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Abstract. In the present work, we introduce the new concept of a generalization of Ger-

aghty type F -Berinde contraction mappings and establish certain existence results for such

mappings. Some examples will embellish the results, for the same computer simulation is

done. Our examples involve a series of complicated structured functions which cannot be

treated by classical fixed point methods. Our findings extend, unify and enrich a multitude

results in the existing literature. As an application, we apply our abstract results to establish
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the existence of solution of differential equations of first and second order to exhibit the po-

tency and viability of our results. At the end, as an open problem, we suggest storekeeper’s

control problem in terms of Volterra integral equation whose solution may be procured from

the established results.

1. Introduction and preliminaries

Banach contraction principle is one of the decisive results and fascinating
emerging field in the nonlinear analysis especially in fixed point theory and it
has been developed in many directions. Geraghty [7] established a fixed point
result as a generalization of Banach contraction principle[2] by introducing
family of functions Θ . In 2003, Berinde [3] adorned the concept of nonlinear
type weak contraction operating a comparison function in a metric space. He
enhanced that Kannan’s, Banach’s, Chatterjea’s mappings are weak contrac-
tions (see [5], [6] also). Subsequently, a lot of generalizations of these results in
some spaces arrived in the literature. Recently, Shukla [13] clubbed both the
concepts of partial metric spaces and b-metric spaces and introduced partial
b-metric spaces as a generalization of both of these spaces. This concept was
further refined by Mustafa [9] to reveal that each partial b-metric pb generates
a b-metric dpb .

In recent investigations, Wardowski [15] described a new contraction called
F -contraction and acquired a fixed point result as a generalization of Banach
contraction principle. Recently, Piri et al. [11] purified the result of Wardowski
[15] by launching some weaker conditions on the self mapping concerning a
complete metric space and over the mapping F .

The importance of the systems of integral, differential and integro-differential
equations in the study of problems emerging from the real world, have made
them an extensive and influential research topic in science and engineering,
and it is often significant develop numerical techniques to legitimize the exis-
tence problems of the solutions for such problems. These methods have some
noteworthy advantages over others numerical techniques because these are
very smooth to implement in a computer as per the need.

In the aforesaid context, the purpose of this paper is to establish the exis-
tence of solution of ordinary differential equations of first and second order by
inaugurating a new class of generalized F -contraction called Geraghty Type
F -Berinde contraction in the framework of partial b-metric spaces. Further
our findings are authenticated with some non-trivial examples.

For the convenience of the readers and selfdependency of the article, N, R+, R
denote the set of natural numbers, the set of all non-negative real numbers
and the set real numbers respectively.

First we start with some notations and concepts that are useful tool in
subsequent analysis.
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Definition 1.1. ([13]) Let X be a nonempty set and s ≥ 1 be a given real
number. A function pb : X ×X → [0,∞) is called a partial b-metric if for all
x, y, z ∈ X the following conditions are satisfied:

(pb1) x = y iff pb(x, x) = pb(x, y) = pb(y, y);
(pb2) pb(x, x) ≤ pb(x, y);
(pb3) pb(x, y) = pb(y, x);
(pb4) pb(x, y) ≤ s[pb(x, z) + pb(z, y)]− pb(z, z).

The pair (X, pb) is called a partial b-metric space. The number s ≥ 1 is called
the coefficient of (X, pb).

Observe that, if s = 1 in Definition 1.1, the pair (X, pb) is called a partial
metric and denoted by (X, p). In order to show that each partial b-metric
pb prompts a b-metric dpb , Mustafa et al. [9] revised the Definition 1.1 and

replaced condition (pb4) by (p
′
b4) as follows:

(p
′
b4) pb(x, y) ≤ s(pb(x, z) + pb(z, y)− pb(z, z)) + (1−s2 )(pb(x, x) + pb(y, y)).

Remark 1.2. The class of partial b-metric space (X, pb) is effectively larger
than the class of partial metric space and b-metric space as well.

Proposition 1.3. ([9]) Every partial b-metric pb defines a b-metric dpb, where

dpb(x, y) = 2pb(x, y)− pb(x, x)− pb(y, y)

for all x, y ∈ X.

For covergence , Cauchy sequence and completeness, in the context of partial
b-metric space, we refer [13].

Lemma 1.4. ([9]) Let (X, pb) be a partial b-metric space. Then

(1) a sequence {xn} is a pb-Cauchy sequence in (X, pb) if and only if it is
a b-Cauchy sequence in the b-metric space (X, dpb);

(2) (X, pb) is pb-complete if and only if the b-metric space (X, dpb) is
complete. Moreover, lim

n→∞
dpb(xn, x) = 0 if and only if pb(x, x) =

lim
n→∞

pb(xn, x) = lim
n,m→∞

pb(xn, xm).

On the other hand, Wardowski [15] defined a new type of contraction T :
X → X called F - contraction as follows:

∀x, y ∈ X
(
d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))

)
,

where F is defined in [15]. Later, Secelean et al. [12], Piri et al. [11] extended
and refined the above definition of Wardowski [15].

