setting

−dϕ = A∗ϕdt+ L∗K∗B∗ϕdt+Qxodt, t ∈ I, (4.15)

ϕ(T ) = Mxo(T ) (4.16)

we find that the identity (4.14) is equivalent to

E(z(T ),Mxo(T ))E,E∗ + E

∫ T

0
(z(t), Q(t)xo(t))E,E∗dt

= E

∫ T

0
(BK(ξ − ξo), ϕ)E,E∗dt. (4.17)

It follows from the expression (4.9) that the left hand side of the above ex-
pression coincides with the functional `(z). Then, by virtue of the expression
(4.8) we arrive at the following inequality

E

∫ T

0
(BK(ξ − ξo), ϕ)E,E∗dt ≤ 0, for all ξ ∈ D. (4.18)
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This proves the necessary condition (4.2). The pair of equations (4.15)-(4.16)
gives the necessary condition (4.4). The necessary condition (4.3) represents
the dynamic system corresponding to the extreme uncertainty ξo ∈ D and xo

is the corresponding state trajectory. This proves all the necessary conditions
as stated. �

This only solves half of the problem (2.5). Now we must solve the problem

inf{J0(K) : K ∈ Bad} (4.19)

where the functional J0(K) is given by the expression (4.1). Here we will need
the notion of duality map. Let Y be a real Banach space with the dual Y ∗ and
let 2Y

∗
denote the power set of Y ∗. In general, a mapping ∆ : Y \ ∅ −→ 2Y

∗

given by

∆(y) ≡ {y∗ ∈ Y ∗ : y∗(y) =‖ y∗ ‖‖ y ‖=‖ y ‖2=‖ y∗ ‖2}
is called the duality map. Generally this is a multivalued map and it follows
from Hahn-Banach theorem that it is nonempty. The normalized duality map
is given by a similar expression

∆(y) ≡ {y∗ ∈ B1(Y ∗) : y∗(y) =‖ y ‖} (4.20)

where B1(Y ∗) is the closed unit ball of Y ∗. Similarly one can define a duality
map from Y ∗ to Y as ν : Y ∗ \ ∅ −→ 2Y and it is given by

ν(y∗) ≡ {y ∈ B1(Y ) : (y∗, y) =‖ y∗ ‖}. (4.21)

This later duality map demands that y∗ attains its norm on the closed unit ball
B1(Y ). This is not true for general Banach spaces. However, if Y is a reflexive
Banach space, B1(Y ) is weakly compact and hence y∗ attains its norm on it
and hence ν(y∗) is well defined. In fact the norm is attained on the unit sphere
S1(Y ) = ∂B1(Y ).

Now we return to our problem and present the following intermediate result.

Lemma 4.2. Suppose the assumptions of Lemma 4.1 hold. Further, let the
Banach space Y, representing the output space, be a strictly convex reflexive
Banach space. Then there exists a unique extremal ξo in D, as stated in Lemma
4.1, and it is given by

ξo(t) = ν(K∗(t)B∗(t)ϕ(t)) for all t ∈ I. (4.22)

Proof. It follows from Lemma 4.1 that the extremal ξo must satisfy the in-
equality (4.2). By our assumptions (A2) and (A5), it is clear that for all t ∈ I,
K∗(t)B∗(t) : E∗ −→ Y ∗ and hence the inequality (4.2) is equivalent to the
following inequality

E

∫ T

0
(ξo,K∗B∗ϕ)Y,Y ∗dt ≥ E

∫ T

0
(ξ,K∗B∗ϕ)Y,Y ∗dt, ∀ ξ ∈ D. (4.23)
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By assumptions, the operator valued functions B and K are bounded and
strongly measurable, and we have seen that ϕ is E∗ valued strongly measurable
random process. Hence the process K∗B∗ϕ is strongly measurable random
process and Bochner integrable. Thus the map

ξ −→ Υ(ξ) ≡ E

∫ T

0
(ξ,K∗B∗ϕ)Y,Y ∗dt

is well defined and it is a continuous and bounded linear functional on D
with respect to the Tychonoff product topology. Since D is compact in this
topology, Υ attains its maximum at some point ξo ∈ D. Hence by Lebesgue
density argument ξo(t) ∈ ∂B1(Y ) for each t ∈ I, P -a.s. Since B1(Y ) is strictly
convex, the extremal ξo is unique. Strict convexity of Y also implies that
the duality map ν is single valued. Hence, it follows from the definition of
the duality map ν, that ξo(t) = ν(K∗(t)B∗(t)ϕ(t)) for all t ∈ I, P a.s. This
completes the proof as stated. �

Remark 4.3 It is interesting to note that the mild solution of the adjoint
equation (4.15) with the terminal condition (4.16) is actually path wise con-
tinuous though it is the weak Radon-Nikodym derivative of a finitely additive
E∗ valued vector measure µ and it belongs to La2(Ω, LHKP (I, E∗)). So it is
more smooth than that implied by the WRNP.

Remark 4.4 Recall that the uncertainty set was given by D ≡ B0(I,B1(Y ))
equipped with the Tychonoff product topology. The range of uncertainty
B1(Y ) can be easily relaxed by replacing it by any weakly compact convex
subset C ⊂ Y.

5. Optimal output feedback control policy

In this section we prove the existence of optimal output feedback control
policies and present the necessary conditions of optimality. Now using Lemma
4.2, we can rewrite the necessary conditions (4.3)-(4.4) in the closed form as
a coupled system of differential equations on the product space E × E∗ as
follows:

dx = Axdt+BKLxdt+BKν(K∗B∗ϕ)dt+ σdWH , x(0) = x0. (5.1)

−dϕ = A∗ϕdt+ L∗K∗B∗ϕdt+Qxdt, ϕ(T ) = Mx(T ). (5.2)

This pair of equations represents the system in the state of extreme uncertainty
(due to imperfect measurement) and our objective is to find an output feedback
operator K that minimizes the maximum risk as determined by the functional
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Jo(K) given by,

