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Abstract. Let C be a closed bounded convex subset of a real Banach space X with 0 as

its interior point and pc the Minkowski functional generated by the set C. For a nonempty

set G in X and x ∈ X, g0 ∈ G is called the generalized best approximation to x from G if

pc(g0 − x) ≤ pc(g − x) for all g ∈ G. In this paper, we will give a distance formula under pC

from a point to a half-space Kx∗
0 ,c

= {x ∈ X : x∗
0(x) ≤ c} in Banach space and investigate

the continuity of this generalized metric projection, extending corresponding results for the

case of norm.

1. Introduction

In recent years, the generalized metric projection is concerned by more
and more people. It has been used in many areas of mathematics such as
the theories of optimization and approximation, fixed point theory, nonlinear
programming, and variational inequalities. In practical application, giving the
representations of generalized metric projection is very necessary. Generally
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speaking, this is very difficult. Wang and Yu [9] gave a representation of
single-valued metric projection on a class of hyperplanes Hx∗0,c

= {x ∈ X :
x∗0(x) = c} in reflexive, smooth, and strictly convex Banach Space X. Song
and Cao [8] gave a representation of metric projection on a class of half-space
Kx∗0,c

in the reflexive, smooth, and strictly convex Banach Space X. Luo and
Wang [5] discussed the generalized metric projection on closed hyperplane and
investigate the continuity of this generalized metric projection.

Throughout this paper, (X, ‖ ·‖) is a real Banach space with the closed unit
ball B(X), and X∗ is its topological dual. For a nonempty subset A of X, as
usual, intA and bdA stand for the interior and the boundary of A, respectively.

Let C be a closed bounded convex subset of X with 0 ∈ int C. Recall that
the Minkowski function pC : X → R with respect to the set C is defined by

pC(x) = inf{t > 0 : x ∈ tC}, ∀x ∈ X. (1.1)

Let G be a nonempty subset of X and x ∈ X. If there exists g0 ∈ G such that

pC(g0 − x) = τC(x,G), (1.2)

where

τC(x,G) = inf{pC(g − x) : g ∈ G} (1.3)

is the distance from the point x to the set G, then g0 is called the general-
ized best approximation to x from G, see [9]. The set of all generalized best
approximations to x from G is denoted by PCG (x), that is,

PCG (x) = {g0 ∈ G : pC(g0 − x) = τC(x,G)}, (1.4)

which is called the generalized metric projection onto G.
As is well known, pC is the norm of X if C is a unit ball. The generalized

best approximation is reduced to the classical best approximation, which has
been studied deeply and extensively since the late 1950s; see [2,3,6,7] and
reference therein.

In this paper, firstly, we gave two representations of the generalized metric
projection PKx∗0,c

and PKx0,c
. Secondly, by these representations, we prove

that if X is weakly near strictly convex(resp.,weakly nearly smooth), then
the generalized metric projection PKx∗0,c

(resp.,PKx0,c
) is norm-weakly upper

semicontinuous, where

Kx∗0,c
= {x ∈ X : x∗0(x) ≤ c}, Kx0,c = {x∗ ∈ X∗ : x∗(x0) ≤ c}. (1.5)

2. Preliminaries

Recall that (X, ‖ · ‖) is a real Banach space with the topological dual X∗, C
is a closed bounded convex subset of X with 0 ∈ intC and pC is the Minkowski
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function given by (1). Define the polar C0 of the set C by

C0 = {x∗ ∈ X∗ : x∗(x) ≤ 1, ∀x ∈ C}.
Then C0 is a nonempty weakly* compact convex subset of X∗ with 0 ∈ int C0.

We first list some useful properties of the Minkowski function pC which can
be proved easily by the definition.

Proposition 2.1. ([1]) For every x, y ∈ X, we have

(1) pC(x) ≥ 0, and pC(x) = 0 iff x = 0;
(2) pC(x+ y) ≤ pC(x) + pC(y);
(3) −pC(y − x) ≤ pC(x)− pC(y) ≤ pC(x− y);
(4) pC(λx) = λpC(x), if λ ≥ 0;
(5) pC(−x) = p−C(x);
(6) pC(x) = 1 iff x ∈ ∂C;
(7) pC(x) < 1 iff x ∈ int C;
(8) µ‖x‖ ≤ pC(x) ≤ ν‖x‖, where

µ = inf
x∈∂B

pC(x) and ν = sup
x∈∂B

pC(x).