Throughout for our succeeding discussion, we denote the set of all functions
satisfying (F1) of [15] , (F2

′
) of [12] and (F3

′
) of [11] by ℵF .
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Definition 1.5. ([7]) Let Θ denote the family of all functions θ : [0,∞) →
[0, 1) such that for any bounded sequence {pn} of positive reals, θ(pn)→ 1⇒
pn → 0.

For our further discussion subsequent family of functions will be employed.

(1) Let Ψ be a family of functions ψ : [0,∞) → [0,∞) such that ψ is
continuous and ψ(p) = 0 ⇐⇒ p = 0.

(2) Also let Φ be the set of all functions φ : [0,∞)→ [0,∞) such that φ is
non-decreasing, continuous and φ(p) = 0 ⇐⇒ p = 0.

2. Fixed point results for generalized F -contraction

We begin this section by introducing our very first and important definition.

Definition 2.1. Let (X, pb) be a partial b-metric space. A mapping T : X →
X is said to be a Geraghty type generalized F -Berinde contraction on X, if
there exists θ ∈ Θ, φ ∈ Φ, F ∈ ℵF , ψ ∈ Ψ and L ≥ 0 such that for all
x, x∗ ∈ X and s > 1 with pb(Tx, Tx

∗) > 0,

F (sεpb(Tx, Tx
∗)) ≤ θ

(
φ
(
MT (x, x∗)

))
F
(
MT (x, x∗)

)
+ LNT (x, x∗)− ψ

(
MT (x, x∗)

)
,

(2.1)

where

MT (x, x∗) = max
{
pb(x, x

∗), pb(x, Tx), pb(x
∗, Tx∗),

pb(x, Tx
∗) + pb(x

∗, Tx)

2s

}
,

NT (x, x∗) = min
{
pmb (x, Tx), pmb (x∗, Tx∗), pmb (x, Tx∗), pmb (x∗, Tx)

}
,

pmb (x, x∗) = pb(x, x
∗)−min

{
pb(x, x), pb(x

∗, x∗)
}

and ε > 1 is a constant.

Following Example substantiates the validity of Definition 2.1

Example 2.2. Let X = [0,∞) be equipped with partial metric pb : X×X →
[0,∞) defined by

pb(x, x
∗) = [max{x, x∗}]2,

for all x, x∗ ∈ X. It is obvious that, (X, pb) is a complete partial b-metric
space with s = 2.

Let the mapping T : X → X is defined by

Tx = 2x+ sin
( √

x3

3x+
√

2

)
.

Define θ : [0,∞)→ [0, 1) by θ(c) = 1
c+1 and φ, ψ : [0,∞)→ [0,∞) be given by

φ(c) = log(1 + c), ψ(c) = log(2c). Also let F (c) = log(c) for all c ∈ R+.
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Without loss of generality we take x, x∗ ∈ X with x < x∗. Now L.H.S. of
(2.1)

F (sεpb(Tx, Tx
∗)) = F

(
2ε max(Tx, Tx∗)

)
= F (2ε(Tx∗)2)

= F

(
2ε
(

2x∗ + sin
( √(x∗)3

3x∗ +
√

2

))2)

= log

(
2ε
(

2x∗ + sin
( √(x∗)3

3x∗ +
√

2

))2)
.

Employing the definitions ofMT (x, x∗) and NT (x, x∗), and with suitable cal-
culations, we have

MT (x, x∗) = (Tx∗)2 and NT (x, x∗) = min
{

(Tx)2 − x2, pmb (x∗, Tx)
}

Thus R.H.S. of (2.1) becomes

θ
(
φ
(
MT (x, x∗)

))
F
(
MT (x, x∗)

)
+ Lmin

{
(Tx)2 − x2, pmb (x∗, Tx)

}
− ψ

(
MT (x, x∗)

)
= θ
(
φ
(
(Tx∗)2

))
F
(

(T )2
)

+ Lmin
{

(Tx)2 − x2, pmb (x∗, Tx)
}
− ψ

(
(Tx∗)2

)
= θ
(
φ
((

2x∗ + sin
( √(x∗)3

3x∗ +
√

2

))2))
F
((

2x∗ + sin
( √(x∗)3

3x∗ +
√

2

))2)
+ Lmin

{
(Tx)2 − x2, pmb (x∗, Tx)

}
− ψ

((
2x∗ + sin

( √(x∗)3

3x∗ +
√

2

))2)

=

log

{(
2x∗ + sin

(√
(x∗)3

3x∗+
√
2

))2}

log

{
1 +

(
2x∗ + sin

(√
(x∗)3

3x∗+
√
2

))2}
+ 1

+ Lmin
{(

2x+ sin
( √

x3

3x+
√

2

))2
− x2, pmb (x∗, Tx)

}
− log

{
2

(
2x∗+sin

( √
(x∗)3

3x∗+
√
2

))2}
,

for all x, x∗ ∈ X = [0,∞] and L ≥ 0. Clearly for ε = 1.2 and L = 1, one can
see that R.H.S. of (2.1) dominates L.H.S. as shown in the following Figure.
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Figure 1. R.H.S. Superimposes L.H.S., 3D view.