J0(K) ≡ (1/2)E

{∫ T

0
< Q(t)x, x > dt+ < Mx(T ), x(T ) >

}
, (5.3)

where now x is the first component of the mild solution {x, ϕ} of the two point
boundary value problem (5.1)-(5.2). Note that the system is no more linear
even though we started with linear system. Here the first question that arises
naturally is the question of existence of solution of the two point boundary
value problem (5.1)-(5.2). This raises the question of regularity of the duality
map ν. The question of regularity of the duality map is intimately related
to smoothness of the unit ball of the Banach space which is again related
to differentiability of the norm. There are well known sufficient conditions
[Zemek, 10] for Lipschitz continuity of the duality map ν defined on the dual
space Y ∗. It is known that if Y ∗ satisfies the differentiability condition, that
is, if there exists a constant c > 0 such that for all x∗ ∈ ∂B1(Y ∗) and for all
y∗ ∈ Y ∗, and all z ∈ ν(x∗)

‖ x∗ + y∗ ‖ − ‖ x∗ ‖ −y∗(z) ≤ c ‖ y∗ ‖2,
then the duality map ν as defined above is Lipschitz. This follows from the
main theorem in Zemek [10]. For more details on this topic see also [11]-[12].
This result is useful in the proof of the following existence theorem.

Theorem 5.1. Suppose the dual Y ∗ of the Banach space Y has differentiable
norm implying Lipschitz continuity of the duality map ν and that the opera-
tors {A,M} and the operator valued functions {B,L, σ,Q} satisfy the basic
assumptions (A1)− (A5). Then for any F0 measurable x0 ∈ L2(Ω, E) and
every K ∈ Bad, the two point boundary value problem given by the pair of
equations (5.1)-(5.2) has a unique mild solution (xo, ϕo) ∈ La2(Ω, C(I, E)) ×
La2(Ω, C(I, E∗)).

Proof. We use successive approximation and Banach fixed point theorem to
prove the existence and uniqueness of solutions of the following system of
coupled forward backward stochastic integral equations,

x(t) = S(t)x0 +

∫ t

0
S(t− s)(BKL)x(s)ds (5.4)

+

∫ t

0
S(t− s)(BK)ν(K∗B∗ϕ)ds+

∫ t

0
S(t− s)σ(s)dWH , t ∈ I,

ϕ(t) = S∗(T − t)Mx(T ) +

∫ T

t
S∗(s− t)(L∗K∗B∗)ϕ(s)ds

+

∫ T

t
S∗(s− t)Q(s)x(s)ds, t ∈ I. (5.5)
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Since the proof is classical we present only an outline. For any given x ∈
La2(Ω, C(I, E)), it follows from Banach fixed point theorem that equation (5.5)
has a unique solution say, ϕ that belongs to La2(Ω, C(I, E∗)). Hence there exists
a bounded linear operator Γ that maps La2(Ω, C(I, E)) to La2(Ω, C(I, E∗))
giving ϕ = Γx. Substituting this in equation (5.5) we obtain the following
integral equation for x,

x(t) = S(t)x0 +

∫ t

0
S(t− s)(BKL)x(s) ds

+

∫ t

0
S(t− s)(BK)ν(K∗B∗Γx) ds (5.6)

+

∫ t

0
S(t− s)σ(s)dWH , t ∈ I.

Since Y ∗ has differentiable norm, it follows from [10, Main Theorem, p62] that
the duality map ν : Y ∗ −→ Y is Lipschitz. Hence by use of successive (Piccard)
approximation technique as seen in Hu and Peng [8] one can prove that the
integral equation (5.6) has a unique solution xo ∈ La2(Ω, C(I, E)). This implies
that equation (5.5) has a unique solution ϕo = Γxo. This completes the outline
of our proof. �

As stated in this section, the control problem here is to find an operator
valued function K ∈ Bad that minimizes the functional (5.3) subject to the
2-point boundary value problem (5.1)-(5.2). The first question that arises
naturally is the question of existence of an optimal policy. If no such policy
exists, it does not make much sense to try and characterize something that
does not even exist. So, first we consider this problem and prove the following
existence result.

Theorem 5.2. Consider the system (5.1)-(5.2) with the cost functional given
by the expression (5.3) and suppose the assumptions of Theorem 5.1 hold.
Then there exists an output feedback operator valued function Ko ∈ Bad that
minimizes the cost functional (5.3).

Proof. The proof is long. We give a broad outline of the proof. First we prove
that the map K −→ (x, ϕ) from Bad to La2(Ω, C(I, E×E∗)) is continuous with
respect to the Tychonoff product topology on Bad and the norm topology on
La2(Ω, C(I, E ×E∗)) respectively. Then we prove that J0 is lower semicontin-
uous on Bad with respect to the Tychonoff product topology τty. For the first
part we proceed as follows. For economy of notation let V denote the product

space E × E∗. Let Kn
τtp−→ Ko in Bad and let (xn, ϕn) ∈ La2(Ω, C(I, V )) and

(xo, ϕo) ∈ La2(Ω, C(I, V )) denote the mild solutions of the system (5.1)-(5.2)
(equivalently, the solutions of the integral equations (5.5)-(5.6) corresponding
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to Kn and Ko respectively. Subtracting (xo, ϕo) from (xn, ϕn) using the ex-
pressions (5.5)-(5.6) and defining, for each t ∈ I, ξn(t) ≡‖ xn(t) − xo(t) ‖E
and ηn(t) ≡‖ ϕn(t)− ϕo(t) ‖E∗ we arrive at the following inequalities:

ξn(t) ≤ C1

∫ t

0
ξn(s)ds+ C2

∫ t

0
ηn(s)ds

+Mobκβ

∫ t

0
‖ (K∗n −K∗o )B∗ϕo ‖Y ∗ ds (5.7)

+M0b

∫ t

0
‖ (Kn −Ko)[Lxo + ν(K∗oB

∗ϕo)] ‖U ds, t ∈ I, P − a.s.

