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Abstract. In this paper we introduce a new class Lλp,Σ(φα) of λ-pseudo bi-starlike functions

in parabolic domain and determine the bounds for |a2| and |a3| where a2, a3 are the initial

Taylor coefficients of f ∈ Lλp,Σ(φα). Furthermore, we estimate the Fekete-Szegö functional

for Lλp,Σ(φα).

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}.
Further, denote by S the class of all functions in A which are univalent in U
and normalized by the condition f(0) = 0 = f ′(0) − 1. One of the important
and well-investigated subclass of S is the class S∗(α) of starlike functions of
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order α (0 ≤ α < 1) defined by the condition

<
(
zf ′(z)

f(z)

)
> α (z ∈ U)

and also the class K(α) ⊂ S of convex functions of order α (0 ≤ α < 1) is
defined by the condition

<
(

1 +
zf ′′(z)

f ′(z)

)
> α (z ∈ U).

An analytic function f is said to be subordinate to an analytic function h,
written by f(z) ≺ h(z), provided there is an analytic function ω with ω(0) = 0
and such that |ω(z)| < 1 in U and f(z) = h(ω(z)).

Ma and Minda [11] unified approach to various subclasses of starlike and
convex functions which are defined by a condition that either zf ′(z)/f(z) or
1 + zf ′′(z)/f ′(z) is subordinate to a function φ.

For this purpose, they considered a class Φ of analytic functions φ with
positive real part in the unit disk U, φ(0) = 1, φ′(0) > 0, such that φ maps U
onto a region starlike with respect to 1 and symmetric with respect to the real
axis. The class of Ma-Minda starlike functions denoted by S∗(φ), consists of
functions f ∈ A satisfying the subordination

zf ′(z)

f(z)
≺ φ(z).

Similarly, a function f ∈ A is in the class of Ma-Minda convex functions of
functions denoted by K(φ) if it satisfies

1 +
zf ′′(z)

f ′(z)
≺ φ(z).

In the sequel, it is assumed that φ is in the class Φ.
Ali and Singh [1] introduced a new class of parabolic starlike functions

denoted by Sp(α) of order α(0 ≤ α < 1) salifies the following:∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < (1− 2α) + <
(
zf ′(z)

f(z)

)
. (1.2)

Equivalently,

f ∈ Sp(α)⇐⇒
(
zf ′(z)

f(z)

)
∈ Ωα,

where Ωα denotes the parabolic region in the right half-plane

Ωα = {w = u+ iv : v2 < 4(1− α)(u− α)}
= {w : |w − 1| < (1− 2α) + <(w)}.

(1.3)
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Ali and Singh [1] showed that the normalized Riemann mapping function
φα(z) from the open unit disk U onto Ωα is given by

φα(z) = 1 +
4(1− α)

π2

[
log

1 +
√
z

1−
√
z

]2

= 1 +
16

π2
(1− α)z +

32

3π2
(1− α)z2 +

368

45π2
(1− α)z3 + · · ·

= 1 +

∞∑
k=1

Bkz
k, (1.4)

where

Bk =
16(1− α)

kπ2

k−1∑
j=0

1

2j + 1
(k ∈ N). (1.5)

Due to Ma and Minda [11], we state the following lemma.

Lemma 1.1. If a function f ∈ Sp(α), then(
zf ′(z)

f(z)

)
∈ φα(z),

where φα(z) is given by (1.4).

Since univalent functions are one-to-one, they are invertible and the inverse
functions need not be defined on the entire unit disk U. In fact, the Koebe
one-quarter theorem [7] ensures that the image of U under every univalent
function f ∈ S of the form (1.1), contains a disk of radius 1

4 . Thus every

univalent function f ∈ S has an inverse f−1 which is defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

In fact, the inverse function f−1 is given by

f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (1.6)

A function f ∈ S is said to be bi-univalent in U if there exists a function
g ∈ S such that g(z) is an univalent extension of f−1 to U. Let Σ denote
the class of bi-univalent functions in U. The functions z

1−z , − log(1 − z),

1
2 log

(
1+z
1−z

)
are in the class Σ (see details in [14]). However, the familiar Koebe
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function is not bi-univalent. Lewin [10] investigated the class of bi-univalent
functions σ and obtained a bound |a2| 5 1.51.