Let x ∈ X, from the definition in [5],

σ(x) = {x∗ ∈ X∗ : x∗(x) = pC(x)pC(x∗) = pC(x)2 = pC0(x∗)2},
which is analogous to the dual mapping in Banach Spaces. Then, for x∗ ∈ X∗,
one obtains that

σ−1(x∗) = {x ∈ X : x∗ ∈ σ(x)}
and

σ−1(λx∗) = λσ−1(x∗), ∀λ ∈ R.
Hence, for 0 6= x∗ ∈ X∗ and x ∈ X, noting that pC0(x∗) 6= 0, one has that

x ∈ σ−1(x∗)⇔ x∗(x) = pC(x)PC0(x∗) = PC0(x∗)2

and so

x ∈ σ−1( x∗

PC0(x∗)
)⇔ x∗(x)

PC0(x∗)
= pC(x) = 1.

We then give the following definitions which will be used in the rest of this
paper.

Definition 2.2. ([4]) C is called strictly convex if ∂C = extC, the set of all
extreme points of C.

From the definition, it follows that C is strictly convex if and only if for any
x, y ∈ ∂C, pC(x+ y) = pC(x) + pC(y) implies x = y.
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Remark 2.3. ([5]) The set C is said to be strictly convex(resp.,nearly strictly
convex and weakly nearly strictly convex) if each convex subset of ∂C is a
singleton (res., relatively compact and relatively weakly compact.)

Definition 2.4. ([5]) Let T be a set-valued mapping from X into 2X , where
2X is the set of all subsets of X.

(1) Let x ∈ X with Tx 6= ∅. Then T is said to be norm-to-norm (res.,
norm-to-weak) upper semicontinuous at x if, for each open set (resp.,
weakly open set) W ⊇ T (x) there exists an open neighborhood V of x
such that T (y) ⊆W whenever y ∈ V.

(2) T is said to be norm-to-norm (res., norm-to-weak)upper semicontin-
uous on X if, for each x ∈ X, Tx 6= ∅ and T is norm-to-norm (resp.,
norm-to-weak) upper semicontinuous at x.

(3) T is said to be norm-to-norm continuous on X if, for each x ∈ X, Tx
is single valued and T is norm-to-norm upper semicontinuous at X.

3. Main results

Lemma 3.1. Let X be a Banach space and let x∗0 ∈ X∗\{θ}. Then

τC(x,Kx∗0,c
) =

x∗0(x)− c
pC0(x∗0)

,

for all x ∈ X\Kx∗0,c
.

Proof. Firstly, suppose that pC0(x∗0) = 1, let x ∈ X\Kx∗0,c
. For any y ∈ Kx∗0,c

,
Since

pC(x− y) = pC(x− y)pC0(x∗0) ≥ x∗0(x− y) ≥ x∗0(x)− c > 0,

we deduce that

τC(x,Kx∗0,c
) ≥ x∗0(x)− c.

On the other hand, for any ε > 0, (ε < 1/4), there exists uε in ∂C such that
1− ε < x∗0(uε) ≤ 1. Set yε = x− (1 + 2ε)(x∗0(x)− c)uε. Then

x∗0(yε) = x∗0(x)− (1 + 2ε)(x∗0(x)− c)x∗0(uε)
< x∗0(x)− (1 + 2ε)(x∗0(x)− c)(1− ε)
= x∗0(x)− (1 + ε− 2ε2)(x∗0(x)− c)
≤ x∗0(x)− (x∗0(x)− c) = c.

(3.1)

Consequently, yε ∈ Kx∗0,c
and pC0(x − yε) = (1 + 2ε)(x∗0(x) − c), It follows

that

τC(x,Kx∗0,c
) ≤ (1 + 2ε)(x∗0(x)− c).
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By arbitrariness of ε, we deduce that

τC(x,Kx∗0,c
) ≤ x∗0(x)− c.

This means that
τC(x,Kx∗0,c

) = x∗0(x)− c.
Secondly, for x∗ ∈ X∗\{θ} and pC0(x∗0) 6= 1, since

Kx∗0,c
= {x ∈ X : x∗0(x) ≤ c} = {x ∈ X :

x∗0(x)

pC0(x∗0)
≤ c

pC0(x∗0)
}. (3.2)

From (3.2), we may obtain that

τC(x,Kx∗0,c
) =

x∗0(x)− c
pC0(x∗0)

,

for all x ∈ X\Kx∗0,c
. �

Remark 3.2. For given x∗0 ∈ X∗\{θ} and c ∈ R, by the proof of Lemma 3.1,
we have that

τC(x,Kx∗0,c
) = τC(x,Hx∗0,c

)

for any x ∈ X\Kx∗0
, c.