and

ηn(t) ≤ C3 ‖ xn(T )− xo(T ) ‖E +C4

∫ T

t
ηn(s)ds+ C5

∫ T

t
ξn(s)ds

+Mo`

∫ T

t
‖ (K∗n −K∗o )B∗ϕo ‖Y ∗ ds, t ∈ I, P − a.s. (5.8)

where the constants are given by C1 = Mobκ`, C2 = Moβ(κb)2, C3 = Mom,
C4 = Mo`bκ, C5 = Moq and they are determined from the following bounds:

sup{‖ S(t) ‖L(E), t ∈ I} = Mo, sup{‖ L(t) ‖L(E,Y ), t ∈ I} = `,

sup{‖ B(t) ‖L(U,E), t ∈ I} = b, sup{‖ K ‖L(Y,U),K ∈ Λ} = κ,

‖M ‖L(E,E∗)= m, sup{‖ Q(t) ‖L(E,E∗), t ∈ I} = q,

‖ ν(y∗1)− ν(y∗2) ‖E≤ β ‖ y∗1 − y∗2 ‖Y ∗ , ∀ y∗1, y∗2 ∈ Y ∗,

which follow from the basic assumptions (A1)-(A5). Defining

en(t) ≡Mobκβ

∫ t

0
‖ (K∗n −K∗o )B∗ϕo ‖Y ∗ ds

+M0b

∫ t

0
‖ (Kn −Ko)[Lxo + ν(K∗oB

∗ϕo)] ‖U ds, t ∈ I, (5.9)

and

fn(t) ≡Mo`

∫ T

t
‖ (K∗n −K∗o )B∗ϕo ‖Y ∗ ds, t ∈ I, (5.10)

we can rewrite the inequalities (5.7) and (5.8) in the following compact form,

ξn(t) ≤ C1

∫ t

0
ξn(s)ds+ C2

∫ t

0
ηn(s)ds+ en(t), t ∈ I, P − a.s. (5.11)

and

ηn(t) ≤ C3ξn(T ) + C4

∫ T

t
ηn(s)ds+ C5

∫ T

t
ξn(s)ds+ fn(t) (5.12)



140 N. U. Ahmed

for all t ∈ I.
Note that

en(t) ≤ en(T ), ∀ t ∈ I; fn(t) ≤ fn(0), ∀ t ∈ I, P − a.s.

Hence the inequalities (5.11) and (5.12) can be simplified further as follows:

ξn(t) ≤ C1

∫ t

0
ξn(s)ds+ C2

∫ t

0
ηn(s)ds+ en(T ), t ∈ I, P − a.s, (5.13)

and

ηn(t) ≤ C3ξn(T ) + C4

∫ T

t
ηn(s)ds

+C5

∫ T

t
ξn(s)ds+ fn(0), t ∈ I, P − a.s. (5.14)

Since Kn
τtp−→ Ko (in the Tychonoff product topology) on Bad, it is clear that

lim
n→∞

en(T ) = 0, and lim
n→∞

fn(0) = 0, P − a.s.

Using this fact and Gronwall lemma and carrying out somewhat laborious
computation using the above inequalities, we can verify that

lim
n→∞

ξn(t) = 0 uniformly in t ∈ I, P − a.s;

and

lim
n→∞

ηn(t) = 0 uniformly in t ∈ I, P − a.s.

Hence, we conclude that as Kn
τtp−→ Ko, we have xn

s−→ xo P − a.s in the

norm topology of the Banach space E uniformly on I and ϕn
s−→ ϕo P -a.s

in the norm topology of the dual space E∗ uniformly on I. Furthermore, by
assumption (A3), σ ∈ B0(I, γ(H,E)), and by assumption (A5), Λ is a closed
bounded convex subset of L(Y,U). Using these facts and the integral equations
(5.5) and (5.6) and Gronwall inequality, one can verify that the sequence
{(xn, ϕn)} is dominated by an integrable process belonging to La2(Ω, C(I, V ))
(V ≡ E × E∗). Thus it follows from dominated convergence theorem that

(xn, ϕn) −→ (xo, ϕo) strongly in La2(Ω, C(I, V )).

Since both M and Q(t), t ∈ I, are symmetric and positive, it follows from
elementary algebraic computation using the cost functional (5.3) that

J0(Kn) ≥ J0(Ko) + E

{∫ T

0
< Qxo, xn − xo >E∗,E dt

+ < Mxo(T ), xn(T )− xo(T ) >E∗,E

}
. (5.15)
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Thus it follows from strong convergence of xn to xo that lim J0(Kn) ≥ J0(Ko)
proving lower semicontinuity of J0 on Bad with respect to the Tychonoff prod-
uct topology. Since the set Bad is compact in this topology, it is clear that J0

attains its minimum on it. This proves the existence of an optimal policy in
Bad thereby completing the proof. �

Remark 5.3. We have proved that J0 is lower semicontinuous on Bad. In fact,
one can verify that K −→ J0(K) is also upper semicontinuous and hence J0

is continuous with respect to the Tychonoff product topology.

Now we are prepared to construct the necessary conditions of optimality for
our original min-max problem. As seen above, the original problem is reduced
to the optimization problem: Find K ∈ Bad that minimizes the functional
J0(K) given by the expression (5.3) subject to the evolution equations (5.1)-
(5.2) ( a 2-point boundary value problem). We are now prepared to prove the
following necessary conditions of optimality.

Note that we continue to use the standard notation for stochastic differential
equations even though the underlying equation is a true differential equation
without the martingale term. For example, equation (4.4) with random xo but
without a martingale term, like in equation (4.3). Similarly, we have random
evolution equations like (5.17)-(5.18) as seen below.

Theorem 5.4. Consider the (extremal) system (5.1)-(5.2) along with the cost
functional J0 given by (5.3) and the set of admissible (control) operators Bad.
Suppose the assumptions of Theorem 5.2 hold and the duality map ν is once
continuously Fréchet differentiable. Then, in order that Ko ∈ Bad be op-
timal, it is necessary that there exists a pair {ψ1, ψ2} ∈ La2(Ω, C(I, E∗)) ×
La2(Ω, C(I, E)) and the (mild) solutions

(xo, ϕo) ∈ La2(Ω, C(I, E))× La2(Ω, C(I, E∗))

of the system (5.1)-(5.2) corresponding to Ko such that the set of quintuple
{Koψ1, ψ2, xo, ϕo} satisfies the following inequality,

dJ0(Ko,K −Ko)

≡ E

∫ T

0

{
< (K −Ko)[Lxo + ν(K∗oB

∗ϕo)], B
∗ψ1 >U

+ < (K −Ko)[Γ
∗
oK
∗
oB
∗ψ1 − Lψ2], B∗ϕo >U

}
dt ≥ 0 (5.16)

for all K ∈ Bad, where Γo ≡ Dν(K∗oB
∗ϕo) ∈ B0(I,L(Y ∗, Y )) is a bounded

strongly measurable operator valued function, and the pair {ψ1, ψ2} satisfies
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the following two point boundary value problem:

−dψ1 = A∗ψ1dt+ L∗K∗oB
∗ψ1dt−Qψ2dt+Qxodt, t ∈ I, (5.17)

dψ2 = Aψ2dt+BKoLψ2dt−BKoΓ
∗
oK
∗
oB
∗ψ1dt, (5.18)

ψ1(T ) +Mψ2(T ) = Mxo(T ), ψ2(0) = 0.

