Nonlinear Functional Analysis and Applications
Vol. 15, No. 2 (2010), pp. 321-333

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright © 2010 Kyungnam University Press

SOME FIXED POINT THEOREMS IN D* METRIC
SPACES

C. T. Aage! and J. N. Salunke!

'School of Mathematical Sciences,
North Maharashtra University, Jalgaon, India.
e-mail: caagel7@gmail.com

2School of Mathematical Sciences,
North Maharashtra University, Jalgaon, India.

Abstract. Recently Shaban Sedghi et al [16] introduced D* metric space and proved some
common fixed point in it. In this paper we improved the results of Shaban Sedghi et al [16]

by introducing D* compatible and semicompatible mappings in D* metric spaces.

1. INTRODUCTION

The metric space is generalized by many authors see [11-17], one of its gen-
eralization is D-metric space initiated by B. C. Dhage [3]. He proved some
fixed point theorems for self mappings satisfying different types of contractive
conditions. Rhoades [6] generalized Dhage’s contractive condition by increas-
ing number of factors and prove existence and uniqueness of a fixed point in
complete and bounded D-metric space. Ahmad et al [1], Dhage [4], Dhage et
al [5] give some special contribution in D-metric space.

Jungck [11] introduced concept of compatible mappings. This concept ex-
tended to D-compatible mappings in D-metric space by Bijendra Singh and A.
K. Sharma [7] and proved common fixed point theorems in it. Cho, Sharms and
Sahu [2] introduced the concept of semi-compatible mappings in d-topological
spaces. Bijendra Singh et al [8] used semicompability in D-metric and ob-
tained some common fixed theorems in D-metric spaces.

Recently Shaban Sedghi et al [16] modify the D-metric space as follows.
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Definition 1.1. Let X be a nonempty set. A generalized metric (or D*-
metric) on X is a function, D* : X3 — [0,00), that satisfies the following
conditions for each x,y,z,a € X:

(1) D*(z,y,2) =0,

(2) D*(z,y,2) =0 if and only if x =y = z,

(3) D*(z,y,2) = D*(p{x,y,z}), (symmetry) where p is a permutation

function,

(4) D*(z,y,2) < D*(x,y,a) + D*(a, z, 2),
The pair (X, D*) is called a generalized metric (or D*-metric) space.
Example 1.2. Let (X,d) be a metric space. Define

(a) D*(z,y, 2) = max{d(z,y), d(y, 2), d(z, 2)}.

(b) D*(z,y,2) = d(z,y) +d(y,z) + d(z,z).

(c¢) If X = R™, then we define

D*(z,y,2) = (llz = yllP + lly — 2[I” + ||z — 2[P)/*
for every p € RT.
(d) If X = R then we define

0 ] =y =
D*(x,y,z>={ fo=y=z

Then it is easy to verify that every D* is a D*-metric.

max{z,y,z}  otherwise.

Remark 1.3. [16] Let (X, D*) be a D* metric space. Then for all x,y,z € X,
we have D*(z,x,y) = D*(x,y,y).

Definition 1.4. [16] Let (X, D*) be a D*-metric space and A C X.

(1) If for every x € A there exists r > 0 such that Bp-(x,r) C A, then
subset A is called open subset of X.

(2) A is said to be D*-bounded if there exists v > 0 such that D*(z,y,y) <
r for all x,y € A.

(3) A sequence {x,} in X converges to x if there exists ng € N such that
D*(xp, xn, ) < €.

(4) A sequence {z,} in X is called Cauchy if for each ¢ > 0, there exists
no € N such that D*(xyn, Ty, ) < € for each n,m > ng.

(5) A D*-metric space (X, D*) is said to be complete if every Cauchy
sequence in X 1S convergent.

Let 7 be the set of all open subsets A of X. Then 7 is a topology on X
(induced by the D*-metric D*).

Lemma 1.5. [16] Let (X, D*) be a D*-metric space. If r > 0, then the ball
Bp«(z,r) with center x € X and radius r is open.
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Definition 1.6. [16] Let (X, D*) be a D* metric space. D* is said to be
a continuous function on X3 if limy, oo D*(Tn, Yn, 2n) = D*(x,y,2) when-
ever a sequence {(Tpn,Yn,zn)} in X3 converges to a point (x,y,z) € X3 i.e.
limy— oo T, =z, limy, oo Y = ¥, limy, oo 2, = 2

Lemma 1.7. [16] Let (X, D*) be a D*- metric space. Then D* is a continuous
function on X3.

