Nonlinear Functional Analysis and Applications Vol. 15, No. 2 (2010), pp. 321-333

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2010 Kyungnam University Press

SOME FIXED POINT THEOREMS IN D^{*} METRIC SPACES

C. T. $Aage¹$ and J. N. Salunke¹

¹School of Mathematical Sciences, North Maharashtra University, Jalgaon, India. e-mail: caage17@gmail.com

²School of Mathematical Sciences, North Maharashtra University, Jalgaon, India.

Abstract. Recently Shaban Sedghi et al [16] introduced D^* metric space and proved some common fixed point in it. In this paper we improved the results of Shaban Sedghi et al [16] by introducing D^* compatible and semicompatible mappings in D^* metric spaces.

1. INTRODUCTION

The metric space is generalized by many authors see $[11-17]$, one of its generalization is D-metric space initiated by B. C. Dhage [3]. He proved some fixed point theorems for self mappings satisfying different types of contractive conditions. Rhoades [6] generalized Dhage's contractive condition by increasing number of factors and prove existence and uniqueness of a fixed point in complete and bounded D-metric space. Ahmad et al [1], Dhage [4], Dhage et al [5] give some special contribution in D-metric space.

Jungck [11] introduced concept of compatible mappings. This concept extended to D-compatible mappings in D-metric space by Bijendra Singh and A. K. Sharma [7] and proved common fixed point theorems in it. Cho, Sharms and Sahu [2] introduced the concept of semi-compatible mappings in d-topological spaces. Bijendra Singh et al [8] used semicompability in D-metric and obtained some common fixed theorems in D-metric spaces.

Recently Shaban Sedghi et al [16] modify the D-metric space as follows.

⁰Received April 22, 2009. Received August 14, 2009.

⁰ 2000 Mathematics Subject Classification: 47H10, 54H25.

 ${}^{0}\mathrm{Keywords:}$ generalized metric space, compatible, semicompatible, fixed point.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D^* metric) on X is a function, $D^* : X^3 \to [0, \infty)$, that satisfies the following conditions for each $x, y, z, a \in X$:

- (1) $D^*(x, y, z) \geq 0$,
- (2) $D^*(x, y, z) = 0$ if and only if $x = y = z$,
- (3) $D^*(x,y,z) = D^*(p\{x,y,z\})$, (symmetry) where p is a permutation function,
- (4) $D^*(x, y, z) \le D^*(x, y, a) + D^*(a, z, z),$

The pair (X, D^*) is called a generalized metric (or D^* -metric) space.

Example 1.2. Let (X, d) be a metric space. Define

- (a) $D^*(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\}.$
- (b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x)$.
- (c) If $X = R^n$, then we define

$$
D^*(x, y, z) = (\|x - y\|^p + \|y - z\|^p + \|z - x\|^p)^{1/p}
$$

for every $p \in R^+$.

(d) If $X = R$ then we define

$$
D^*(x, y, z) = \begin{cases} 0 & \text{if } x = y = z \\ \max\{x, y, z\} & \text{otherwise.} \end{cases}
$$

Then it is easy to verify that every D^* is a D^* -metric.

Remark 1.3. [16] Let (X, D^*) be a D^* metric space. Then for all $x, y, z \in X$, we have $D^*(x, x, y) = D^*(x, y, y)$.

Definition 1.4. [16] Let (X, D^*) be a D^{*}-metric space and $A \subset X$.

- (1) If for every $x \in A$ there exists $r > 0$ such that $B_{D^*}(x, r) \subset A$, then subset A is called open subset of X .
- (2) A is said to be D^{*}-bounded if there exists $r > 0$ such that $D^*(x, y, y)$ r for all $x, y \in A$.
- (3) A sequence $\{x_n\}$ in X converges to x if there exists $n_0 \in N$ such that $D^*(x_n, x_n, x) < \epsilon.$
- (4) A sequence $\{x_n\}$ in X is called Cauchy if for each $\epsilon > 0$, there exists $n_0 \in N$ such that $D^*(x_n, x_n, x_m) < \epsilon$ for each $n, m \ge n_0$.
- (5) A D^* -metric space (X, D^*) is said to be complete if every Cauchy sequence in X is convergent.

Let τ be the set of all open subsets A of X. Then τ is a topology on X (induced by the D^* -metric D^*).

Lemma 1.5. [16] Let (X, D^*) be a D^{*}-metric space. If $r > 0$, then the ball $B_{D^*}(x, r)$ with center $x \in X$ and radius r is open.