Proof. Let Ko ∈ Bad denote the optimal policy and K ∈ Bad be any other
element. Define Kε ≡ Ko + ε(K −Ko). Since Bad is a closed convex set, Kε ∈
Bad for all ε ∈ [0, 1]. By optimality of Ko it is clear that the Gâteaux derivative
of J0 at Ko in the direction (K −Ko) satisfies the following inequality,

dJ0(Ko,K −Ko) = lim
ε→0

(1/ε)
(
J0(Kε)− J0(Ko)

)
≥ 0, ∀ K ∈ Bad. (5.19)

Let {xε, xo} denote the mild solutions of equation (5.1) and {ϕε, ϕo} the mild
solutions of equation (5.2) corresponding to the control operators {Kε,Ko}
respectively. One can verify that as ε ↓ 0, Kε → Ko in the uniform operator

topology, xε
s−→ xo in C(I, E) P-a.s and ϕε

s−→ ϕo in C(I, E∗) P-a.s. Define

z1(t) ≡ (1/ε)(xε(t)− xo(t)), t ∈ I, (5.20)

z2(t) ≡ (1/ε)(ϕε(t)− ϕo(t)), t ∈ I. (5.21)

By direct (but tedious) computation one can verify that z1 and z2 satisfy
the following pair of evolution equations (with stochastic coefficients) in the
mild sense

dz1 = Az1dt+BKoLz1dt+B(K −Ko)Lxodt

+BKoDν(K∗oB
∗ϕo)K

∗
oB
∗z2dt

+BKoDν(K∗oB
∗ϕo)(K

∗ −K∗o )B∗ϕodt

+B(K −Ko)ν(K∗oB
∗ϕo)dt, t ∈ I (5.22)

and

−dz2 = A∗z2dt+ L∗K∗oB
∗z2dt+ L∗(K∗ −K∗o )B∗ϕodt

+Qz1dt, t ∈ I, (5.23)

with initial boundary conditions given by

z1(0) = 0, z2(T ) = Mz1(T ). (5.24)

Using the semigroup along with its adjoint {S(t), S∗(t), t ≥ 0} and Duhamel’s
formula one can rewrite these equations as integral equations and using Ba-
nach fixed point theorem one can verify that these equations have unique mild
solutions z1 ∈ La2(Ω, C(I, E)) and z2 ∈ La2(Ω, C(I, E∗)) respectively. It is con-
venient to write this as a system on the product space V = E×E∗ as follows.
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Define the vector z ≡ (z1, z2)
′

in V and note that z satisfies the following
system:

dz =

[
A 0
0 −A∗

]
zdt+

[
BKoL BKoΓoK

∗
oB
∗

−Q −L∗K∗oB∗
]
zdt

+

B(K −Ko)
(
Lxo + ν(K∗oB

∗ϕo)
)

+BKoΓo(K
∗ −K∗o )B∗ϕo

−L∗(K∗ −K∗o )B∗ϕo.

 dt (5.25)

subject to the boundary conditions (5.24). For notational convenience we
write the above equation in compact form as follows:

dz = Azdt+ B(t)zdt+ Fodt, t ∈ I, (5.26)

z1(0) = 0, z2(T ) = Mz1(T ),

where one can easily identify the operators {A,B(t), t ∈ I}. The nonhomoge-
neous term Fo is given by

Fo ≡

[
F

(1)
o

F
(2)
o

]
≡
[
B(K −Ko)

(
Lxo + ν(K∗oB

∗ϕo)
)

+BKoΓo(K
∗ −K∗o )B∗ϕo

−L∗(K∗ −K∗o )B∗ϕo

]
.

The evolution equation (5.26) is defined on the product space V ≡ E ×E∗
with the nonhomogeneous term Fo given by the above expression. Since the
operators appearing in the expression for Fo are all bounded and strongly
measurable and xo ∈ La2(Ω, C(I, E)) and ϕo ∈ La2(Ω, C(I, E∗)) it is easy to
verify that Fo ∈ La2(Ω, B0(I, V )). Note that the operator valued function B is
a bounded strongly measurable function on I with values in L(V ) P -a.s. Thus
it is clear from the preceding analysis that the map Fo −→ z is continuous
and linear from La2(Ω, B0(I, V )) to La2(Ω, C(I, V )). By direct computation, it
follows from the expression (5.3) that the Gâteaux derivative of J0 at Ko in
the direction K −Ko satisfies, for all K ∈ Bad, the following inequality,

dJ0(Ko,K −Ko) (5.27)

= E

{∫ T

0
< Qxo, z1 >E∗,E dt+ < Mxo(T ), z1(T ) >E∗,E

}
≥ 0.

Define the functional

`(z1) ≡ E

{∫ T

0
< Qxo, z1 >E∗,E dt+ < Mxo(T ), z1(T ) >E∗,E

}
.

Clearly, z1 −→ `(z1) is a continuous linear functional on C(I, E) P -a.s. Letting
P1 denote the projection of V to the first component E of V, it is clear that
z −→ `(P1z) is a continuous linear functional of z. Thus the composition map

Fo −→ z −→ `(P1z) ≡ ˜̀(Fo) (5.28)
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is a continuous linear functional of Fo ∈ La2(Ω, B0(I, V )). Hence there exists a
vector measure

Ξ ∈ La2(Ω, B0(I, V ))∗ ∼= La2(Ω,Mfa(Σ(I), V ∗))

such that

˜̀(Fo) = E

∫ T

0
< Fo,Ξ(dt) >V,V ∗ .