Remark 2.3. Example 2.2 holds for all ε ∈ (1, 1.9] and L ≥ 0.

Next theorem is proved for Geraghty type generalized F -Berinde contractive
mappings in partial b-metric spaces.

Theorem 2.4. Let (X, pb) be a complete partial b-metric space and T : X →
X be Geraghty type generalized F -Berinde contraction. If T is continuous,
then T has a unique fixed point w ∈ X.

Proof. For an arbitrary point x0 ∈ X, we construct a sequence {xn} in X such
that

x = x0 and xn = Txn−1, ∀ n ∈ N.

If there exists no ∈ N such that pb(xn0 , Txn0) = 0, then xn0 is the desired
fixed point and we are through.

Consequently, for the subsequent discussion, we assume that pb(xn, xn+1) >
0 for all n ∈ N. By taking x = xn−1 and x∗ = xn in (2.1), we have

F (pb(xn, xn+1)) ≤ F (sεpb(Txn−1, Txn))

≤ θ
(
φ
(
MT (xn−1, xn)

))
F
(
MT (xn−1, xn)

)
+ LNT (xn−1, xn)− ψ

(
MT (xn−1, xn)

)
,

(2.2)

where

MT (xn−1, xn) = max
{
pb(xn−1, xn), pb(xn−1, xn),

pb(xn, xn+1),
pb(xn−1, xn+1) + pb(xn, xn)

2s

}
,
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and

NT (xn−1, xn) = min
{
pmb (xn−1, xn), pmb (xn, xn+1),

pmb (xn−1, xn+1), p
m
b (xn, xn)

}
.

Since

pb(xn−1, xn+1) + pb(xn, xn)

2s
≤ pb(xn−1, xn) + pb(xn, xn+1)

2

≤ max
{
pb(xn−1, xn), pb(xn, xn+1)

}
and

pmb (xn, Txn−1) = pmb (xn, xn)

= pb(xn, xn)−min
{
pb(xn, xn), pb(xn, xn)

}
= 0,

we have

MT (xn−1, xn) = max
{
pb(xn−1, xn), pb(xn, xn+1)

}
and NT (xn−1, xn) = 0.

If max
{
pb(xn−1, xn), pb(xn, xn+1)

}
= pb(xn, xn+1), for all n ∈ N. From (2.2)

and by the hypothesis of θ and ψ, we obtain

F (pb(xn, xn+1)) ≤ F (sεpb(Txn−1, Txn))

≤ θ
(
φ
(
MT (xn−1, xn)

))
F
(
MT (xn−1, xn)

)
+ LNT (xn−1, xn)− ψ

(
MT (xn−1, xn)

)
≤ θ
(
φ
(
pb(xn, xn+1)

))
F
(
pb(xn, xn+1)

)
− ψ

(
pb(xn, xn+1)

)
≤ F

(
pb(xn, xn+1)

)
− ψ

(
pb(xn, xn+1)

)
< F

(
pb(xn, xn+1)

)
,

which is a contradiction. Thus we conclude thatMT (xn−1, xn) = pb(xn−1, xn).
From (2.2) and again by the definitions of θ and ψ, we have

F (pb(xn, xn+1)) ≤ F (sεpb(Txn−1, Txn))

≤ F
(
pb(xn−1, xn)

)
− ψ

(
pb(xn−1, xn)

)
< F

(
pb(xn−1, xn)

)
.

(2.3)

Thus the sequence {pb(xn, xn+1)} is a non increasing sequence of non-negative
numbers and is bounded below and hence it is convergent to some point, say
γ ≥ 0. i.e.,

lim
n→∞

pb(xn, xn+1) = γ.
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Letting n→∞ in (2.3), we obtain

F (γ) ≤ F (γ)− ψ(γ).

This implies that ψ(γ) = 0 and thus γ = 0. Hence,

lim
n→∞

pb(xn, Txn) = lim
n→∞

pb(xn, xn+1) = 0. (2.4)

Further, by using the property (pb2) of partial b-metric space, we have the
following equality

lim
n→∞

pb(xn, xn) = 0. (2.5)

Next, we claim that {xn} is a pb-Cauchy sequence inX. By applying Lemma
1.4 we need to prove that {xn} is a b-Cauchy sequence in the b-metric space
(X, dpb). Suppose, on the contrary, that there exists δ > 0 such that for an
integer k there exist integer m′(k) > m(k) ≥ k such that

dpb(xm(k), xm′(k)) ≥ δ. (2.6)

For every integer k, let m(k) be the least positive integer exceeding m′(k)
satisfying (2.6) such that

dpb(xm(k), xm′(k)−1) < δ. (2.7)