Definition 1.6. [16] Let (X, D^*) be a D^* metric space. D^* is said to be a continuous function on X^3 if $\lim_{n\to\infty} D^*(x_n, y_n, z_n) = D^*(x, y, z)$ whenever a sequence $\{(x_n, y_n, z_n)\}\$ in X^3 converges to a point $(x, y, z) \in X^3$ i.e. $\lim_{n\to\infty}x_n=x$, $\lim_{n\to\infty}y_n=y$, $\lim_{n\to\infty}z_n=z$

Lemma 1.7. [16] Let (X, D^*) be a D^* - metric space. Then D^* is a continuous function on X^3 .

Lemma 1.8. [16] Let (X, D^*) be a D^* -metric space. If sequence $\{x_n\}$ in X $converges to x, then x is unique.$

Lemma 1.9. [16] Let (X, D^*) be a D^{*}-metric space. Then the convergent sequence is Cauchy.

Definition 1.10. [16] Let A and S be two mappings from a D^{*}-metric space (X, D^*) into itself. Then the pair $\{A, S\}$ is said to be weakly commuting if

$$
D^*(ASx, SAx, SAx) \le D^*(Ax, Sx, Sx),
$$

for all $x \in X$.

Clearly, a commuting pair is weakly commuting, but not conversely. We extended D^* -compatible and semicompatible mappings as follows.

Definition 1.11. Self maps S and T on a D^{*}-metric space (X, D^*) are said to be D^{*}-compatible if $\lim_{n\to\infty} D^*(STx_n, TSx_n, z) = 0$, where $z = STx_n$ or TSx_n , whenever $\{x_n\}$ is a sequence in X such that

$$
\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Sx_n = x \in X.
$$

Clearly the pair of mappings (S, T) is D^{*}-compatible if and only if (T, S) is D^* -compatible.

Definition 1.12. A pair (S, T) of self-mappings of a D^{*}-metric space is said to be semicompatible if $\lim_{n\to\infty} STx_n = Tx$, whenever $\{x_n\}$ is a sequence in X such that

$$
\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Sx_n = x \in X.
$$

It follows that (S, T) is semicompatible and $Sy = Ty$ then $STy = TSy$.

Proposition 1.13. S and T are D^{*}-compatible self-maps on a D^{*}-metric space (X, D^*) and T is continuous then the pair (S, T) is semicompatible.

Proof. Let $\{Sx_n\} \to u$, $\{Tx_n\} \to u$ for some $u \in X$. To show this, $STx_n \to u$ Tu. As T is continuous $TSx_n \to Tu$. Now, as (S,T) is D^* -compatible we have $\lim_{n\to\infty} D^*(STx_n, STx_n, TSx_n) = 0$. That is, $\lim_{n\to\infty} D^*(Tu, Tu, TSx_n) =$ 0. That is, $\lim_{n\to\infty} STx_n = Tu$. Hence (S,T) is semicompatible. **Proposition 1.14.** If S and T are semicompatible self-maps on a D^* -metric space (X, D^*) and T is continuous, then (S, T) is D^* -compatible.

Proof. Let $\{Sx_n\} \to u$, $\{Tx_n\} \to u$ and T be continuous $TSx_n \to Tu$. Then semicompatibility of (S, T) gives $STx_n \to Tu$. Now,

$$
\lim_{n \to \infty} D^*(STx_n, STx_n, TSx_n) = D^*(Tu, Tu, Tu) = 0.
$$

Hence (S, T) is D^* -compatible.

The following is an example of a pair of self-maps (S, T) which is semicompatible but not compatible. Further, it is shown that the semicompatibility of the pair (S, T) need not imply the semicompatibility of (T, S) .

Example 1.15. Let $X = [0,1]$ and consider the D^{*}-metric space (X, D^*) , where D^* is defined by $D^*(x,y,z) = \max\{|x-y|, |y-z|, |z-x|\}$, for all $x, y, z \in X$. Define a self-map as follows:

$$
Sx = \begin{cases} x & \text{if } 0 \le x < \frac{1}{2} \\ 1 & \text{if } x \ge \frac{1}{2}. \end{cases}
$$

Let I be the identity map on X and $x_n = 1/2-1/n$. Then $\{Ix_n\} = \{x_n\} \rightarrow 1/2$ and $\{Sx_n\} \to 1/2$. Again, $\{ISx_n\} = \{Sx_n\} \to 1/2 \neq S(1/2)$. Thus (I, S) is not semicompatible though it is compatible. Also for any sequence $\{x_n\}$ in X such that $\{x_n\} \to x$ and $\{Sx_n\} \to x$ we have $\{SIx_n\} = \{Sx_n\} \to x = Ix$. Thus (S, I) is always semicompatible.