Again, we have used Mfa(I, V
∗) to denote the space of finitely additive

V ∗ valued vector measures defined on the sigma algebra Σ(I) of Lebesgue
measurable subsets of the interval I. Since V and, hence, V ∗ are reflexive
Banach spaces they satisfy RNP (Radon Nikodym Property) and hence they
satisfy also weak RNP (WRNP). Thus it follows from [14, Theorem 4.5, p481]
that there exists a Ψ ∈ La2(Ω, LHKP (I, V ∗)) such that

˜̀(Fo) = E

∫ T

0
< Fo,Ξ(dt) >V,V ∗

= E

∫ T

0
< Fo,Ψ(t) >V,V ∗ dt.

Note that the function Ψ has two components: Ψ ≡ (ψ1, ψ2)
′

with ψ1 ∈
La2(Ω, LHKP (I, E∗)) and ψ2 ∈ La2(Ω, LHKP (I, E)). Using these we obtain

˜̀(Fo) = E

∫ T

0
< Fo,Ψ(t) >V,V ∗ dt

= E

∫ T

0

{
< B(K −Ko)[Lxo + ν(K∗oB

∗ϕo)], ψ1(t) >E,E∗

+ < BKoΓo(K
∗ −K∗o )B∗ϕo, ψ1(t) >E,E∗

}
dt (5.29)

−E

∫ T

0

{
< L∗(K∗ −K∗o )B∗ϕo, ψ2(t) >E∗,E

}
dt ≥ 0 ∀ K ∈ Bad.

Rearranging terms we can rewrite the above inequality in the following con-
venient form,

˜̀(Fo) = E

∫ T

0

{
< (K −Ko)[Lxo + ν(K∗oB

∗ϕo)], B
∗ψ1 >U (5.30)

+ < (K −Ko)[Γ
∗
oK
∗
oB
∗ψ1 − Lψ2], B∗ϕo >U

}
dt,∀ K ∈ Bad.

This proves the necessary condition (5.16). Now applying the Itô differential
rule to the duality product (z(t),Ψ(t))V,V ∗ and noting that the system (5.26)
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is free of any martingale component, we obtain

d(z(t),Ψ(t))V,V ∗ =< dz,Ψ > + < z, dΨ > . (5.31)

Integrating the expression on the left we have

E

∫ T

0
d(z,Ψ) = E{< z(T ),Ψ(T ) > − < z(0),Ψ(0) >} (5.32)

and then using the boundary conditions (5.24) we obtain

E

∫ T

0
d(z,Ψ) = E{< z(T ),Ψ(T ) > − < z(0),Ψ(0) >} (5.33)

= E
{
< z1(T ), ψ1(T ) +Mψ2(T ) >E,E∗ − < z2(0), ψ2(0) >E∗,E

}
.

Next, considering the first term on the right hand side of the expression (5.31)
and formally integrating by parts we find that

E

∫ T

0
< dz,Ψ >

= E

∫ T

0
< z1, A

∗ψ1 + L∗K∗oB
∗ψ1 −Qψ2 >E,E∗ dt

+E

∫ T

0
< z2, BKoΓ

∗
oK
∗
oB
∗ψ1 −BKoLψ2 −Aψ2 >E∗,E dt

+E

∫ T

0
{< F (1)

o , ψ1 >E,E∗ + < F (2)
o , ψ2 >E∗,E}dt, (5.34)

where {F (1)
o , F

(2)
o } denote the first and the second components of Fo respec-

tively. Again the formal derivation can be justified by use of Yosida approx-
imation as we did in case of Lemma 5.1. Now considering the last term of
equation (5.31) we obtain

E

∫ T

0
< z, dΨ >V,V ∗= E

∫ T

0
{< z1, dψ1 >E,E∗ + < z2, dψ2 >E∗,E}. (5.35)

Adding (5.34) and (5.35) we arrive at the coordinate wise expression for the
integral of the sum on the righthand side of equation (5.31) as follows:
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E

∫ T

0
{< dz,Ψ > + < z, dΨ >}

= E

∫ T

0
< z1, dψ1 +A∗ψ1dt+ L∗K∗oB

∗ψ1dt−Qψ2dt >E,E∗

+E

∫ T

0
< z2, dψ2−Aψ2dt−BKoLψ2dt+BKoΓ

∗
oK
∗
oB
∗ψ1dt >E∗,E dt

+E

∫ T

0
{< F (1)

o , ψ1 >E,E∗ + < F (2)
o , ψ2 >E∗,E}dt. (5.36)

Then setting

−dψ1 = A∗ψ1dt+ L∗K∗oB
∗ψ1dt+Q(x0 − ψ2)dt (5.37)

dψ2 = Aψ2dt+BKoLψ2dt−BKoΓ
∗
oK
∗
oB
∗ψ1dt, (5.38)

it follows from equation (5.36) that

E

∫ T

0
{< dz,Ψ > + < z, dΨ >}

= E

∫ T

0
< z1,−Qxo >E,E∗ dt

+E

∫ T

0
{< F (1)

o , ψ1 >E,E∗ + < F (2)
o , ψ2 >E∗,E}dt. (5.39)

By virtue of the identity (5.31) it follows from (5.34) and (5.39) that

E < z1(T ), ψ1(T ) +Mψ2(T ) >E,E∗ −E < z2(0), ψ2(0) >E∗,E

+E

∫ T

0
< z1(t), Qxo(t) >E,E∗ dt

= E

∫ T

0
{< F (1)

o , ψ1 >E,E∗ + < F (2)
o , ψ2 >E∗,E}dt. (5.40)

Now setting ψ1(T ) + Mψ2(T ) = Mxo(T ) and ψ2(0) = 0, equation (5.40)
reduces to

E < z1(T ),Mxo(T )) >E,E∗ + E

∫ T

0
< z1(t), Qxo(t) >E,E∗ dt

= E

∫ T

0
{< F (1)

o , ψ1 >E,E∗ + < F (2)
o , ψ2 >E∗,E}dt. (5.41)

Clearly, the expression on the left of the above identity gives the functional
`(z1) as seen in the inequality (5.28). Hence it follows from (5.28) and the
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above identity that

dJ0(Ko,K −Ko) = E

∫ T

0
{< F (1)

o , ψ1 >E,E∗ + < F (2)
o , ψ2 >E∗,E}dt

≥ 0, (5.42)

for all K ∈ Bad. This is consistent with the necessary condition (5.16). Further,
we have seen above (see (5.37)-(5.38)) that the pair (ψ1, ψ2) must satisfy the
following (random) differential equations (in the mild sense) with the given
boundary conditions,