From (2.6), we get

δ ≤ dpb(xm(k), xm′(k)) ≤ sdpb(xm(k), xm′(k)−1) + sdpb(xm′(k)−1, xm′(k)). (2.8)

Which on letting limit k →∞ and using (2.7) give rise to

δ

s
≤ lim

k→∞
inf dpb(xm(k), xm′(k)−1) ≤ lim

k→∞
sup dpb(xm(k), xm′(k)−1) ≤ δ. (2.9)

Also from (2.7), (2.8) and (2.9), we have

δ ≤ lim
k→∞

sup dpb(xm(k), xm′(k)) ≤ sδ. (2.10)

Moreover,

dpb(xm(k)+1, xm′(k)−1) ≤ sdpb(xm(k)+1, xm(k)) + sdpb(xm(k), xm′(k)−1).

Which yields

lim
k→∞

sup dpb(xm(k)+1, xm′(k)−1) ≤ sδ. (2.11)

Further, by using triangle inequality, we obtain

δ ≤ dpb(xm′(k), xm(k))

≤ sdpb(xm′(k), xm(k)+1) + sdpb(xm(k)+1, xm(k))
(2.12)

and

dpb(xm′(k), xm(k)+1) ≤ sdpb(xm′(k), xm(k)) + sdpb(xm(k), xm(k)+1). (2.13)
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It follows from (2.4), (2.10), (2.12), and (2.13) that

δ

s
≤ lim

k→∞
sup dpb(xm′(k), xm(k)+1) ≤ s2δ. (2.14)

Now, by using Proposition (1.3) in (2.9), (2.10), (2.11) and (2.14), one will get

δ

2s
≤ lim

k→∞
sup pb(xm(k), xm′(k)−1) ≤

δ

2
. (2.15)

δ

2
≤ lim

k→∞
sup pb(xm(k), xm′(k)) ≤

sδ

2
. (2.16)

lim
k→∞

sup pb(xm(k)+1, xm′(k)−1) ≤
sδ

2
. (2.17)

δ

2s
≤ lim

k→∞
sup pb(xm′(k), xm(k)+1) ≤

s2δ

2
. (2.18)

On the other hand

pmb (xm(k), xm(k)+1) = pb(xm(k), xm(k)+1)

−min
{
pb(xm(k), xm(k)), pb(xm(k)+1, xm(k)+1)

}
≤ pb(xm(k), xm(k)+1)

and thanks to (2.4), we obtain

lim
k→∞

pmb (xm(k), xm(k)+1) = 0. (2.19)

Since F
(
pb(xm(k)+1, xn(k))

)
= F

(
pb(Txm(k), Txm′(k)−1)

)
> 0, by the assump-

tion of the theorem, we have

F (pb(xm(k)+1, xm′(k)))

≤ F
(
sεpb(Txm(k), Txm′(k)−1)

)
≤ θ
(
φ
(
MT (xm(k), xm′(k)−1)

))
F
(
MT (xm(k), xm′(k)−1)

)
+ LNT (xm(k), xm′(k)−1)− ψ

(
MT (xm(k), xm′(k)−1)

)
.

(2.20)

By using definitions of MT and NT along with inequalities (2.15), (2.16),
(2.17) and (2.19), one will

lim
k→∞

supMT (xm(k), xm′(k)−1) ≤
δ

2
(2.21)

and

lim
k→∞

supNT (xm(k), xm′(k)−1) = 0. (2.22)
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Indeed,

MT (xm(k), xm′(k)−1) = max
{
pb(xm(k), xm′(k)−1), pb(xm(k), xm(k)+1),

pb(xm′(k)−1, xm′(k)),

pb(xm(k), xm′(k)) + pb(xm′(k)−1, xm(k)+1)

2s

}
and

NT (xm(k), xm′(k)−1) = min
{
pmb (xm(k), xm(k)+1), p

m
b (xm′(k)−1, xm′(k)),

pmb (xm(k), xm′(k)), p
m
b (xm′(k)−1, xm(k)+1)

}
,

Hence, we have

lim
k→∞

supMT (xm(k), xm′(k)−1) ≤ max
{δ

2
, 0, 0,

1

2s

[sδ
2

+
sδ

2

]}
≤ δ

2
.

and

lim
k→∞

supNT (xm(k), xm′(k)−1) = 0.

Taking lim sup as n → ∞ in (2.20) and using (2.18), (2.21) and (2.22), we
have

F (
δ

2
) = F

(
s
δ

2s

)
≤ lim

k→∞
supF

(
sεpb(Txm(k), Txm′(k)−1)

)
≤ lim

k→∞
sup θ

(
φ
(
MT (xm(k), xm′(k)−1)

))
F
(
MT (xm(k), xm′(k)−1)

)
+ L lim

k→∞
supNT (xm(k), xm′(k)−1)− lim

k→∞
supψ

(
MT (xm(k), xm′(k)−1)

)
≤ lim

k→∞
sup θ

(
φ
(
MT (xm(k), xm′(k)−1)

))
F (
δ

2
)− F (

δ

2
),

which is a contradiction, since θ ∈ [0, 1). Thus {xn} is a b-Cauchy sequence
in the b-metric space (X, dpb), hence from Lemma 1.4 {xn} is a pb-Cauchy
sequence in the partial b-metric space (X, pb). As (X, pb) is complete so that
by Lemma 1.4, b-metric space (X, dpb) is b-complete. Therefore, the sequence
{xn} converges to some point w ∈ X, that is, lim

n→∞
dpb(xn, w) = 0.