Motivated by the work of Lewin [10], Brannan and Clunie [4] conjectured
that |a2| 5

√
2. The coefficient estimate problem for |an| (n ∈ N, n = 3) is

still open(see, [14]). Brannan and Taha [5] also worked on certain subclasses
of the bi-univalent function class Σ and obtained estimates for their initial
coefficients. Various classes of bi-univalent functions were introduced and
studied in recent times, the study of bi-univalent functions gained momentum
mainly due to the work of Srivastava et al.[14]. Motivated by this, many
researchers (see [3, 8, 12, 14, 15, 16] also the references cited there in) recently
investigated several interesting subclasses of the class Σ and found non-sharp
estimates on the first two Taylor-Maclaurin coefficients.

Recently for some λ ≥ 1, in [2] Babalola introduced and investigated the
class of λ-pseudo-starlike functions of order α, (0 ≤ α < 1) denoted by Lλ(α)
as defined below.

Definition 1.2. ([2]) A function f ∈ A is in the class Lλ(α) if it satisfies

<
(
z(f ′(z))λ

f(z)

)
> α (λ ≥ 1),

where α (0 ≤ α < 1) and z ∈ U.

Further in [2] it was showed that all pseudo-starlike functions are Bazilevič

functions of type (1− 1/λ) and of order α1/λ and univalent in open unit disk
U. We note that L1(α) ≡ S∗(α).

Making use of the above definition, due to Bulut [6], Joshi et al. [9] and
Ali and Singh [1], in this paper we define a new class Lλp,Σ(φα), λ-bi-pseudo-
parabolic starlike functions of Σ and determine the bounds for the initial
Taylor-Maclaurin coefficients of |a2| and |a3| for f ∈ Lλp,Σ(φα). Further we
consider the Fekete-Szegö problem in this class.

Definition 1.3. Assume that f ∈ Σ, λ ≥ 1 and (f ′(z))λ is analytic in U with
(f ′(0))λ = 1. Furthermore, assume that g(z) is an extension of f−1 to U, and
(g′(z))λ is analytic in U with (g′(0))λ = 1. Then f(z) is said to be in the
class Lλp,Σ(φα) of λ-bi-pseudo-starlike functions if the following conditions are
satisfied: ∣∣∣∣z(f ′(z))λf(z)

− 1

∣∣∣∣ < (1− 2α) + <
(
z(f ′(z))λ

f(z)

)
(z ∈ U) (1.7)

and ∣∣∣∣w(g′(w))λ

g(w)
−
∣∣∣∣ < (1− 2α) + <

(
w(g′(w))λ

g(w)

)
(w ∈ U). (1.8)
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Due to Lemma 1.1 and by the above the definition we can state

z(f ′(z))λ

f(z)
≺ φα(z) (z ∈ U) (1.9)

and
w(g′(w))λ

g(w)
≺ φα(w) (w ∈ U), (1.10)

where φα(z) is given by (1.4).

Remark 1.4. For λ = 1, a function f ∈ Σ is in the class L1
p,Σ(φα) ≡ SpΣ(φα)

[6] if the following conditions are satisfied:∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < (1− 2α) + <
(
zf ′(z)

f(z)

)
(z ∈ U)

and ∣∣∣∣wg′(w)

g(w)
− 1

∣∣∣∣ < (1− 2α) + <
(
wg′(w)

g(w)

)
(w ∈ U),

where z, w ∈ U and the function g is described in Definition 1.3.

Further, in particular, we set L1
p,Σ(φ 1

2
) ≡ SpΣ(φ 1

2
) ≡ SpΣ for the class of

parabolic bi-starlike functions.

Remark 1.5. For λ = 2, a function f ∈ Σ is in the class L2
p,Σ(φα) ≡ Gp,Σ(φα)

if the following conditions are satisfied:∣∣∣∣f ′(z)zf ′(z)f(z)
− 1

∣∣∣∣ < (1− 2α) + <
(
f ′(z)

zf ′(z)

f(z)

)
(z ∈ U)

and ∣∣∣∣g′(w)
wg′(w)

g(w)
− 1

∣∣∣∣ < (1− 2α) + <
(
g′(w)

wg′(w)

g(w)

)
(w ∈ U),

where z, w ∈ U and the function g is described in Definition 1.3.

2. Coefficient estimates for f ∈ Lλp,Σ(φα).

Using the following lemma, we obtain the initial coefficients |a2| and |a3|
for f ∈ Lλp,Σ(φα).