−dψ1 = A∗ψ1dt+ L∗K∗oB
∗ψ1dt+Q(x0 − ψ2)dt, (5.43)

dψ2 = Aψ2dt+BKoLψ2dt−BKoΓ
∗
oK
∗
oB
∗ψ1dt, (5.44)

ψ1(T ) +Mψ2(T ) = Mxo(T ), ψ2(T ) = 0. (5.45)

This proves all the necessary conditions as stated. �

Remark 5.5. Note that the necessary conditions of optimality consist of the
inequality (5.16), the (compound) state equations (5.1)-(5.2) and the pair of
adjoint equations (5.17)-(5.18) with initial boundary conditions as indicated.
Again, as seen in Remark 5.3, the solutions of the pair of adjoint equations
(5.17)-(5.18) are considered in the mild sense and they are path wise contin-
uous and belong to L2(Ω, C(I, V ∗)). Thus they are more regular than that
predicted by WRNP.

Remark 5.6. For the measurement error we have used the closed unit ball
B1(Y ) as the domain of uncertainty. If we wish to increase or decrease the
size of uncertainty, we only have to multiply the unit ball by r > 0 giving
Br(Y ) = rB1(Y ). In this case the compound system (5.1)-(5.2) is given by

dx = Axdt+BKLxdt+ rBKν(K∗B∗ϕ)dt+ σdWH , x(0) = x0. (5.46)

−dϕ = A∗ϕdt+ L∗K∗B∗ϕdt+Qxdt, ϕ(T ) = Mx(T ). (5.47)

The necessary conditions given by Theorem 5.4 remain intact modulo a mul-
tiplier r as shown below:

dJ0(Ko,K −Ko)

≡ E

∫ T

0

{
< (K −Ko)[Lxo + rν(K∗oB

∗ϕo)], B
∗ψ1 >U (5.48)

+ < (K −Ko)[rΓ
∗
oK
∗
oB
∗ψ1 − Lψ2], B∗ϕo >U

}
dt ≥ 0, ∀ K ∈ Bad

where Γo ≡ Dν(K∗oB
∗ϕo) ∈ B0(I,L(Y ∗, Y )) is a bounded strongly measurable

operator valued function and the pair {ψ1, ψ2} satisfies the following two point
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(adjoint) boundary value problem:

−dψ1 = A∗ψ1dt+ L∗K∗oB
∗ψ1dt−Qψ2dt+Qxodt, t ∈ I, (5.49)

dψ2 = Aψ2dt+BKoLψ2dt− rBKoΓ
∗
oK
∗
oB
∗ψ1dt, (5.50)

ψ1(T ) +Mψ2(T ) = Mxo(T ), ψ2(0) = 0.

Remark 5.7. From the above result we can recover the necessary conditions
of optimality for systems without measurement uncertainty. This is stated in
the following corollary.

Corollary 5.8. Consider the system (2.1)-(2.3) and the cost functional (2.4)
with measurement uncertainty ξ ≡ 0. In order that an element Ko ∈ Bad be
optimal it is necessary that there exists a pair {xo, ψ} ∈ La2(Ω, C(I, V )) ≡
La2(Ω, C(I, E))× La2(Ω, C(I, E∗)) such that it satisfies the inequality

dJ(Ko,K −Ko) ≡ E

∫ T

0
{< (K −Ko)Lxo, B

∗ψ >U}dt ≥ 0 (5.51)

for all K ∈ Bad, and the following pair of evolution equations,

−dψ = A∗ψdt+ L∗K∗oB
∗ψdt+Qxodt, ψ(T ) = Mxo(T ), t ∈ I, (5.52)

dxo = Axodt+BKoLxodt+ σ(t)dWH , xo(0) = x0. (5.53)

Proof. Set r = 0 in all the equations (5.46)-(5.50). This reduces (5.46) to a
system with perfect measurement. Inequality (5.49) reduces to

dJ0(Ko,K −Ko) ≡ E

∫ T

0

{
< (K −Ko)Lxo, B

∗ψ1 >U

+ < −(K −Ko)Lψ2, B
∗ϕo >U

}
dt ≥ 0, (5.54)

for all K ∈ Bad. The adjoint equations (5.49)-(5.50) reduce to

−dψ1 = A∗ψ1dt+ L∗K∗oB
∗ψ1dt−Qψ2dt+Qxodt, t ∈ I, (5.55)

dψ2 = Aψ2dt+BKoLψ2dt, (5.56)

ψ1(T ) +Mψ2(T ) = Mxo(T ), ψ2(0) = 0. (5.57)

Note that equation (5.56) is a linear homogeneous differential equation with
zero initial state. Thus ψ2(t) ≡ 0, t ∈ I. Hence equation (5.55) reduces to

−dψ1 = A∗ψ1dt+ L∗K∗oB
∗ψ1dt+Qxodt, t ∈ I, (5.58)

ψ1(T ) = Mxo(T ),

and the inequality (5.54) reduces to

dJ0(Ko,K −Ko) ≡ E

∫ T

0

{
< (K −Ko)Lxo, B

∗ψ1 >U
}
dt ≥ 0, (5.59)
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for all K ∈ Bad. Clearly equation (5.58) coincides with (5.52) and the inequal-
ity (5.59) coincides with (5.51). Thus we have recovered all the necessary
conditions of optimality for the system without uncertainty (perfect sensor),
from the case with uncertainty, by simply letting r → 0. This completes the
proof. �

Remark 5.9. If A is assumed to be the infinitesimal generator of an analytic
semigroup, we can admit more relaxed assumptions for the operators {B, σ}
appearing in equation (2.1). So let A be the infinitesimal generator of an
analytic semigroup S(t), t ≥ 0, on the UMD-type-2 Banach space E. Without
loss of generality we may assume that 0 ∈ ρ(A), the resolvent set of A. For
any η ∈ (0, 1), we can define the linear space

Eη ≡ {x ∈ E :‖ x ‖Eη≡ ‖ (−A)ηx ‖<∞}

which is a normed space generated by the fractional power of (−A). With
respect to the above norm topology these spaces are Banach spaces. For
details on fractional powers of generators of analytic semigroups see Ahmed
[3]. In fact we have the continuous embeddings

Eη ↪→ E ↪→ E−η

where the space E−η is given by the completion of E with respect to the
norm topology ‖ x ‖E−η≡‖ (−A)−ηx ‖E . In this case we can admit B ∈
B0(I,L(U,E−η)) and σ ∈ La2(Ω, γ(H,E−η)) for 0 ≤ η < 1/2. Under these
relaxed assumptions, all the results of this paper remain valid.