Lemma 1.8. [16] Let (X, D*) be a D*-metric space. If sequence {x,} in X
converges to x, then x is unique.

Lemma 1.9. [16] Let (X, D*) be a D*-metric space. Then the convergent
sequence is Cauchy.

Definition 1.10. [16] Let A and S be two mappings from a D*-metric space
(X, D*) into itself. Then the pair {A, S} is said to be weakly commuting if

D*(ASz,SAx,SAx) < D*(Az, Sz, Sx),
forallxz € X.

Clearly, a commuting pair is weakly commuting, but not conversely.
We extended D*-compatible and semicompatible mappings as follows.

Definition 1.11. Self maps S and T on a D*-metric space (X, D*) are said
to be D*-compatible if lim,_,oo D*(STxy, T Sxy,2) = 0, where z = STz, or
T'Sx,, whenever {x,} is a sequence in X such that

lim Tz, = lim Sz, =z € X.

n—oo n—oo

Clearly the pair of mappings (S,T') is D*-compatible if and only if (7,S) is
D*-compatible.

Definition 1.12. A pair (S,T) of self-mappings of a D*-metric space is said
to be semicompatible if lim, oo STx,, = Tx, whenever {x,} is a sequence in
X such that

lim Tz, = lim Sx, =z € X.

n—oo n—oo

It follows that (S,T) is semicompatible and Sy = Ty then STy = T'Sy.

Proposition 1.13. S and T are D*-compatible self-maps on a D*-metric
space (X, D*) and T is continuous then the pair (S,T) is semicompatible.

Proof. Let {Sx,} — u,{Tx,} — u for some u € X. To show this, STx,, —
Tu. As T is continuous T'Sx,, — Tu. Now, as (S,T') is D*-compatible we have
limy,, 0o D*(STxp, STxy, TSxy) = 0. That is, lim,_.oco D*(Tu, Tu,T'Sx,) =
0. That is, limy, e STx, = Tu. Hence (S,T) is semicompatible. O
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Proposition 1.14. If S and T are semicompatible self-maps on a D*-metric
space (X, D*) and T is continuous, then (S,T) is D*-compatible.

Proof. Let {Sxz,} — u,{Tx,} — v and T be continuous T'Sx,, — Tu. Then
semicompatibility of (S,T) gives STx,, — Tu. Now,

lim D*(STxy, STxy, TSxy,) = D*(Tu, Tu,Tu) = 0.

n—oo

Hence (S,T) is D*-compatible. O

The following is an example of a pair of self-maps (S, 7") which is semicom-
patible but not compatible. Further, it is shown that the semicompatibility of
the pair (S,T") need not imply the semicompatibility of (7, .5).

Example 1.15. Let X = [0,1] and consider the D*-metric space (X, D*),
where D* is defined by D*(z,y,z) = max{|z — y|,|ly — 2|, |z — x|}, for all
z,y,z € X. Define a self-map as follows:

. 1
Sy — T z.f0§:§<§

Let I be the identity map on X and x, = 1/2—1/n. Then {Iz,} = {z,} — 1/2
and {Sz,} — 1/2. Again, {I1Sz,} = {Sx,} — 1/2 # S(1/2). Thus (I,S) is
not semicompatible though it is compatible. Also for any sequence {x,} in X
such that {z,} — x and {Sx,} — x we have {SIx,} = {Sz,} — = = Ix.
Thus (S, 1) is always semicompatible.

Example 1.16. Let X = |0,2], define D(z,y, 2) = Maz{|z—y|, |ly—=z|, |z—=|},
for all x,y,z € X. Define self-maps A and S on X as follows:

T if v €10,1)
Az =42 ifr=1
i e (1,2).
G {2 iz €[0,1]
5 ifxell,2]

Taking x,, = 2 — 5-, then we have S(1) = A(1) = 2 and S(2) = A(2) = 1.
Also SA(1) = AS(1) = 1 and SA(2) = AS(2) = 2. Hence Az, — 1 and
Sz, — 1, ASz, — 2, and SAz, — 1. Now, lim,_,oc D*(ASx,, ASTy, Sy) =
D(2,2,2) = 0, limy,—,oo D*(ASzy, SAx,, ASxy,) = D(2,1,2) = 1 # 0. Hence
(A, S) is D*-semicompatible but it is not D*-compatible
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2. MAIN RESULTS

Let ® denotes a family of mappings such that each ¢ € ®, ¢ : (RT)> —
R, and ¢ is continuous and increasing in each coordinate variable. Also
o(t,t,art,ast,t) <t for every t € RT where aj + as = 3.