Again, from Lemma 1.4

lim
n→∞

pb(xn, w) = lim
n,m→∞

pb(xn, xm) = pb(w,w) = 0. (2.23)
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Next, We will prove that pb(w, Tw) = 0. Assume to the contrary that
pb(w, Tw) > 0, then from inequality (2.1), we obtain

F (pb(Tw, xn+1)) ≤ F (sεpb(Tw, Txn))

≤ θ
(
φ(MT (w, xn))

)
F
(
MT (w, xn)

)
+ LNT (w, xn)− ψ

(
MT (w, xn)

)
,

(2.24)

where

MT (w, xn) = max
{
pb(w, xn), pb(w, Tw), pb(xn, xn+1),

pb(w, xn+1) + pb(xn, Tw)

2s

}
and

NT (xn, u) = min
{
pmb (w, Tw), pmb (xn, xn+1), p

m
b (w, xn+1), p

m
b (xn, Tw)

}
.

Passing limit as n→∞ and using (2.4) and (2.23) , we have

lim
n→∞

MT (xn, w) = max
{

0, pb(w, Tw), 0,
pb(w, Tw)

2s

}
= pb(w, Tw). (2.25)

Moreover, from (2.4) and (2.5), we have

lim
n→∞

pmb (xn, Txn) = 0.

Consequently
lim
n→∞

NT (xn, u) = 0. (2.26)

Now, letting n → ∞ in (2.24) and utilizing (2.25) and (2.26) togather with
continuity of T and property of function F , we obtain

F (pb(Tw,w)) ≤ F (sεpb(Tw,w))

≤ lim
n→∞

θ
(
φ(MT (w, xn))

)
F
(
pb(w, Tw)

)
− ψ

(
pb(w, Tw)

)
≤ lim

n→∞
θ
(
φ(MT (w, xn))

)
F
(
pb(w, Tw)

)
.

Which implies
1 ≤ lim

n→∞
θ
(
φ(MT (w, xn))

)
.

Using the hypothesis of θ and φ, the above inequality turns into

lim
n→∞

θ
(
φ(MT (w, xn))

)
= 1

or
lim
n→∞

φ
(
MT (w, xn)

)
= 0

which further implies that

lim
n→∞

MT (w, xn) = 0,
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which is a contradiction. Hence pb(w, Tw) = 0, that is, T has a fixed point
w ∈ X. For the uniqueness of fixed point, suppose u and v are two fixed points
of T , such that pb(u, v) > 0, then from (2.1), we obtain

F (pb(u, v)) = F (pb(Tu, Tv))

≤ F (sεpb(pb(Tu, Tv)))

≤ θ
(
φ
(
MT (u, v)

)
F (MT (u, v)) + LNT (u, v)− ψ(MT (u, v))

≤ F (pb(u, v))− ψ(pb(u, v)) < F (pb(u, v)).

Which is a contradiction. Hence (pb(u, v)) = 0. Thus fixed point of T is
unique. �

Following Example authenticates the validity of the hypothesis of Theorem
2.4.

Example 2.5. Let X = [0, 12 ] be equipped with partial metric pb : X ×X →
[0,∞) defined by

pb(x, x
∗) = [max{x, x∗}]2,

for all x, x∗ ∈ X. Then, (X, pb) is a complete partial b-metric space with s = 2.
Let the mapping T : X → X is defined by

Tx =
x

3
+ xlog

(
1 + x

1
3

)
.

Define θ : [0,∞) → [0, 1) by θ(c) = 1
1+log(2c) and φ, ψ : [0,∞) → [0,∞) be

given by φ(c) = log(2c) and ψ(c) = log(1 + c). Also F (c) = log(c) for all
c ∈ R+. Without loss of generality we take x, x∗ ∈ X with x > x∗.
Now L.H.S.

F (sεpb(Tx, Tx
∗)) = F

(
2ε max(Tx, Tx∗)

)
= F (2ε(Tx)2)

= F

(
2ε
(x

3
+ xlog

(
1 + x

1
3

))2)

= log

(
2ε
(x

3
+ xlog

(
1 + x

1
3

))2)
.