6. Convergence of algorithm

In order to construct the optimal feedback operator valued function Ko we
use the necessary conditions of optimality stated in Theorem 5.4.

For this we need some basic results on duality pairings involving the space of
bounded linear operators. It is known that the topological dual of the Banach
space of nuclear operators is the (Banach) space of bounded linear operators.
For any pair of real Banach spaces {E,F}, the dual of the Banach space of
nuclear operators L1(E,F ) is given by (L1(E,F ))∗ = L(E∗, F ∗). By examining
the pairing under the integral sign in the inequality (5.16), we note that it is of
the form < K, y ⊗ u > with K ∈ L(Y, U) where Y is a reflexive Banach space
and U is a Hilbert space. Clearly, y ⊗ u is an elementary nuclear operator
and it belongs to L1(Y ∗, U) whose dual is given by (L1(Y ∗, U))∗ ∼= L(Y,U).
In general, an element L ∈ L1(Y ∗, U) has the form L(y∗) =

∑
y∗(yi)ui for

all y∗ ∈ Y ∗ with {yi ∈ Y, ui ∈ U} satisfying
∑
‖ yi ‖Y ‖ ui ‖U< ∞. For

Λ ∈ L(Y,U) and L ∈ L1(Y ∗, U), the duality pairing

< Λ, L >=
∑

(Λ(yi), ui)U ,
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is well defined and it is easy to verify that

| < Λ, L > | ≤‖ Λ ‖L(Y,U)‖ L ‖L1(Y ∗,U) .

Using this notation, we can rewrite the inequality (5.16) in the following form:

dJ0(Ko,K −Ko)

≡ E

∫ T

0
< (K −Ko), No >L(Y,U),L1(Y ∗,U) dt ≥ 0 (6.1)

for all K ∈ Bad, where

No ≡ [Lxo + ν(K∗oB
∗ϕo)]⊗B∗ψ1 + [Γ∗oK

∗
oB
∗ψ1 − Lψ2]⊗B∗ϕo. (6.2)

By examining the elements defining No, one can easily check that it is an
element of the tensor product space Y ⊗̂U for almost all (t, ω) ∈ I × Ω. In
fact we can consider No to be a function with values in the space of nuclear
operators L1(Y ∗, U∗) = L1(Y ∗, U), (as U is a Hilbert space identified with its
own dual). Being the sum of tensor products of strongly measurable functions,
it is a strongly measurable function with values in L1(Y ∗, U). Thus this process
(function) is Bochner integrable (with respect to P measure) in the sense that

E{No}(t) ≡
∫

Ω
No(t, ω)P (dω) ≡ N̂o(t), t ∈ I, (6.3)

is well defined and we have N̂o(t) ∈ L1(Y ∗, U), t ∈ I. Since we want our
feedback operator to be deterministic, using Fubini’s theorem we can rewrite
the inequality (6.1) as

dJ0(Ko,K −Ko)

≡
∫ T

0
< (K −Ko), N̂o >L(Y,U),L1(Y ∗,U) dt ≥ 0, ∀ K ∈ Bad, (6.4)

where < ·, · > denotes the duality pairing as indicated above. In order to
proceed further we need the duality map ∆ : L1(Y ∗, U) −→ L(Y,U) given by

∆(N) ≡
{
R ∈ L(Y,U) :< R,N >=‖ R ‖L(Y,U)‖ N ‖L1(Y ∗,U)

=‖ R ‖2L(Y,U)=‖ N ‖
2
L1(Y ∗,U)

}
.

This is a multivalued map. It follows from Hahn-Banach theorem that for
every N 6= 0, the set ∆(N) 6= ∅. With the above preparation, using the nec-
essary conditions of optimality given by Theorem 5.4, we prove the following
convergence result.
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Theorem 6.1. Suppose the assumptions of Theorem 5.4 hold and that the
Banach space Y is separable. Then there exists a sequence of feedback oper-
ator valued functions {Kn} ∈ Bad along which the functional J0 is monotone
decreasing and it converges to a (possibly local) minimum, say, m0 ≥ 0.

Proof. Choose an arbitraryK1 ∈ Bad and solve the pair of equations (5.1)-(5.2)
in the mild sense bearing on Theorem 5.1 and denote these mild solutions by
{x1, ϕ1}. Use these solutions in the adjoint pair of equations (5.17)-(5.18) re-
placing the triple {Ko, xo, ϕo} by {K1, x1, ϕ1} and solve for the pair {ψ1,1, ψ2,1}
yielding the quintuple {K1, x1, ϕ1, ψ1,1, ψ2,1}. Using this quintuple and the ex-
pression (6.2), we construct N1 replacing the quintuple {Ko, xo, ϕo, ψ1, ψ2} by
{K1, x1, ϕ1, ψ1,1, ψ2,1} giving

N1 ≡ [Lx1 + ν(K∗1B
∗ϕ1)]⊗B∗ψ1,1 + [Γ∗1K

∗
1B
∗ψ1,1 − Lψ2,1]⊗B∗ϕ1, (6.5)

where Γ1 is given by Γ1 ≡ Dν(K∗1B
∗ψ1,1). From this we obtain it’s Bochner

integral N̂1 as defined by the expression (6.3). Being the sum of tensor prod-

ucts of strongly measurable functions, N̂1 is a strongly measurable function on
I with values in the Banach space L1(Y ∗, U). Let Lso(Y,U) denote the space
of bounded linear operators L(Y,U) endowed with the strong operator topol-
ogy τso. This is a locally convex sequentially complete Hausdorff topological
space. Since Y is assumed to be separable, this topology is metrizable with
the metric

d(T, L) ≡
∞∑
i=1

(1/2i) min{1, ‖ (T − L)yi ‖U},

where {yi} is a dense subset of the closed unit ball B1(Y ). We denote this
metric space by Lsod(Y,U). It is easy to verify that this is a complete metric
space but not separable. This metric topology is equivalent to the strong
operator topology. Using this metric topology one can verify that the graph