Example 1.16. Let $X = [0, 2]$, define $D(x, y, z) = Max\{|x-y|, |y-z|, |z-x|\},$ for all $x, y, z \in X$. Define self-maps A and S on X as follows:

$$
Ax = \begin{cases} x & \text{if } x \in [0, 1) \\ 2 & \text{if } x = 1 \\ \frac{x+3}{5} & \text{if } x \in (1, 2]. \end{cases}
$$

$$
Sx = \begin{cases} 2 & \text{if } x \in [0, 1] \\ \frac{x}{2} & \text{if } x \in [1, 2]. \end{cases}
$$

Taking $x_n = 2 - \frac{1}{2n}$ $\frac{1}{2n}$, then we have $S(1) = A(1) = 2$ and $S(2) = A(2) = 1$. Also $SA(1) = AS(1) = 1$ and $SA(2) = AS(2) = 2$. Hence $Ax_n \to 1$ and $Sx_n \to 1$, $ASx_n \to 2$, and $SAx_n \to 1$. Now, $\lim_{n\to\infty} D^*(ASx_n, ASx_m, Sy)$ $D(2,2,2) = 0$, $\lim_{n \to \infty} D^*(ASx_n, SAx_n, ASx_n) = D(2,1,2) = 1 \neq 0$. Hence (A, S) is D^{*}-semicompatible but it is not D^{*}-compatible

2. Main Results

Let Φ denotes a family of mappings such that each $\phi \in \Phi$, $\phi : (R^+)^5 \to$ R^+ , and ϕ is continuous and increasing in each coordinate variable. Also $\phi(t, t, a_1t, a_2t, t) < t$ for every $t \in R^+$ where $a_1 + a_2 = 3$.

Lemma 2.1. For every $t > 0$, $\gamma(t) < t$ if and only if $\lim_{n \to \infty} \gamma^n(t) = 0$, where γ^n denotes the composition of γ with itself n times.

Theorem 2.2. Let A be a self-mapping of a complete D^* -metric space (X, D^*) , and let S , T be continuous self-mappings on X satisfying the following conditions:

(i) $\{A, S\}$ and $\{A, T\}$ are semicompatible pairs such that

$$
A(X) \subset S(X) \cup T(X),
$$

(ii) there exists $a \phi \in \Phi$ such that for all $x, y \in X$,

$$
D^*(Ax, Ay, Az) \le \phi(D^*(Sx, Ty, Tz), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay),
$$

$$
D^*(Ty, Ax, Ax), D^*(Ty, Ay, Ay)).
$$

Then A, S , and T have a unique common fixed point in X .

Proof. Let $x_0 \in X$ be given. Construct a sequence $\{x_n\}$, as follows

$$
Sx_{2n+1} = Ax_{2n} = y_{2n}, n = 0, 1, 2, \cdots,
$$

$$
Tx_{2n+2} = Ax_{2n+1} = y_{2n+1}, n = 0, 1, 2, \cdots.
$$

Denote $d_n = D^*(y_n, y_{n+1}, y_{n+1}), n = 0, 1, 2, \cdots$. We prove that $d_{2n} \leq d_{2n-1}$. Now, if $d_{2n} > d_{2n-1}$ for some $n \in N$, since ϕ is an increasing function,

$$
d_{2n} = D^*(y_{2n}, y_{2n+1}, y_{2n+1}) = D^*(Ax_{2n}, Ax_{2n+1}, Ax_{2n+1})
$$

\n
$$
= D^*(Ax_{2n+1}, Ax_{2n}, Ax_{2n})
$$

\n
$$
\leq \phi((D^*(Sx_{2n+1}, Tx_{2n}, Tx_{2n}), D^*(Sx_{2n+1}, Ax_{2n+1}, Ax_{2n+1}),
$$

\n
$$
D^*(Sx_{2n+1}, Ax_{2n}, Ax_{2n}), D^*(Tx_{2n}, Ax_{2n+1}, Ax_{2n+1}),
$$

\n
$$
D^*(Tx_{2n}, Ax_{2n}, A_{2n}))
$$

\n
$$
= \phi(D^*(y_{2n}, y_{2n-1}, y_{2n-1}), D^*(y_{2n}, y_{2n+1}, y_{2n+1}), D^*(y_{2n}, y_{2n}),
$$

\n
$$
D^*(y_{2n-1}, y_{2n+1}, y_{2n+1}), D^*(y_{2n-1}, y_{2n}, y_{2n}).
$$

Since

$$
D^*(y_{2n-1}, y_{2n+1}, y_{2n+1}) \le D^*(y_{2n-1}, y_{2n-1}, y_{2n}) + D^*(y_{2n}, y_{2n+1}, y_{2n+1})
$$