Utilizing the definitions ofMT (x, x∗) and NT (x, x∗), and with suitable calcu-
lations, we acquire

MT (x, x∗) = x2 and NT (x, x∗) = min
{

(x∗)2 − (Tx∗)2, pmb (x∗, Tx)
}
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Thus R.H.S. becomes

θ
(
φ
(
MT (x, x∗)

))
F
(
MT (x, x∗)

)
+ LNT (x, x∗)− ψ

(
MT (x, x∗)

)
= θ
(
φ
(
x2
))
F (x2) + Lmin

{
(x∗)2 − (Tx∗)2, pmb (x∗, Tx)

}
− ψ(x2)

=
logx2

1 + log
(

2log(2x
2 )
)

+ Lmin

(
(x∗)2 −

(x∗
3

+ x∗log
(

1 + (x∗)
1
3

))2
, pmb (x∗, Tx)

)
− log(1 + x2)

for all x, x∗ ∈ X = [0, 12 ] and L ≥ 0. Clearly for ε = 1.1 and L = 100, one can
see that R.H.S. dominates L.H.S. as shown in the following Figure.

Figure 2. (a) Domination of R.H.S over L.H.S., 3D view &
(b) Fixed point of T.

Moreover the mapping T : X → X is continous. Thus all the conditions
of Theorem 2.4 are fulfilled. Hence T is Geraghty type generalized F -Berinde
contraction and has a unique fixed point 0 ∈ X.

Remark 2.6. Theorem 2.4 generalizes and extends F -contraction version
of Theorem 1 and Theroem 2 of V. Berinde [4] in the setting of partial b-
metric space by setting φ(MT (x, x∗)) = δ,MT (x, x∗) = pb(x, x

∗), NT (x, x∗)
= pb(x, Tx) and ψ(t) = τ in Theorem 2.4.

Remark 2.7. Theorem 2.4 generalizes and extends F -contraction version of
Theorem 2.1 of Altun and Sadarangani [1] in the setting of partial b-metric
space by setting φ(t) = t and L = 0 in Theorem 2.4.
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3. Some consequences

By choosing ψ
(
MT (x, x∗)

)
= τ > 0 in Theorem 2.4, Berinde-Wardowiski

type result is obtained in the setting of partial b-metric spaces as follows.

Corollary 3.1. Theorem 2.4 remains true, if we replace the assumption (2.1)
by the following (besides retaining the rest of the hypotheses):

F (sεpb(Tx, Tx
∗)) ≤ θ

(
φ
(
MT (x, x∗)

))
F
(
MT (x, x∗)

)
+LNT (x, x∗)−τ, (3.1)

Taking L = 0 in Theorem 2.4, we have the following corollary.

If ψ
(
MT (x, x∗)

)
= τ > 0 and L = 0 in Theorem 2.4, we have the following

corollary.

Corollary 3.2. Theorem 2.4 remains true, if we replace the assumption (2.1)
by the following (besides retaining the rest of the hypotheses):

F (sεpb(Tx, Tx
∗)) ≤ θ

(
φ
(
MT (x, x∗)

))
F
(
MT (x, x∗)

)
− τ, (3.2)

Further by taking φ(t) = t in Corollary 3.2, we have the following corollary
as a consequence of Theorem 2.4.

Corollary 3.3. Let (X, pb) be a complete partial b-metric space with s > 1.
Let T be a continuous self mapping on X. If there exist , θ ∈ Θ, F ∈ ℵF ,
τ > 0 and L ≥ 0 such that for all x, y ∈ X with pb(Tx, Tx

∗) > 0,

F (sεpb(Tx, Tx
∗)) ≤ θ

(
MT (x, x∗)

)
F
(
MT (x, x∗)

)
− τ, (3.3)

where

MT (x, x∗) = max
{
pb(x, x

∗), pb(x, Tx), pb(x
∗, Tx∗),

pb(x, Tx
∗) + pb(x

∗, Tx)

2s

}
,

and ε > 1 is a constant, then T has a unique fixed point.

Remark 3.4. By taking θ(t) = c, where c ∈ [0, 1) in Corollary 3.3 reduces
to F -contraction version of Theorem 5.3 of Mathews [8] in the framework
of partial metric space and partial b-metric space along with Geraghty type
contraction.

Remark 3.5. Corollary 3.3 generalizes Theorem 2.4 of Wardowski and Dung
[14] for parial b-metric space along with Geraghty type contraction.

Remark 3.6. Corollary 3.3 generalizes the result of Wardowski [15] for partial
metric space and partial b-metric space along with Geraghty type contraction.

Following Corollary is another version of Corollary 3.3.
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Corollary 3.7. Let (X, pb) be a complete partial b-metric space with s > 1.
Let T be a continuous self mapping on X. If there exist , θ ∈ Θ, F ∈ ℵF ,
τ > 0 and L ≥ 0 such that for all x, y ∈ X with pb(Tx, Tx

∗) > 0,

F (sεpb(Tx, Tx
∗)) ≤ F

(
θ
(
MT (x, x∗)

)(
MT (x, x∗)

))
− τ, (3.4)

where

MT (x, x∗) = max
{
pb(x, x

∗), pb(x, Tx), pb(x
∗, Tx∗),

pb(x, Tx
∗) + pb(x

∗, Tx)

2s

}
,

and ε > 1 is a constant, then T has a unique fixed point.