Lemma 2.1. For everyt > 0, v(t) < t if and only if lim, . y"(t) = 0, where
Y™ denotes the composition of v with itself n times.

Theorem 2.2. Let A be a self-mapping of a complete D*-metric space (X, D*),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A, S} and {A, T} are semicompatible pairs such that
AX) C S(X)UT(X),
(ii) there exists a ¢ € ® such that for all x,y € X,
D*(Ax, Ay, Az) < ¢(D*(Sx, Ty, Tz), D*(Sz, Az, Ax), D*(Sz, Ay, Ay),
D*(Ty, Az, Az), D*(Ty, Ay, Ay)).
Then A, S, and T have a unique common fixed point in X .
Proof. Let xg € X be given. Construct a sequence {x,}, as follows
Sxon+1 = Axon = yop,n=0,1,2,--,
Txopt2 = ATont1 = Yont+1,n =0,1,2,--- .
Denote d, = D*(Yn, Yn+1,Yn+1)sn = 0,1,2,--- . We prove that do, < dop—1.
Now, if do,, > do,—1 for some n € N, since ¢ is an increasing function,
dan = D" (y2n, Yon+1, Y2n+1) = D*(Aan, ATany1, Av2p41)
= D*(Axopy1, Axoy, Axay)
< ¢((D*(Szant1, Txan, Taon), D* (Szopt1, AToni1, ATon+1),
D*(Sxon+1, Aan, Azon), D™ (Taon, ATon1, ATon1),
D*(Txoy, Axop, A2y))
= ¢(D*(Y2n, Y2n—1,Y2n—1)s D™ (Y21, Y2n+1, Y2n+1), D (Y2ns Y2n, y2n),
D*(yan—1,Y2n+1, Y2n+1), D™ (Y2n—1, Y2n, Y2n)-

Since

D*(yan—1,Y2n+1:Y2n+1) < D" (Y2n—1, Y2n—1, Y2n) + D™ (Y2n: Y2n+1, Y2n+1)
= d2n—1 + d2n7

from the above inequality we have
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d2n < ¢(d2n—1u d2n7 07 d2n—1 + d2n7 dZn—l)
S ¢(d2n7 d2n7 d2n7 2d2n7 dZn)
< d2na

which is a contradiction. Hence do,, < do,_1. Similarly, one can prove that
dant1 < dg, forn =0,1,2,---. Consequently, {d,,} is a nonincreasing sequence
of nonnegative reals. Now,

d1 = D*(y1,y2,y2) = D*(Az1, Ava, Axs)

S ¢(D*(5$1, TZCQ, T.%'Q), D*(Sl'l, Al’l, Al’l), D*(Sl‘l, AJL‘Q, A.I‘g),

D* (Txg, Axl, Aacl), D*(Txg, Am‘g, AIQ)>

= ¢(D* (Y0, y1,y1), D" (yo, y1, Y1), D™ (Y0, Y2, Y2) D* (Y1, y1,y1), D* (Y1, Y2, y2))

= ¢(do, do, do + d1,0,do) < ¢(do, do, 2do, do, do)

= 7(do),
which implies thate d,, < ~4™(dy). So if dg > 0, then lim, . d, = 0. For
do = 0, we clearly have lim,, ., d,, = 0, since then d,, = 0 for each n. Now
we prove that sequence {Ax,, = y,} is Cauchy. Since lim,, o d, = 0, it is
sufficient to show that the sequence {Axs, = y2,} is Cauchy. Suppose that
{Az2, = yon} is not a Cauchy sequence. Then there is an € > 0 such that for
each even integer 2k, for k = 0,1,2,---, there exist even integers 2n(k) and
2m(k) with 2k < 2n(k) < 2m(k) such that D*(Axa, k), ATk ATom)) >
€. Let, for each even integer 2k,2m(k) be the least integer exceeding 2n(k)
satisfying the above inequality. Therefore D*(AZg k), ATon(k), ATom(k)—2) <
€, D* (A9 (k) ATopn(k), ATom(k)) > €. Then, for each even integer 2k we have
€< D* (AxZn(k)7 Ax2n(k)7 Ax2m(k))