Lemma 2.1. ([13]) If p ∈ P, and

p(z) = 1 + p1z + p2z
2 + · · · , (z ∈ U) (2.1)

then |pn| ≤ 2 for n ≥ 1, where P is the family of all functions p analytic in U
for which

< (p(z)) > 0 (z ∈ U). (2.2)
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Theorem 2.2. Let f(z) given by (1.1) be in the class Lλp,Σ(φα). Then

|a2| ≤
|B1|
√
B1√

|(2λ2 − λ)B2
1 − (B2 −B1)(2λ− 1)2|

(2.3)

and

|a3| ≤
2(3λ− 1)B3

1 +B1|B2 −B1|(2λ− 1)2

2(3λ− 1)
∣∣(2λ2 − λ)B2

1 − (B2 −B1)(2λ− 1)2
∣∣ , (2.4)

where

Bk =
16(1− α)

kπ2

k−1∑
j=0

1

2j + 1
, (k ∈ N). (2.5)

Proof. Let g be of the form

g(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

Since f ∈ Lλp,Σα(φ), there exist two analytic functions u, v : U → U with

u(0) = 0 = v(0), such that |u(z)| < 1, |v(z)| < 1 and

z[f ′(z)]λ

f(z)
= φα(u(z)), (2.6)

w[g′(w)]λ

g(w)
= φα(v(w)). (2.7)

Assume that p(z) and q(z) are in P and they are such that

p(z) :=
1 + u(z)

1− u(z)
= 1 + p1z + p2z

2 + · · ·

and

q(z) :=
1 + v(z)

1− v(z)
= 1 + q1z + q2z

2 + · · · .

It follows that,

u(z) :=
p(z)− 1

p(z) + 1
=

1

2

[
p1z +

(
p2 −

p2
1

2

)
z2 + · · ·

]
and

v(z) :=
q(z)− 1

q(z) + 1
=

1

2

[
q1z +

(
q2 −

q2
1

2

)
z2 + · · ·

]
,

so we have

φ(u(z)) = 1 +
1

2
B1p1z +

[
B1

2

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1

]
z2 + · · · (2.8)

and

φ(v(w)) = 1 +
1

2
B1q1w +

[
B1

2

(
q2 −

q2
1

2

)
+

1

4
B2q

2
1

]
w2 + · · · . (2.9)
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On the other hand, we have

z[f ′(z)]λ

f(z)
= 1 + (2λ− 1)a2z + [(3λ− 1)a3 +

(
2λ2 − 4λ+ 1

)
a2

2]z2 + · · · (2.10)

and

w[g′(w)]λ

g(w)
= 1−(2λ−1)a2w+[

(
2λ2 + 2λ− 1

)
a2

2−(3λ−1)a3]w2+· · · . (2.11)

Using (2.8), (2.9), (2.10) and (2.11) and comparing the like coefficients of z
and z2, we get

(2λ− 1)a2 =
1

2
B1p1, (2.12)

(3λ− 1)a3 +
(
2λ2 − 4λ+ 1

)
a2

2 =
1

2
B1

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1, (2.13)

−(2λ− 1)a2 =
1

2
B1q1 (2.14)

and (
2λ2 + 2λ− 1

)
a2

2 − (3λ− 1)a3 =
1

2
B1

(
q2 −

q2
1

2

)
+

1

4
B2q

2
1 (2.15)

From (2.12) and (2.14), we find that

a2 =
B1p1

2(2λ− 1)
= − B1q1

2(2λ− 1)
.

Therefore, it follows that

p1 = −q1 (2.16)

and

8(2λ− 1)2a2
2 = B2

1(p2
1 + q2

1). (2.17)

Thus,

a2
2 =

B2
1(p2

1 + q2
1)

8(2λ− 1)2
or p2

1 + q2
1 =

8(2λ− 1)2

B2
1

a2
2. (2.18)

Adding (2.13) and (2.15), we have(
4λ2 − 2λ

)
a2

2 =
1

2
B1(p1 + q1) +

1

2
B1

[
(p2 + q2)− 1

2

(
p2

1 + q2
1

)]
+

1

4
B2

(
p2

1 + q2
1

)
=

1

2
B1(p2 + q2) +

1

4
(B2 −B1)

(
p2

1 + q2
1

)
. (2.19)
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Substituting (2.16) and (2.18) in (2.19), we get(
4λ2 − 2λ

)
a2

2 =
1

2
B1(p2 + q2) +

1

4
(B2 −B1)

8(2λ− 1)2

B2
1

a2
2,[(

4λ2 − 2λ
)
− 2(B2 −B1)(2λ− 1)2

B2
1

]
a2

2 =
1

2
B1(p2 + q2)

and [(
4λ2 − 2λ

)
B2

1 − 2(B2 −B1)(2λ− 1)2
]
a2

2 = B3
1(p2 + q2).