4. Applications

4.1. Application to solution of differential equation of first order.
As an application, we obtain the solution of the following first-order periodic
boundary value problem in this section:{

v
′
(t) = g(t, v(t)), t ∈ [0, T ];

v(0) = v(T ).
(4.1)

Where T > 0 and g : [0, T ]× R→ R is a continuous function.
Above problem is equivalent to the integral equation:

v(t) =

∫ T

0
G(t, s)[g(s, v(s)) + ηv(s)]ds, t ∈ [0, T ], (4.2)

in which G(t, s) is the Green’s function, given by

G(t, s) =

{
eη(T+s−t)

eηT−1 0 ≤ s ≤ t ≤ T ;
eη(s−t)

eηT−1 0 ≤ t ≤ s ≤ T.
(4.3)

Let X = C([0, T ],R) be the set of all real continuous functions on [0, T ] and
pb : X ×X → [0,∞) be defined by

pb(v, w) = max
t∈[0,T ]

|v(t)− w(t)|2, (4.4)

for all v, w ∈ X. Then clearly, the space (X, pb) is a complete partial b-metric
space with s = 2.

Consider the self map f : X → X given by

fw(t) =

∫ T

0
G(t, s)[g(s, w(s)) + ηw(s)]ds, t ∈ [0, T ].

then w is a solution of (4.2) if and only if it is a fixed point of f.
Subsequent Theorem is furnished for the assertion of the existence of fixed

point of f.
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Theorem 4.1. Suppose there exists η > 0 such that for any x, y ∈ R, with
τ > 0

|g(t, x(t))+ηx(t)−g(t, x∗(t))−ηx∗(t)| ≤ η

2
ε
2
+1

√
(|x(t)− x∗(t)|2 − r)e−τ (4.5)

where |x(t) − x∗(t)| > r, t ∈ [0, T ] and r ≥ 0. Then the differential equation
(4.1) has a solution.

Proof. One can easily note that
(
C([0, T ],R), pb

)
is a complete partial b-metric

space on account of (4.4).
For v, w ∈ X and τ > 0, we have∣∣∣fv(t)− fw(t)

∣∣∣
=
∣∣∣ ∫ T

0
G(t, s)[g(s, v(s)) + ηv(s)]ds−

∫ T

0
G(t, s)[g(s, w(s)) + ηw(s)] ds

∣∣∣
≤
∫ T

0
G(t, s)

∣∣∣g(s, v(s)) + ηv(s)− g(s, w(s))− ηw(s)
∣∣∣ ds

≤ max
t∈[0,T ]

∣∣∣g(s, v(t)) + ηv(t)− g(t, w(t))− ηw(t)
∣∣∣ ∫ T

0
G(t, s) ds

≤ η

2
ε
2
+1

max
t∈[0,T ]

√
(|v(t)− w(t)|2 − r)e−τ

∫ T

0
G(t, s) ds

=
η

2
ε
2
+1

max
t∈[0,T ]

√
(|v(t)− w(t)|2 − r)e−τ

[ ∫ t

0

eη(T+s−t)

eηT − 1
ds+

∫ T

t

eη(s−t)

eηT − 1
ds
]

=
η

2
ε
2
+1

max
t∈[0,T ]

√
(|v(t)− w(t)|2 − r)e−τ

×
[ 1

η(eηT − 1)

(
eηT − eη(T−t) + eη(T−t) − 1

)]
≤ 1

2
ε
2
+1

max
t∈[0,T ]

√
(|v(t)− w(t)|2 − r)e−τ ,

which yields

2ε max
t∈[0,T ]

∣∣∣fv(t)− fw(t)
∣∣∣2 ≤ 1

4
max
t∈[0,T ]

{
(|v(t)− w(t)|2 − r)e−τ

}
or

2εpb(fv, fw) ≤ 1

4
pb(v, w)e−τ .

Which amounts to say that

2εpb(fv, fw) ≤ 1

4
MT (v, w)e−τ ,
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where

MT (v, w) = max{pb(v, w), pb(v, fv), pb(w, fw),
1

4
[pb(v, Tw) + pb(w, fv)]}.

Since θ ∈ Θ, taking θ
(
MT (v, w)

)
= 1

4 , we obtain

2εpb(fv, fw) ≤ θ
(
MT (v, w)

)
MT (v, w)e−τ ,

Passing to logarithms, we get

ln
(

2εpb(fv, fw)
)
≤ ln

(
θ
(
MT (v, w)

)(
MT (v, w)

))
− τ.

For ln(k) = k, k > 0, above inequality turn into

F
(

2εpb(fv, fw)
)
≤ F

(
θ
(
MT (v, w)

)(
MT (v, w)

))
− τ.