= $d_{2n-1} + d_{2n}$,

from the above inequality we have

326 C. T. Aage and J. N. Salunke

$$
d_{2n} \leq \phi(d_{2n-1}, d_{2n}, 0, d_{2n-1} + d_{2n}, d_{2n-1})
$$

\$\leq \phi(d_{2n}, d_{2n}, d_{2n}, 2d_{2n}, d_{2n})\$
\$d_{2n}\$,

which is a contradiction. Hence $d_{2n} \leq d_{2n-1}$. Similarly, one can prove that $d_{2n+1} \leq d_{2n}$ for $n = 0, 1, 2, \cdots$. Consequently, $\{d_n\}$ is a nonincreasing sequence of nonnegative reals. Now,

$$
d_1 = D^*(y_1, y_2, y_2) = D^*(Ax_1, Ax_2, Ax_2)
$$

\n
$$
\leq \phi(D^*(Sx_1, Tx_2, Tx_2), D^*(Sx_1, Ax_1, Ax_1), D^*(Sx_1, Ax_2, Ax_2),
$$

\n
$$
D^*(Tx_2, Ax_1, Ax_1), D^*(Tx_2, Ax_2, Ax_2))
$$

\n
$$
= \phi(D^*(y_0, y_1, y_1), D^*(y_0, y_1, y_1), D^*(y_0, y_2, y_2), D^*(y_1, y_1, y_1), D^*(y_1, y_2, y_2))
$$

\n
$$
= \phi(d_0, d_0, d_0 + d_1, 0, d_0) \leq \phi(d_0, d_0, 2d_0, d_0, d_0)
$$

\n
$$
= \gamma(d_0),
$$

which implies thate $d_n \leq \gamma^n(d_0)$. So if $d_0 > 0$, then $\lim_{n\to\infty} d_n = 0$. For $d_0 = 0$, we clearly have $\lim_{n\to\infty} d_n = 0$, since then $d_n = 0$ for each n. Now we prove that sequence $\{Ax_n = y_n\}$ is Cauchy. Since $\lim_{n\to\infty} d_n = 0$, it is sufficient to show that the sequence $\{Ax_{2n} = y_{2n}\}\$ is Cauchy. Suppose that ${Ax_{2n} = y_{2n}}$ is not a Cauchy sequence. Then there is an $\epsilon > 0$ such that for each even integer 2k, for $k = 0, 1, 2, \dots$, there exist even integers $2n(k)$ and $2m(k)$ with $2k \leq 2n(k) < 2m(k)$ such that $D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)}) >$ ϵ . Let, for each even integer $2k$, $2m(k)$ be the least integer exceeding $2n(k)$ satisfying the above inequality. Therefore $D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)-2}) \leq$ $\epsilon, D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)}) > \epsilon$. Then, for each even integer 2k we have

$$
\epsilon < D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)})
$$
\n
$$
\leq D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)-2}) + D^*(Ax_{2m(k)-2}, Ax_{2m(k)-2}), Ax_{2m(k)-1})
$$
\n
$$
+ D^*(Ax_{2m(k)-1}, Ax_{2m(k)-1}, Ax_{2m(k)})
$$
\n
$$
= D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)-2}) + d_{2m(k)-2} + d_{2m(k)-1}.
$$

From, $d_n \to 0$, we obtain $\lim_{k \to \infty} D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)}) = \epsilon$. It follows immediately from the triangular inequality that

 $|D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)-1}) - D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)})| \leq d_{2m(k)-1},$ $|D^*(Ax_{2n(k)+1}, Ax_{2n(k)+1}, Ax_{2m(k)-1}) - D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)})|$ $d_{2m(k)-1} + d_{2n(k)}$. Hence as $k \to \infty$,

> $D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)-1}) \to \epsilon,$ $D^*(Ax_{2n(k)+1}, Ax_{2n(k)+1}, Ax_{2m(k)-1}) \to \epsilon.$

Now

$$
D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2m(k)})
$$

\n
$$
\leq D^*(Ax_{2n(k)}, Ax_{2n(k)}, Ax_{2n(k)+1}) + D^*(Ax_{2n(k)+1}, Ax_{2m(k)}, Ax_{2m(k)})
$$

\n
$$
\leq d_{2n(k)} + \phi((D^*(Ax_{2n(k)}, Ax_{2m(k)-1}, Ax_{2m(k)-1}), d_{2n(k)}, Ax_{2m(k)})
$$