Remark 3.3. ([10]) Let X be a Banach space and let x∗0 ∈ X∗\{θ}. Then

d(x,Kx∗0,c
) =

x∗0(x)− c
‖x∗0‖

,

for all x ∈ X\Kx∗0,c
.

Proposition 3.4. Let X be a Banach space, let x∗0 ∈ X∗\{θ} and let c ∈ R.
Then

τC(x∗,Kx0,c) =
x∗(x0)− c
pC0(x0)

,

for any x∗ ∈ X∗\Kx0,c.

The following result is a characteristic of Kx∗0,c
being a proximinal set.

Theorem 3.5. Let X be a Banach Space, let x∗0 ∈ X∗\{θ}. Then PCKx∗0,c
(x) 6=

∅ for any x ∈ X if and only if σ−1(x∗0) 6= ∅.

Proof. On necessary: take x ∈ Kx∗0,c
, then there exists a y ∈ PKx∗0,c

(x). Set

u =
pc0 (x

∗
0)

2

x∗0(x)−c
(x− y); by Lemma 3.1, we have that

PC0(u) =
P 2
C0(x∗0)

x∗0(x)− c
PC0(x− y) =

P 2
C0(x∗0)

x∗0(x)− c
x∗0(x)− c
PC0(x∗0)

= PC0(x∗0).
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Hence, x∗0(u) ≤ PC0(x∗0)PC0(u) = PC0(x∗0)
2.

On the other hand,

x∗0(u) =
P 2
C0(x∗0)

x∗0(x)− c
(x∗0(x)− x∗0(y)) ≥

P 2
C0(x∗0)

x∗0(x)− c
(x∗0(x)− c) = P 2

C0(x∗0).

This shows that x∗0(u) = P 2
C0(x∗0) = P 2

C0(u), that is, u ∈ σ−1(x∗0), and

σ−1(x∗0) 6= ∅.
On sufficiency: take x ∈ ∂C such that

x∗0(x) = PC0(x∗0)PC0(x) = P 2
C0(x∗0) = P 2

C0(x).

we discuss that in two cases.
Case I. If x ∈ Kx∗0,c

, then x ∈ PKx∗0,c
(x).

Case II. If x /∈ Kx∗0,c
, since

x∗0(x−
x∗0(x)− c
P 2
C0(x∗0)

x0) = x∗0(x)− (x∗0(x)− c) = c;

then we have that

x− x∗0(x)− c
P 2
C0(x∗0)

x0 ∈ Kx∗0,c
.

By Lemma 3.1,

PC0{x− (x− x∗0(x)− c
P 2
C0(x∗0)

x0)} =
x∗0(x)− c
PC0(x∗0)

= τ(x,K∗x0).

It follows that x− ((x∗0(x)− c)/P 2
C0(x∗0)x0 ∈ PKx∗0,c

(x). �

Theorem 3.6. Let x∗ ∈ X∗\{θ}. Then the following assertion holds

PKx∗0,c
(x) = x−max

{
0,

x∗0(x)− c
pc0(x∗)2

}
σ−1(x∗0)

Proof. Take x ∈ X. we discuss that in two cases.
Case I. If x ∈ Kx∗0,c

, then PKx∗0,c
(x) = {x}.

Case II. If x /∈ Kx∗0,c
, we arbitrarily take x0 ∈ σ−1(x∗0). Let y = x −

(
x∗0(x)−c
pc0 (x

∗)2 )x0. Similar to the proof of Lemma 3.1, we may obtain that y ∈
PKx∗0,c

(x). Therefore,

x− x∗0(x)− c
pc0(x∗)2

σ−1(x∗0) ⊂ PKx∗0,c
(x).

On the other hand, we arbitrarily take y ∈ PKx∗0,c
(x). Let u = (

pc0 (x
∗)2

x∗0(x)−c
)(x−

y); Similar to the proof of Lemma 3.1, we may obtain that u ∈ σ−1(x∗0).
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Therefore,

y = x− x∗0(x)− c
pc0(x∗)2

u ∈ x− x∗0(x)− c
pc0(x∗)2

σ−1(x∗0).

That is,

PKx∗0,c
(x) ⊂ x− x∗0(x)− c

pc0(x∗)2
σ−1(x∗0)

By Case 1 and Case 2, we have

PKx∗0,c
(x) = x− x∗0(x)− c

pc0(x∗)2
σ−1(x∗),

for any x ∈ X. �

By a similar proof to that in Theorem 3.6, we can also prove that the
following result according to Lemma 3.1.