Hence all the hypothesis of Corollary 3.7 are satisfied, we conclude that f
has a fixed point w∗ in X, which is the solution of integral equation 4.2.
Consequently, the differential equation (4.1) has a solution. �

4.2. Application to solution of differential equation of second order.
In this section, the existence of solution for the following second order bound-
ary value problem is established:{

u
′′
(t) = g(t, u(t)), t ∈ [0, 1];

u(0) = u0, u(1) = u1.
(4.6)

Where g : [0, 1]× R→ R is a continuous function.
Firstly consider the space X = C(H)(H = [0, 1],R) of continuous functions

defined on H. Obviously this space with metric given by

pb(u, v) = sup
t∈[0,1]

|u(t)− v(t)|2, for all u, v ∈ X, (4.7)

is a complete partial b-metric space with s = 2.

Theorem 4.2. Consider problem (4.6) and suppose there exists ξ > 0 such
that for any x, y ∈ C(H), with τ > 0

|x(t)− y(t)| ≤ 1

ξ2
ε
2

√
(|x(t)− y(t)|2 − r)e−τ (4.8)

where |x(t) − y(t)| > r and r ≥ 0. Then the differential equation (4.6) has a
solution.
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Proof. Problem (4.6) is equivalent to the second kind Fredholm integral equa-
tion

u(t) = F (t) + ξ

∫ 1

0
G∗(t, s)u(s)ds, t ∈ [0, 1], (4.9)

in which F (t) = u0 + t(u1 − u0) and G∗(t, s) is the Green’s function, given by

G∗(t, s) =

{
s(1− s) 0 ≤ s ≤ t;
t(1− s) t ≤ s ≤ 1.

(4.10)

Note that if u ∈ C(H) is a fixed point of f , then u is a solution of (4.6).
For u, v ∈ C(H) and τ > 0, we have∣∣∣fu(t)− fv(t)

∣∣∣ =
∣∣∣F (t) + ξ

∫ 1

0
G∗(t, s)u(s)ds−

[
F (t) + ξ

∫ 1

0
G∗(t, s)v(s)ds

] ∣∣∣
≤ ξ

∫ 1

0
G∗(t, s)

∣∣∣u(s)− v(s)
∣∣∣ ds

≤ sup
t∈[0,1]

∣∣∣u(t)− v(t)
∣∣∣ ∫ 1

0
G∗(t, s) ds

≤ 1

2
ε
2

sup
t∈[0,1]

√
(|u(t)− v(t)|2 − r)e−τ

∫ 1

0
G∗(t, s) ds

=
1

2
ε
2

[ t3
6
− t2

2
+
t

2

]
sup
t∈[0,1]

√
(|u(t)− v(t)|2 − r)e−τ

≤
(

1

6

)(
1

2
ε
2

)
sup
t∈[0,1]

√
(|u(t)− v(t)|2 − r)e−τ .

Which implies that

2ε sup
t∈[0,1]

∣∣∣fu(t)− fv(t)
∣∣∣2 ≤ 1

36
sup
t∈[0,1]

{
(|u(t)− v(t)|2 − r)e−τ

}
or

2εpb(fu, fv) ≤ 1

36
pb(u, v)e−τ .

Which amounts to say that

2εpb(fu, fv) ≤ 1

36
MT (u, v)e−τ ,

where

MT (u, v) = max{pb(u, v), pb(u, fu), pb(v, fv),
1

4
[pb(u, Tv) + pb(v, fu)]}.

Taking θ
(
MT (u, v)

)
= 1

36 , we obtain

2εpb(fu, fv) ≤ θ
(
MT (u, v)

)
MT (u, v)e−τ .
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Consequently, passing to logarithms, one can get

ln
(

2εpb(fu, fv)
)
≤ ln

(
θ
(
MT (u, v)

)(
MT (u, v)

))
− τ,

or

F
(

2εpb(fu, fv)
)
≤ F

(
θ
(
MT (u, v)

)(
MT (u, v)

))
− τ,

for ln(k) = k, k > 0. Hence, we conclude that the contractive condition of
Corollary 3.7 is satisfied with s = 2, authenticating f has a fixed point v∗

in C(H), which is the solution of integral equation (4.9). Consequently, the
differential equation (4.6) has a solution. �

Open Problem: As an open problem, one can establish the existence of
solution of storekeeper’s control problem, which is stated as:

For the use of optimal storage space, a storekeeper wants to keep the stores
stock of goods constant. This can be mathematically modeled as a Volterra
integral equation of the first kind as follows:

ζh(ν) +

∫ ν

0
h(ν − ϑ)g(ϑ)dϑ = m0,

where ζ is anumber of products in stock at time ν=0, h(ν) is remainder of
products in stock (in percent) at the time ν, g(ν) is the velocity (products/time
unit) with which new products are purchased, g(ϑ)∆ϑ is trhe amount of pur-
chased products during the time interval ϑ.

References

[1] I. Altun and K. Sadarangani, Generalized Geraghty type mappings on partial metric
spaces and fixed point results, Arab. J. Math., 2(3) (2013), 247-253.

[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
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