\n
$$
D^*(Ax_{2n(k)}, Ax_{2m(k)}, Ax_{2m(k)}),
$$

\n
$$
D^*(Ax_{2m(k)-1}, Ax_{2n(k)+1}, Ax_{2n(k)+1}), d_{2m(k)-1})).
$$

Using, $\lim_{k\to\infty} d_n = 0$, and continuity and nondecreasing property of ϕ in each coordinate variable, we have

$$
\epsilon \leq \phi(\epsilon, 0, \epsilon, \epsilon, 0) \leq \phi(\epsilon, \epsilon, 2\epsilon, \epsilon, \epsilon) = \phi(\epsilon) < \epsilon
$$

as $k \to \infty$, which is a contradiction. Thus $\{Ax_n = y_n\}$ is a Cauchy sequence and hence by completeness of X, it converges to $z \in X$. That is, $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} y_n = z$. Since the sequences $\{Sx_{2n+1} = y_{2n+1}\}\$ and ${Tx_{2n} = y_{2n}}$ are subsequences of ${Ax_n = y_n}$; they have the same limit z. As S and T are continuous, we have $STx_{2n} \rightarrow Sz$ and $TSx_{2n+1} \rightarrow Tz$. Since $\{A, S\}$ is semicompatible, hence $ASx_{2n+1} \rightarrow Sz$. Put $x = Sx_{2n+1}, y =$ $Sx_{2n+1}, z = Tx_{2n}$ in (ii) we have

$$
D^*(ASx_{2n+1}, ASx_{2n+1}, ATx_{2n})
$$

\n
$$
\leq \phi(D^*(SSx_{2n+1}, TSx_{2n+1}, TTx_{2n}), D^*(SSx_{2n+1}, ASx_{2n+1}, ASx_{2n+1}),
$$

\n
$$
D^*(SSx_{2n+1}, ASx_{2n+1}, ASx_{2n+1}), D^*(TSx_{2n+1}, ASx_{2n+1}, ASx_{2n+1}),
$$

\n
$$
D^*(TSx_{2n+1}, ASx_{2n+1}, ASx_{2n+1})).
$$

As $n \to \infty$ and if $D^*(Sz, Sz, Tz) \neq 0$, then

$$
D^*(Sz, Sz, Tz) \leq \phi(D^*(Sz, Tz, Tz), D^*(Sz, Sz, Sz), D^*(Sz, Sz, Sz),\nD^*(Tz, Sz, Sz), D^*(Tz, Sz, Sz))\n\leq \phi(D^*(Sz, Sz, Tz), D^*(Sz, Sz, Sz), D^*(Sz, Sz, Sz),\nD^*(Sz, Sz, Tz), D^*(Sz, Sz, Tz))\n\leq D^*(Sz, Sz, Tz),
$$

which is a contradiction. Hence $D^*(Sz, Sz, Tz) = 0$ that is, $Sz = Tz$. Now

$$
D^*(SAx_{2n+1}, Az, Az) \le D^*(SAx_{2n+1}, ASx_{2n+1}, ASx_{2n+1}) + D^*(Az, Az, ASx_{2n+1}).
$$

Using (ii) and the semicompatibility of (A, S) , we have

$$
D^*(SAx_{2n+1}, Az, Az)
$$

\n
$$
\leq D^*(SAx_{2n+1}, ASx_{2n+1}, ASx_{2n+1}) + \phi(D^*(Sz, Tz, TSx_{2n+1}),
$$

\n
$$
D^*(Sz, Az, Az), D^*(Sz, Az, Az), D^*(Tz, Az, Az), D^*(Tz, Az, Az)).
$$

Letting $n \to \infty$, then we have

$$
D^*(Sz, Az, Az) \le D^*(Sz, Sz, Dz) + \phi(D^*(Sz, Tz, Tz), D^*(Sz, Az, Az),
$$

\n
$$
D^*(Sz, Az, Az, D^*(Tz, Az, Az), D^*(Tz, Az, Az))
$$

\n
$$
= \phi(0, D^*(Sz, Az, Az), D^*(Sz, Az, Az), D^*(Sz, Az, Az),
$$

\n
$$
D^*(Sz, Az, Az).
$$

\n
$$
D^*(Sz, Az, Az).
$$

Since $Sz = Az$, $Az = Sz = Tz$. It now follows that

$$
D^*(Az, Ax_{2n}, Ax_{2n})
$$

\n
$$
\leq \phi(D^*(Sz, Tx_{2n}, Tx_{2n}), D^*(Sz, Az, Az), D^*(Sz, Ax_{2n}, Ax_{2n}),
$$

\n
$$
D^*(Tx_{2n}, Az, Az), D^*(Tx_{2n}, Ax_{2n}, Ax_{2n}))
$$

Then as $n \to \infty$, we get

$$
D^*(Az, z, z) \le \phi(D^*(Sz, z, z), 0, D^*(Sz, z, z), D^*(z, Az, Az), 0) < D^*(Az, z, z),
$$

which is a contradiction, and therefore $Az = z = Sz = Tz$. Thus z is a common fixed point of A, S and T . The uniqueness is easy one. This completes the proof. \Box

Theorem 2.3. Let A be a self-mapping of complete D^* -metric space (X, D^*) , and let S , T be continuous self-mappings on X satisfying the following conditions:

- (i) $\{A, S\}$ and $\{A, T\}$ are D^{*}-compatible pairs such that $A(X) \subset S(X) \cup$ $T(X);$
- (ii) there exists $a \phi \in \Phi$ such that for all $x, y \in X$,

$$
D^*(Ax, Ay, Az) \le \phi(D^*(Sx, Ty, Tz), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay),
$$

$$
D^*(Ty, Ax, Ax), D^*(Ty, Ay, Ay)).
$$

Then A, S , and T have a unique common fixed point in X .

