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Abstract. Recently Shaban Sedghi et al [16] introduced D∗ metric space and proved some

common fixed point in it. In this paper we improved the results of Shaban Sedghi et al [16]

by introducing D∗ compatible and semicompatible mappings in D∗ metric spaces.

1. Introduction

The metric space is generalized by many authors see [11-17], one of its gen-
eralization is D-metric space initiated by B. C. Dhage [3]. He proved some
fixed point theorems for self mappings satisfying different types of contractive
conditions. Rhoades [6] generalized Dhage’s contractive condition by increas-
ing number of factors and prove existence and uniqueness of a fixed point in
complete and bounded D-metric space. Ahmad et al [1], Dhage [4], Dhage et
al [5] give some special contribution in D-metric space.

Jungck [11] introduced concept of compatible mappings. This concept ex-
tended to D-compatible mappings in D-metric space by Bijendra Singh and A.
K. Sharma [7] and proved common fixed point theorems in it. Cho, Sharms and
Sahu [2] introduced the concept of semi-compatible mappings in d-topological
spaces. Bijendra Singh et al [8] used semicompability in D-metric and ob-
tained some common fixed theorems in D-metric spaces.

Recently Shaban Sedghi et al [16] modify the D-metric space as follows.
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Definition 1.1. Let X be a nonempty set. A generalized metric (or D∗-
metric) on X is a function, D∗ : X3 → [0,∞), that satisfies the following
conditions for each x, y, z, a ∈ X:

(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}), (symmetry) where p is a permutation

function,
(4) D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z),

The pair (X, D∗) is called a generalized metric (or D∗-metric) space.

Example 1.2. Let (X, d) be a metric space. Define
(a) D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)}.
(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x).
(c) If X = Rn, then we define

D∗(x, y, z) = (‖x− y‖p + ‖y − z‖p + ‖z − x‖p)1/p

for every p ∈ R+.
(d) If X = R then we define

D∗(x, y, z) =

{
0 if x = y = z

max{x, y, z} otherwise.
Then it is easy to verify that every D∗ is a D∗-metric.

Remark 1.3. [16] Let (X, D∗) be a D∗ metric space. Then for all x, y, z ∈ X,
we have D∗(x, x, y) = D∗(x, y, y).

Definition 1.4. [16] Let (X, D∗) be a D∗-metric space and A ⊂ X.
(1) If for every x ∈ A there exists r > 0 such that BD∗(x, r) ⊂ A, then

subset A is called open subset of X.
(2) A is said to be D∗-bounded if there exists r > 0 such that D∗(x, y, y) <

r for all x, y ∈ A.
(3) A sequence {xn} in X converges to x if there exists n0 ∈ N such that

D∗(xn, xn, x) < ε.
(4) A sequence {xn} in X is called Cauchy if for each ε > 0, there exists

n0 ∈ N such that D∗(xn, xn, xm) < ε for each n,m ≥ n0.
(5) A D∗-metric space (X,D∗) is said to be complete if every Cauchy

sequence in X is convergent.

Let τ be the set of all open subsets A of X. Then τ is a topology on X
(induced by the D∗-metric D∗).

Lemma 1.5. [16] Let (X,D∗) be a D∗-metric space. If r > 0, then the ball
BD∗(x, r) with center x ∈ X and radius r is open.
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Definition 1.6. [16] Let (X,D∗) be a D∗ metric space. D∗ is said to be
a continuous function on X3 if limn→∞D∗(xn, yn, zn) = D∗(x, y, z) when-
ever a sequence {(xn, yn, zn)} in X3 converges to a point (x, y, z) ∈ X3 i.e.
limn→∞ xn = x, limn→∞ yn = y, limn→∞ zn = z

Lemma 1.7. [16] Let (X, D∗) be a D∗- metric space. Then D∗ is a continuous
function on X3.

Lemma 1.8. [16] Let (X, D∗) be a D∗-metric space. If sequence {xn} in X
converges to x, then x is unique.