< D* (Ao (ks ATon(k)s ATom(k)—2) + D™ (ATam k) -2, ATomk)—2)s ATom(k)-1)
+ D* (A9 k) —15 ATom(k)—1, ATom(k))
= D* (A (k), AT2n(k)> ATom(k)—2) + dom(k)—2 + dom(k)—1-

From, d,, — 0, we obtain limy, ..o D*(AZ2, k), ATon(k), AT2mk)) = €. 1t follows
immediately from the triangular inequality that

|D* (A%an k), A%an(k), ATam(k)—1) — D (AZan (), ATan(k)s AZom))| < damr) -1,

| D* (A2 (k)41 ATon(k)+1, ATam k) —1) — D*(AZan(k)s ATon(k)s ATomk))|
< dom(k)—1 t+ don(k)- Hence as k — oo,

D*(Azon iy, ATon k), ATom(k)—1) — €

D*(Ax2n(k)+1v AxZn(k)+1a Aﬂﬂzm(k)—l)) — €
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Now

D*(Azan(ky, ATon(k)s AT2m(k))
< D*(Amon(ry, ATon(k)s ATonky+1) + D™ (AZan ) 115 AZom(k) s AT2m(k))
< dop(ry + (D" (A2 (k) AT2m (k)15 AT2m(k)—1)s Don (k)

D*(Azan k), AZom(k)> AT2m(k))s

D*(A$2m(k)—1’ AxQn(k)+17 Ax2n(k)+1)7 d2m(k)—1))'

Using, limy_.o d,, = 0, and continuity and nondecreasing property of ¢ in
each coordinate variable, we have

€ < (]5(6, 07 €6 0) < @(6, € 267 € 6) = ¢(6) <€

as k — oo, which is a contradiction. Thus {Ax, = y,} is a Cauchy se-
quence and hence by completeness of X, it converges to z € X. That is,
limy, 00 Az, = limy, o0 Yy, = 2. Since the sequences {Sxa, 1 = Yon+1} and
{Tx9, = yon} are subsequences of {Ax, = y,}; they have the same limit
z. As § and T are continuous, we have STxy, — Sz and T'Sze,11 — Tz.
Since {A, S} is semicompatible, hence ASxs,11 — Sz. Put x = Sxopi1,y =
Sxont1,2 = Txoy in (ii) we have

D*(ASzony1, ASxont1, ATxo,)

< @¢(D*(SSzant1, TSxont1, TTxon), D*(SSwoni1, ASTont1, ASTont1),
D*(SSzopt1, ASxont1, ASxoni1), D*(T'Sxopnt1, ASxont1, ASTon4+1),
D*(T'Sxopt+1, ASzont1, ASTani1)).

As n — oo and if D*(Sz,S5%,Tz) # 0, then

D*(Sz,52,Tz) < ¢(D*(Sz,Tz,Tz), D*(Sz,Sz,5z), D*(Sz,S5z,52),
D*(Tz,Sz,5z),D*(Tz,Sz,5%))
< ¢(D*(Sz,82,Tz),D*(Sz,52,5%), D*(Sz,Sz,Sz),
D*(Sz,5z,Tz), D*(Sz,52,Tz))
< D*(Sz,8z,Tz),

which is a contradiction. Hence D*(Sz,Sz,Tz) = 0 that is, Sz = Tz.
Now

D*(SAzon41, Az, Az) < D*(S Az, 41, ASTon 1, AST2,41)
+ D*(Az, Az, ASxon+11).
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Using (ii) and the semicompatibility of (A,S), we have
D*(SAxopy1, Az, Az)
< D*(SAzop41, ASxont1, ASxoni1) + ¢(D*(S2, T2, TSxopn41),
D*(Sz,Az, Az),D*(Sz, Az, Az), D*(Tz, Az, Az), D*(T'z, Az, Az)).
Letting n — oo, then we have
D*(Sz,Az, Az) < D*(Sz,S5z,Dz) + ¢(D*(Sz,Tz,Tz), D*(Sz, Az, Az),
D*(Sz,Az,Az),D*(Tz, Az, Az), D*(T'z, Az, Az))
= ¢(0,D*(Sz, Az, Az), D*(Sz, Az, Az), D*(Sz, Az, Az),
D*(Sz, Az, Az))
< D*(Sz, Az, Az).
Since Sz = Az, Az = Sz = Tz. It now follows that
D*(Az, Azop, Axay)
< @¢(D*(Sz,Txop, Txay), D*(Sz, Az, Az), D*(Sz, Axan, Aay),
D*(Tzoy, Az, Az), D*(Txon, Azop, Axay))
Then as n — oo, we get
D*(Az,z,2) < ¢(D*(Sz,z,2),0,D*(Sz, z,2), D*(z, Az, Az),0)
< D*(Az, z,2),
which is a contradiction, and therefore Az = z = Sz = Tz. Thus z is a

common fixed point of A, S and T. The uniqueness is easy one. This completes
the proof. O