Proof. Since the semicompatibility implies D^* -compatibility, the result is obvious. \Box

Example 2.4. Let $X = [0, 1]$ and consider the D^{*}-metric space (X, D^*) , where D^* is defined by $D^*(x, y, z) = \max\{|x - y|, |y - z|, |z - x|\}$, for all $x, y, z \in X$. Define a self-map as follows:

$$
Ax = \begin{cases} \frac{1}{2} & \text{if } 0 \le x < \frac{1}{2} \\ 1 & \text{if } x \ge \frac{1}{2}. \end{cases}
$$

Let $Sx = x$ and $Tx = 1 - x$. Let $x_n = 1/2 - 1/n$ be sequence in X. Then $Ax_n = \frac{1}{2}$ $\frac{1}{2}$, $\{Sx_n\} = \{\frac{1}{2} - \frac{1}{2}\}$ $\frac{1}{2}$ \rightarrow 1/2 and $\{Tx_n\} = \{1 - \frac{1}{2} + \frac{1}{n}\}$ $\frac{1}{n}\} \rightarrow 1/2$. Again, $\overline{\{ASx_n\}} = A(\frac{1}{2})$ $(\frac{1}{2}) = \frac{1}{2} = S(\frac{1}{2})$ $(\frac{1}{2})$ and $\{ATx_n\} = A(\frac{1}{2})$ $(\frac{1}{2}) = \frac{1}{2} = T(\frac{1}{2})$ $(\frac{1}{2})$. Thus (A, S) and (A, T) is semicompatible. For all $x, y, z \in X$, we have $D^*(\frac{1}{2})$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2},1) =$ $D^*(\frac{1}{2})$ $(\frac{1}{2},1,1) = D^{*}(1,\frac{1}{2})$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2}) = D^*(1, \frac{1}{2})$ $(\frac{1}{2},1) = D^*(1,1,\frac{1}{2})$ $(\frac{1}{2}) = D^*(\frac{1}{2})$ $\frac{1}{2}$, 1, $\frac{1}{2}$ $(\frac{1}{2})^{\frac{1}{2}} = \frac{1}{2}$ and $D * \overline{(\frac{1}{2})}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2}) = D^*(1, 1, 1) = 0$. we easily verified that

$$
D^*(Ax, Ay, Az) \le \phi(D^*(Sx, Ty, Tz), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay),
$$

$$
D^*(Ty, Ax, Ax), D^*(Ty, Ay, Ay)).
$$

That requirement of Theorem 2.2 is fulfil and clearly A, S and T have unique fixed point.

As Theorem 2.2 it is easy to prove following theorem.

Theorem 2.5. Let A be a self-mapping of a complete D^* -metric space (X, D^*) , and let S, T be continuous self-mappings on X satisfying the following conditions:

- (i) $\{A, S\}$ and $\{A, T\}$ are semicompatible pairs such that $A(X) \subset S(X) \cup$ $T(X)$:
- (ii) there exists $a \phi : R^+ \to R^+$ such that $\phi(0) = 0, \phi(t) < t$ and for all $x, y \in X$,

 $D^*(Ax, Ay, Az) \leq \phi(\max\{(D^*(Sx, Ty, Tz), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay),$ $D^*(Ty, Ax, Ax), D^*(Ty, Ay, Ay))$.

Then A, S , and T have a unique common fixed point in X .

Theorem 2.6. Let A be a self-mapping of a complete D^* -metric space (X, D^*) , and let S, T be continuous self-mappings on X satisfying the following conditions:

(i) $\{A, S\}$ and $\{A, T\}$ are D^{*}-compatible pairs such that $A(X) \subset S(X) \cup$ $T(X)$:

(ii) there exists $a \phi : R^+ \to R^+$ such that $\phi(0) = 0, \phi(t) < t$ and for all $x, y \in X$,

$$
D^*(Ax, Ay, Az) \le \phi(\max\{(D^*(Sx, Ty, Tz), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay), D^*(Ty, Ax, Ax), D^*(Ty, Ay, Ay))\}).
$$

Then A, S , and T have a unique common fixed point in X .