Proposition 3.7. Let X be a Banach Space, let x0 ∈ X\{θ}, and let c ∈ R.
Then

PKx0,c
(x∗) = x∗ −max{0, x

∗(x0)− c
pc0(x0)2

}σ(x0),

for any x∗ ∈ X∗.

The second main result of this section is as follows, which describes the
continuity of the generalized metric projection PKx∗0,c

onto the half spaces

Kx∗0,c
under the condition that the set C is weakly nearly strictly convex.

Theorem 3.8. Let x∗ ∈ X∗\{θ}, x∗ attains its supremum on ∂C. Let the
set C be weakly nearly strictly convex. Then the generalized metric projection
PCKx∗0,c

is norm-weakly upper semicontinuous.

Proof. We assume that x∗ ∈ X∗\{θ}, x∗ attains its supremum on ∂C. firstly,
σ−1(x∗) is convex. In fact, let y1, y2 ∈ σ−1(x∗), and λ ∈ [0, 1], then we obtain
that

x∗(y1) = PC(y1)PC0(x∗) = PC0(x∗)2

= PC(y2)PC0(x∗) = x∗(y2).
(3.3)

This, together with Proposition 3.7, implies that

PC0(x∗)2 = x∗(λy1 + (1− λ)y2)

≤ PC0(λy1 + (1− λ)y2))PC0(x∗)

≤ (λPC(y1) + (1− λ)PC(y2))PC0(x∗)

= PC0(x∗)2.

(3.4)
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Hence, λy1 + (1− λ)y2 ∈ σ−1(x∗) and σ−1(x∗) is convex. We then show that
σ−1(x∗) is weakly compact. Since σ−1(x∗/PC0(x∗)) ⊂ ∂C and

σ−1(x∗/PC0(x∗)) = (1/PC0(x∗))σ−1(x∗),

we see that σ−1(x∗/PC0(x∗)) is a convex subset of ∂C. It follows that it is
relatively weakly compact because C is weakly nearly strictly convex. Thus,
to complete the proof, it suffices to show that σ−1(x∗) is weakly closed. To do
this, let {xδ} be a net in σ−1(x∗) convergent weakly to some x ∈ X. Since

x∗(xδ) = PC(xδ)PC0(x∗) = PC0(x∗)2, ∀δ.

and PC is weakly lower semicontinuous, we have that

PC0(x∗)2 = x∗(x)

= lim
δ
x∗(xδ)

= lim
δ
PC(xδ)PC0(x∗)

≥ PC(x)PC0(x∗).

(3.5)

Noting that x∗(x) ≤ PC(x)PC0(x∗), we get that

x∗(x) = PC(x)PC0(x∗) = PC0(x∗)2.

Hence, x ∈ σ−1(x∗) and the weak closedness of σ−1(x∗) is proved.
Finally, we show that PCKx∗0,c

is norm-to-weak upper semicontinuous at x.

Otherwise, there exists a weakly open set

W ⊇ PCKx∗0,c
(x)

and a sequence {xn} ⊂ X such that pC0(xn−x)→ 0, PCKx∗0,c
(xn) *W. Without

loss of generation, we may assume that x∗(x) < c. Since pC0(xn − x)→ 0, we
may assume that each x∗(xn) < c for all n. Now take yn ∈ PCKx∗0,c

(xn) \W for

each n. There exists zn ∈ σ−1(x∗0) such that

yn = xn + ((c− x∗0(xn))/PC0(x∗0))zn

for all n, using the weak compactness of σ−1(x∗0), one has a subsequence {znk
}

of {zn} such that znk
→ z weakly for some z ∈ σ−1(x∗0). Therefore,

ynk
= x+

c− x∗0(xnk
)

PC0(x∗0)
znk

w−→x+
c− x∗0(x)

PC0(x∗0)
z ∈ PCKx∗0,c

(x) ⊂W.

This implies that ynk
∈W for sufficiently large k, which contradicts the choice

of ynk
. The proof of assertion is complete. �

Similar to the proof of Theorem 3.8, we may prove the following theorem.
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Theorem 3.9. (1) Let the set C be nearly strictly convex, x∗ ∈ X∗\{θ},
suppose that x ∈ Kx∗0,c

and that x∗ attains its supremum on bdC. Then

PCKx∗0,c
is norm-to-norm upper semicontinuous.

(2) Let the set C be weakly nearly smooth, x0 ∈ X\{θ}. Then PCKx0,c
is

norm-weakly upper semicontinuous.
(3) Let the set C be nearly smooth, x0 ∈ X\{θ}. Then PCKx0,c

is norm-

norm upper semicontinuous.
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