Hence

a2
2 =

B3
1(p2 + q2)

2
[
(2λ2 − λ)B2

1 − (B2 −B1)(2λ− 1)2
] . (2.20)

Applying Lemma 2.1 in (2.20), we get the desired inequality (2.3).

From (2.13) and from (2.15), we get

a3 = a2
2 +

B1(p2 − q2)

4(3λ− 1)
. (2.21)

By using (2.20) and Lemma 2.1, by simple computation, we obtain

|a3| ≤
2(3λ− 1)B3

1 +B1|B2 −B1|(2λ− 1)2

2(3λ− 1)
∣∣(2λ2 − λ)B2

1 − (B2 −B1)(2λ− 1)2
∣∣ . (2.22)

This completes the proof of Theorem 2.2. �

Remark 2.3. We note that B1 = 16
π2 (1− α) and B2 = 32

3π2 (1− α) from (2.5).

By taking λ = 1, we state the following result.

Corollary 2.4. Let f(z) given by (1.1) be in the class L1
p,Σ(φα) ≡ Sp,Σ(φα).

Then

|a2| ≤
B1

√
B1√

|B2
1 +B1 −B2|

and

|a3| ≤
4B3

1 +B1|B2 −B1|
4|B2

1 − (B2 −B1)|
.

By taking λ = 2 we state the following new result.

Corollary 2.5. Let f(z) given by (1.1) be in the class L2
p,Σ(φα) ≡ Gp,Σ(φα).

Then

|a2| ≤
B1

√
B1√

|6B2
1 − 9(B2 −B1)|
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and

|a3| ≤
10B3

1 + 9B1|B2 −B1|
10|B2

1 − 9(B2 −B1)|
.

3. Fekete-Szegö inequalities for the Function Class Lλp,Σ(φα)

Making use of the values of a2
2 and a3, and motivated by the recent work of

Zaprawa [17], we prove the following Fekete-Szegö result for the function class
Lλp,Σ(φα).

Theorem 3.1. Let the function f(z) be in the class LλΣ(φ) and µ ∈ C. Then

|a3 − µa2
2| ≤ 2B1

∣∣∣∣(Θ(µ) +
1

4(3λ− 1)

)
+

(
Θ(µ)− 1

4(3λ− 1)

)∣∣∣∣ , (3.1)

where

Θ(µ) =
B2

1(1− µ)

2
[
(2λ2 − λ)B2

1 − (B2 −B1)(2λ− 1)2
] , B1 > 0.

Proof. From (2.21), we have

a3 = a2
2 +

B1(p2 − q2)

4(3λ− 1)
.

Using (2.20), by simple calculation we get

a3 − µa2
2 = B1

[(
Θ(µ) +

1

4(3λ− 1)

)
p2 +

(
Θ(µ)− 1

4(3λ− 1)

)
q2

]
,

where

Θ(µ) =
B2

1(1− µ)

2
[
(2λ2 − λ)B2

1 − (B2 −B1)(2λ− 1)2
] .

Since all Bj are real and B1 > 0, we have

|a3 − µa2
2| ≤ 2B1

∣∣∣∣(Θ(µ) +
1

4(3λ− 1)

)
+

(
Θ(µ)− 1

4(3λ− 1)

)∣∣∣∣ ,
which completes the proof. �

Remark 3.2. Specializing λ = 1 and λ = 2, we can obtain the Fekete-Szegö
inequality for the function class Sp,Σ(φα) and Gp,Σ(φα), respectively.
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involving linear and Sǎlǎgean Operator, Inter. J. Pure Appl. Math., 92(5) (2015), 645–
656.

[13] C. Pommerenke, ”Univalent functions”, Vandenhoeck & Ruprecht, Göttingen, Germany,
1975.

[14] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and
bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192.

[15] H.M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of
bi-univalent functions associated with Hoholov operator, Global J. Math. Anal., 1(2)
(2013), 67–73.

[16] H.M. Srivastava, S. Bulut, M. Cagler and N. Yagmur, Coefficient estimates for a general
subclass of analytic and bi-univalent functions, Filomat. 27 (2013), 831–842.
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