Theorem 2.7. Let A be a self-mapping of a complete D^* -metric space (X, D^*) , and let S be continuous self-mappings on X satisfying the following conditions:

- (i) $\{A, S\}$ is a semicompatible pair such that $A(X) \subset S(X)$;
- (ii) there exists $a \phi \in \Phi$ such that for all $x, y \in X$,

$$
D^*(Ax, Ay, Az) \le \phi(D^*(Sx, Ay, Az), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay),
$$

$$
D^*(Ay, Ax, Ax)).
$$

Then A and S have a unique common fixed point in X .

Proof. The proof follows from Theorem 3.1 by putting $T = A$.

Theorem 2.8. Let A be a self-mapping of a complete D^* -metric space (X, D^*) , and let S be continuous self-mappings on X satisfying the following conditions:

- (i) $\{A, S\}$ is a D^{*}-compatible pair such that $A(X) \subset S(X)$;
- (ii) there exists $a \phi \in \Phi$ such that for all $x, y \in X$,

$$
D^*(Ax, Ay, Az) \le \phi(D^*(Sx, Ay, Az), D^*(Sx, Ax, Ax), D^*(Sx, Ay, Ay),
$$

$$
D^*(Ay, Ax, Ax)).
$$

Then A and S have a unique common fixed point in X.

Proof. The proof follows from Theorem 2.3 by putting $T = A$.

Corollary 2.9. Let A, R, S, T , and H be self-mappings of a complete D^* metric space (X, D^*) , and let SR, TH be continuous self-mappings on X satisfying the following conditions:

- (i) $\{A, SR\}$ and $\{A, TH\}$ are semicompatible pairs such that $A(X) \subset$ $SR(X) \cap TH(X);$
- (ii) there exists $a \phi \in \Phi$ such that for all $x, y \in X$,
- $D^*(Ax, Ay, Az) \leq \phi(D^*(SRx, THy, THz), D^*(SRx, Ax, Ax), D^*(SRx, Ay, Ay),$ $D^*(THy, Ax, Ax), D^*(THy, Ay, Ay)$.

If $SR = RS, TH = HT, AH = HA, and AR = RA, then A, S, R, H, and T$ have a unique common fixed point in X.

Proof. By Theorem 2.2, A, TH , and SR have a unique common fixed point in X. That is, there exists $a \in X$, such that $A(a) = TH(a) = SR(a) = a$. We prove that $R(a) = a$. By (ii), we get

$$
D^*(ARa, Aa, Aa) \le \phi(D^*(SRRa, THa, THa), D^*(SRRa, ARa, ARa),
$$

$$
D^*(SRRa, Aa, Aa), D^*(THa, ARa, ARa),
$$

$$
D^*(THa, Aa, Aa)).
$$

Hence if $Ra \neq a$, then we have

$$
D^*(Ra, a, a) \le \phi((D^*(Ra, a, a), D^*(Ra, Ra, Ra), D^*(Ra, a, a), D^*(a, Ra, Ra),
$$

\n
$$
D^*(a, a, a))
$$

\n
$$
\le \phi(D^*(Ra, a, a), D^*(Ra, a, a), D^*(Ra, a, a), 2D^*(Ra, a, a),
$$

\n
$$
D^*(Ra, a, a))
$$

\n
$$
< D^*(Ra, a, a),
$$

which is a contradiction. Therefore it follows that $Ra = a$. Hence $S(a) =$ $SR(a) = a$. Similarly, we get that $T(a) = H(a) = a$.

Corollary 2.10. Let A, R, S, T , and H be self-mappings of a complete D^* metric space (X, D^*) , and let SR, TH be continuous self-mappings on X satisfying the following conditions:

- (i) $\{A, SR\}$ and $\{A, TH\}$ are D^{*}-compatible pairs such that $A(X) \subset$ $SR(X) \cap TH(X);$
- (ii) there exists $a \phi \in \Phi$ such that for all $x, y \in X$,

$$
D^*(Ax, Ay, Az) \le \phi(D^*(SRx, THy, THz), D^*(SRx, Ax, Ax), D^*(SRx, Ay, Ay),
$$

$$
D^*(THy, Ax, Ax), D^*(THy, Ay, Ay)).
$$

If $SR = RS, TH = HT, AH = HA, and AR = RA, then A, S, R, H, and T$ have a unique common fixed point in X.