Theorem 2.3. Let A be a self-mapping of complete D*-metric space (X, D*),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A, S} and {A, T} are D*-compatible pairs such that A(X) C S(X)U
T(X);
(ii) there exists a ¢ € ® such that for all x,y € X,
D*(Ax, Ay, Az) < 6(D*(Sz, Ty, T=), D*(Sz, Az, Az), D*(Sz, Ay, Ay),
D*(Ty, Az, Az), D*(Ty, Ay, Ay)).

Then A, S, and T have a unique common fized point in X.

Proof. Since the semicompatibility implies D*-compatibility, the result is ob-
vious. O
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Example 2.4. Let X = [0, 1] and consider the D*-metric space (X, D*), where
D* is defined by D*(x,y, z) = max{|x —y|, |y — 2|, |z — |}, for all x,y,z € X.
Define a self-map as follows:

Let Sx = x and Tx = 1 —x. Let x,, = 1/2 — 1/n be sequence in X. Then
Azy, = 3, {Sz,} = {3 — 1} = 1/2 and {Tx,} = {1 - 5+ 2} — 1/2. Again,
{ASz,} = A(3) = 5 = S(3) and {ATz,} = A(3) = 3 = T(3). Thus (A,S)
and (A, T) is semicompatible. For all x,y,z € X, we have D*(%,%,l) =
D*(3,1,1) = D*(1,3,3) = D*(1,4,1) = D*(1,1,3) = D*(3,1,3) = 3 and
Dx(3,%,3) = D*(1,1,1) = 0. we easily verified that

D*(Ax, Ay, Az) < ¢(D*(Sx, Ty, Tz), D*(Sz, Az, Ax), D*(Sz, Ay, Ay),
D*(Ty, Az, Az), D*(Ty, Ay, Ay)).

That requirement of Theorem 2.2 is fulfil and clearly A, S and T have unique
fixed point.

As Theorem 2.2 it is easy to prove following theorem.

Theorem 2.5. Let A be a self-mapping of a complete D*-metric space (X, D*),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:
(i) {A, S} and {A, T} are semicompatible pairs such that A(X) C S(X)U
T(X);

(ii) there exists a ¢ : R™ — Rt such that ¢(0) = 0,¢(t) < t and for all
z,y € X,
D*(Ax, Ay, Az) < ¢(max{(D*(Sz,Ty,Tz), D*(Sz, Az, Ax), D*(Sx, Ay, Ay),
D*(Ty, Az, Az), D*(Ty, Ay, Ay))}).-

Then A, S, and T have a unique common fixed point in X .

Theorem 2.6. Let A be a self-mapping of a complete D*-metric space (X, D*),
and let S,T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A,S} and {A, T} are D*-compatible pairs such that A(X) C S(X)U
T(X);
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(ii) there exists a ¢ : R™ — Rt such that ¢(0) = 0,¢(t) < t and for all
T,y €X,
D*(Azx, Ay, Az) < ¢(max{(D*(Sz,Ty,Tz), D*(Sz, Az, Ax), D*(Sz, Ay, Ay),
D*(Ty, Az, Az), D*(Ty, Ay, Ay))}).

Then A, S, and T have a unique common fixed point in X.

Theorem 2.7. Let A be a self-mapping of a complete D*-metric space (X, D*),
and let S be continuous self-mappings on X satisfying the following conditions:

(i) {A, S} is a semicompatible pair such that A(X) C S(X);
(i) there exists a ¢ € ® such that for all x,y € X,
D*(Ax, Ay, Az) < ¢(D*(Sx, Ay, Az), D*(Sx, Az, Az), D*(Sx, Ay, Ay),
D*(Ay, Az, Az)).
Then A and S have a unique common fized point in X.

Proof. The proof follows from Theorem 3.1 by putting 7' = A. U

Theorem 2.8. Let A be a self-mapping of a complete D*-metric space (X, D*),
and let S be continuous self-mappings on X satisfying the following conditions:

(i) {A, S} is a D*-compatible pair such that A(X) C S(X);
(i) there exists a ¢ € ® such that for all x,y € X,
D*(Ax, Ay, Az) < ¢(D*(Sx, Ay, Az), D*(Sx, Az, Az), D*(Sx, Ay, Ay),
D*(Ay, Az, Az)).
Then A and S have a unique common fixed point in X.