Gr(∆) ≡ {(T,N) ∈ L(Y,U)× L1(Y ∗, U) : T ∈ ∆(N)}

of the multifunction ∆ is closed with respect the norm topology on L1(Y ∗, U)
and the metric topology d on L(Y, U). Thus the duality map ∆ : L1(Y ∗, U) −→
Lsod(Y,U) = (L(Y, U), d) is an upper semi-continuous multi function. Since

t −→ N̂1(t) is strongly measurable, the composition map I 3 t −→ ∆̂1(t) ≡
(∆◦N̂1)(t) ≡ ∆(N̂1(t)) is a weakly measurable multi function in the sense that,

for every open set O ∈ Lsod(Y,U), the set {t ∈ I : ∆̂1(t)∩O 6= ∅} is Lebesgue
measurable. We have seen that the metric space Lsod(Y, U) is complete but
not separable, and so, not a Souslin space (continuous image of a Polish space).
Thus, unfortunately, a well known measurable selection theorem like that of
Yankov-Von Neumann and Aumann (selection theorem) [15, Theorem 1, p26]
is not applicable. Since Lsod(Y,U) with the metric topology is not σ-compact
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either, measurable selection theorems, requiring the target space to be σ-
compact [16, Theorem 1, p25], are also not applicable. In an excellent survey
paper [17, Theorem 3.5, p98], Graf presents, under some mild assumptions on
additivity and reducibility (with respect to the class of Lebesgue measurable
subsets of the interval I), a general result on selection theorem which does not
require separability.

Based on this result [17, Theorem 3.5, p98], we can assert that the multifunc-

tion ∆̂1 has measurable selections. So we can choose a measurable selection
R1 ∈ ∆̂1, that is, R1(t) ∈ ∆(N̂1(t)), t ∈ I, and define

K2 ≡ K1 − εR1,

for ε > 0 sufficiently small, so that K2 ∈ Bad.
Now we evaluate J0 at K2 giving

J0(K2) = J0(K1) + dJ0(K1,K2 −K1) + o(ε)

= J0(K1) +

∫
I
< K2 −K1, N̂1 >L(Y,U),L1(Y ∗,U) dt+ o(ε)

≡ J0(K1)+ << K2 −K1, N̂1 >> +o(ε), (6.6)

≡ J0(K1)− ε ‖ R1 ‖2 +o(ε) = J0(K1)− ε ‖ N̂1 ‖2 +o(ε),

where

‖ R1 ‖2=

∫
I
‖ R1(t) ‖2L(Y,U) dt, and ‖ N̂1 ‖2=

∫
I
‖ N̂1(t) ‖2L1(Y ∗,U) dt.

It is known that, for 1 ≤ p < ∞, ((1/p) + (1/q) = 1), the dual of the Banach
space Lp(I,X) is given by Lq(I,X

∗) if, and only if, X∗ has the Radon-Nikodym
property (RNP) with respect to Lebesgue measure (or any finite measure) [17,
Theorem 1, p98]. Generally, L(Y,U) does not have the RNP. Thus the double
angle bracket in the expression (6.7) stands for the duality pairing between
L2(I,L1(Y ∗, U)) and its weak dual Lw2 (I,L(Y,U)). It is clear from the expres-
sion (6.7) that, for ε > 0 sufficiently small, we have J0(K2) < J0(K1). Next,
we use K2 as constructed above and again solve the pair of equations (5.1)-
(5.2) in the mild sense and denote these mild solutions by {x2, ϕ2}. Use these
solutions in the adjoint pair of equations (5.17)-(5.18) replacing the triple
{Ko, xo, ϕo} by {K2, x2, ϕ2} and solve for the pair {ψ1,2, ψ2,2} yielding the
quintuple {K2, x2, ϕ2, ψ1,2, ψ2,2}. Using this and the expression (6.2), we con-
struct N2 replacing the quintuple {Ko, xo, ϕo, ψ1, ψ2} by {K2, x2, ϕ2, ψ1,2, ψ2,2}
giving

N2 ≡ [Lx2 + ν(K∗2B
∗ϕ2)]⊗B∗ψ1,2 + [Γ∗2K

∗
2B
∗ψ1,2 − Lψ2,2]⊗B∗ϕ2, (6.7)

where Γ2 is given by Γ2 ≡ Dν(K∗2B
∗ψ1,2). Denote the Bochner integral of N2

by N̂2 and construct the corresponding multifunction ∆̂2 as in the first step,
that is, ∆̂2(t) ≡ ∆(N̂2(t)), t ∈ I. Choose a measurable selection R2 ∈ ∆̂2, and
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define K3 = K2 − εR2, for ε > 0 sufficiently small. Using this K3 we obtain
an expression similar to that of (6.7) giving

J0(K3) = J0(K2)− ε ‖ R2 ‖2 +o(ε) = J0(K2)− ε ‖ N̂2 ‖2 +o(ε). (6.8)

It is clear from this expression that, for ε > 0 sufficiently small, J0(K3) <
J0(K2). Hence we have J0(K3) < J0(K2) < J0(K1). Repeating this process,
we can construct a sequence of operator valued functions {Kn} ⊂ Bad which
satisfies the following inequalities

· · · < J0(Kn) < J0(Kn−1) < J0(Kn−2) < · · · < Jo(K2) < J0(K1).

Since J0(K) ≥ 0, for all K ∈ Bad, this shows that there exists a sequence {Kn}
in Bad and a finite positive number m0 such that limn→∞ J0(Kn) = m0 ≥ 0,
where m0 is possibly a local minimum. This completes the proof. �

Open Problem: It would be interesting to extend the results of this paper
to nonlinear systems of the form

dx = Axdt+ F (t, x)dt+Budt+ σ(t, x)dW, x(0) = x0, (6.9)

y(t) = L(t, x) + ξ(t), (6.10)

u(t) = K(t)y(t), t ∈ I. (6.11)

The objective is to find K ∈ Bad that minimizes the functional Jo(K) ≡
sup{J(K, ξ), ξ ∈ D}, where

J(K, ξ) = E
{∫

I
`(t, x)dt+ Ψ(x(T ))

}
. (6.12)
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