Corollary 2.11. Let A_i be a sequence self-mapping of complete D^* -metric space (X, D^*) for each $i \in N$, and let S, T be continuous self-mappings on X satisfying the following conditions:

- (i) there exists $i_0 \in N$ such that $\{A_{i0}, S\}$ and $\{A_{i0}, T\}$ are semicompatible pairs such that $A_{i0}(X) \subset S(X) \cap T(X);$
- (ii) there exists $a \phi \in \Phi$ and $i, j, k \in N$ such that for all $x, y \in X$,

$$
D^*(A_ix, A_jy, A_kz) \le \phi(D^*(Sx, Ty, Tz), D^*(Sx, A_ix, A_ix), D^*(Sx, A_jy, A_jy),
$$

$$
D^*(Ty, A_ix, A_ix), D^*(Ty, A_jy, A_jy).
$$

Then A_i , S, and T have a unique common fixed point in X for every $i \in N$.

Proof. By Theorem 2.3, S, T, and A_{i0} , for some $i = j = k = i_0 \in N$, have a unique common fixed point in X. That is, there exists a unique $a \in X$ such that $S(a) = T(a) = A_{i0}(a) = a$ and using Corollary 2.6 in [16] A_i, S , and T have a unique common fixed point in X for every $i \in N$.

Corollary 2.12. Let A_i be a sequence self-mapping of complete D^* -metric space (X, D^*) for each $i \in N$, and let S, T be continuous self-mappings on X satisfying the following conditions:

- (i) there exists $i_0 \in N$ such that $\{A_{i0}, S\}$ and $\{A_{i0}, T\}$ are D^* -compatible pairs such that $A_{i0}(X) \subset S(X) \cap T(X);$
- (ii) there exists $a \phi \in \Phi$ and $i, j, k \in N$ such that for all $x, y \in X$,

$$
D^*(A_ix, A_jy, A_kz) \le \phi(D^*(Sx, Ty, Tz), D^*(Sx, A_ix, A_ix), D^*(Sx, A_jy, A_jy),
$$

$$
D^*(Ty, A_ix, A_ix), D^*(Ty, A_jy, A_jy).
$$

Then A_i , S, and T have a unique common fixed point in X for every $i \in N$.

REFERENCES

- [1] B. Ahmad, M. Ashraf, and B. E. Rhoades, Fixed point theorems for expansive mappings in D-metric spaces, Indian Journal of Pure and Applied Mathematics, $32(20010, 1513-$ 1518.
- [2] Y. J. Cho , B. K. Sharma and D. R. Sahu, Math. Japonica, 42(1)(1995), 91-98.
- [3] B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bulletin of the Calcutta Mathematical Society, 84(1992), 329-336.
- [4] B. C. Dhage, A common fixed point principle in D-metric spaces, Bulletin of the Calcutta Mathematical Society, 91(1999), 475-480.
- [5] B. C. Dhage, A. M. Pathan, and B. E. Rhoades, A general existence principle for fixed point theorems in D-metric spaces, International Journal of Mathematics and Mathematical Sciences, 23(2000), 441-448.
- [6] B. E. Rhoades, A fixed point theorem for generalized metric spaces, International Journal of Mathematics and Mathematical Sciences, 19(1996), 457-460.
- [7] B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Radovi Matematicki, 11(2002), 145-153.
- [8] Bijendra Singh, Shishir Jain, and Shobha Jain, Semicompatibility and fixed point theorems in an unbounded D-metric space, Fixed Point Theory and Applications, 2005, (2005), 789-801.
- [9] Bijendra Singh and Shobha Jain, Weak compatibility and fixed point theorems for four self-maps in D-metric spaces, Fixed Point Theory and Applications, 2005, (2005), 2473-2489.
- [10] Bijendra Singh and Shishir Jain, Semicompatibility and fixed point theorems in fuzzy metric space using implicit relation, Fixed Point Theory and Applications, 2005, (2005), 2617-2629.
- [11] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779.
- [12] S. V. R. Naidu, K. P. R. Rao, and N. Srinivasa Rao, On the topology of D-metric spaces and generation of D-metric spaces from metric spaces, International Journal of Mathematics and Mathematical Sciences, 2004,(2004), 2719-2740.

- [13] S. V. R. Naidu, K. P. R. Rao, and N. Srinivasa Rao, On the concepts of balls in a Dmetric space, International Journal of Mathematics and Mathematical Sciences, 2005, (2005), 133-141.
- [14] S. V. R. Naidu, K. P. R. Rao, and N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-metric spaces, International Journal of Mathematics and Mathematical Sciences, 2005, (2005), 1969-1988.
- [15] J. K. Kim, S. Sedghi and N. Shobe, Fixed point theorem in L_m^* -fuzzy metric spaces for two maps, East Asian Mathematical Journal, 25(2009), 197-213.
- [16] Shaban Sedghi, Nabi Shobe, and Haiyun Zhou, A Common Fixed Point Theorem in D^* -Metric Spaces, Fixed Point Theory and Applications, 2007, (2007), 1-14.