Proof. The proof follows from Theorem 2.3 by putting 7' = A. U

Corollary 2.9. Let A,R,S,T, and H be self-mappings of a complete D*-
metric space (X, D*), and let SR, TH be continuous self-mappings on X sat-
isfying the following conditions:

(i) {A, SR} and {A,TH} are semicompatible pairs such that A(X) C

SR(X)NTH(X);

(i) there exists a ¢ € ® such that for all x,y € X,

D*(Ax, Ay, Az) < ¢(D*(SRx,THy,THz), D*(SRx, Az, Az), D*(SRzx, Ay, Ay),
D*(THy, Az, Ax), D* (T Hy, Ay, Ay)).

If SR = RS, TH = HT,AH = HA, and AR = RA, then A,S,R,H, and T
have a unique common fixed point in X.
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Proof. By Theorem 2.2, A, TH, and SR have a unique common fixed point in
X. That is, there exists a € X, such that A(a) = TH(a) = SR(a) = a. We
prove that R(a) = a. By (ii), we get
D*(ARa, Aa, Aa) < ¢(D*(SRRa,THa,THa), D*(SRRa, ARa, ARa),
D*(SRRa, Aa, Aa), D*(THa, ARa, ARa),
D*(THa, Aa, Aa)).
Hence if Ra # a, then we have
D*(Ra,a,a) < ¢((D*(Ra,a,a), D*(Ra, Ra, Ra), D*(Ra, a,a), D*(a, Ra, Ra),

D*(a,a,a))
< ¢(D*(Ra,a,a), D*(Ra,a,a), D*(Ra,a,a),2D*(Ra,a,a),
D*(Ra,a,a))
< D*(Ra,a,a),
which is a contradiction. Therefore it follows that Ra = a. Hence S(a) =
SR(a) = a. Similarly, we get that T'(a) = H(a) = a. O

Corollary 2.10. Let A, R,S,T, and H be self-mappings of a complete D*-
metric space (X, D*), and let SR, TH be continuous self-mappings on X sat-
isfying the following conditions:
(i) {A,SR} and {A,TH} are D*-compatible pairs such that A(X) C
SR(X)NTH(X);

(i) there exists a ¢ € ® such that for all x,y € X,
D*(Ax, Ay, Az) < ¢(D*(SRx,THy,THz), D*(SRz, Az, Az), D*(SRx, Ay, Ay),
D*(THy, Az, Az), D*(THy, Ay, Ay)).
If SR = RS,TH = HT,AH = HA, and AR = RA, then A,S,R,H, and T

have a unique common fized point in X.

Corollary 2.11. Let A; be a sequence self-mapping of complete D*-metric
space (X, D*) for each i € N, and let S, T be continuous self-mappings on X
satisfying the following conditions:

(i) there exists ig € N such that {Ai, S} and {Ai, T} are semicompatible
pairs such that Ajp(X) C S(X)NT(X);
(ii) there exists a ¢ € ® and i,j,k € N such that for all x,y € X,

D*(Ajz, Ajy, Agz) < ¢(D*(Sx, Ty, Tz), D*(Sx, Ajz, Aszx), D*(Sx, Ajy, Ay),

Then A;, S, and T have a unique common fized point in X for everyi € N.
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Proof. By Theorem 2.3, S, T, and A;g, for some i = j = k = ig € N, have a
unique common fixed point in X. That is, there exists a unique a € X such
that S(a) = T'(a) = Aip(a) = a and using Corollary 2.6 in [16] A;, S, and T
have a unique common fixed point in X for every ¢ € N. O

Corollary 2.12. Let A; be a sequence self-mapping of complete D*-metric
space (X, D*) for each i € N, and let S,T be continuous self-mappings on X
satisfying the following conditions:

(i) there exists ig € N such that {A;, S} and { A, T} are D*-compatible
pairs such that Ajo(X) C S(X)NT(X);
(ii) there exists a ¢ € ® and i,j,k € N such that for all x,y € X,

D*(Ajz, Ajy, Agz) < ¢(D*(Sx, Ty, Tz), D*(Sx, Ajz, Asx), D*(Sx, Ajy, Ay),
Then A;, S, and T have a unique common fized point in X for everyi € N.
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