Lemma 1.9. [16] Let (X, D∗) be a D∗-metric space. Then the convergent
sequence is Cauchy.

Definition 1.10. [16] Let A and S be two mappings from a D∗-metric space
(X,D∗) into itself. Then the pair {A,S} is said to be weakly commuting if

D∗(ASx, SAx, SAx) ≤ D∗(Ax, Sx, Sx),

for all x ∈ X.

Clearly, a commuting pair is weakly commuting, but not conversely.
We extended D∗-compatible and semicompatible mappings as follows.

Definition 1.11. Self maps S and T on a D∗-metric space (X, D∗) are said
to be D∗-compatible if limn→∞D∗(STxn, TSxn, z) = 0, where z = STxn or
TSxn, whenever {xn} is a sequence in X such that

lim
n→∞Txn = lim

n→∞Sxn = x ∈ X.

Clearly the pair of mappings (S, T ) is D∗-compatible if and only if (T, S) is
D∗-compatible.

Definition 1.12. A pair (S, T ) of self-mappings of a D∗-metric space is said
to be semicompatible if limn→∞ STxn = Tx, whenever {xn} is a sequence in
X such that

lim
n→∞Txn = lim

n→∞Sxn = x ∈ X.

It follows that (S, T ) is semicompatible and Sy = Ty then STy = TSy.

Proposition 1.13. S and T are D∗-compatible self-maps on a D∗-metric
space (X, D∗) and T is continuous then the pair (S, T ) is semicompatible.

Proof. Let {Sxn} → u, {Txn} → u for some u ∈ X. To show this, STxn →
Tu. As T is continuous TSxn → Tu. Now, as (S, T ) is D∗-compatible we have
limn→∞D∗(STxn, STxn, TSxn) = 0. That is, limn→∞D∗(Tu, Tu, TSxn) =
0. That is, limn→∞ STxn = Tu. Hence (S, T ) is semicompatible. ¤
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Proposition 1.14. If S and T are semicompatible self-maps on a D∗-metric
space (X, D∗) and T is continuous, then (S, T ) is D∗-compatible.

Proof. Let {Sxn} → u, {Txn} → u and T be continuous TSxn → Tu. Then
semicompatibility of (S, T ) gives STxn → Tu. Now,

lim
n→∞D∗(STxn, STxn, TSxn) = D∗(Tu, Tu, Tu) = 0.

Hence (S, T ) is D∗-compatible. ¤

The following is an example of a pair of self-maps (S, T ) which is semicom-
patible but not compatible. Further, it is shown that the semicompatibility of
the pair (S, T ) need not imply the semicompatibility of (T, S).

Example 1.15. Let X = [0, 1] and consider the D∗-metric space (X,D∗),
where D∗ is defined by D∗(x, y, z) = max{|x − y|, |y − z|, |z − x|}, for all
x, y, z ∈ X. Define a self-map as follows:

Sx =

{
x if 0 ≤ x < 1

2

1 if x ≥ 1
2 .

Let I be the identity map on X and xn = 1/2−1/n. Then {Ixn} = {xn} → 1/2
and {Sxn} → 1/2. Again, {ISxn} = {Sxn} → 1/2 6= S(1/2). Thus (I, S) is
not semicompatible though it is compatible. Also for any sequence {xn} in X
such that {xn} → x and {Sxn} → x we have {SIxn} = {Sxn} → x = Ix.
Thus (S, I) is always semicompatible.

Example 1.16. Let X = [0, 2], define D(x, y, z) = Max{|x−y|, |y−z|, |z−x|},
for all x, y, z ∈ X. Define self-maps A and S on X as follows:

Ax =





x if x ∈ [0, 1)
2 if x = 1
x+3

5 if x ∈ (1, 2].

Sx =

{
2 if x ∈ [0, 1]
x
2 if x ∈ [1, 2].

Taking xn = 2 − 1
2n , then we have S(1) = A(1) = 2 and S(2) = A(2) = 1.

Also SA(1) = AS(1) = 1 and SA(2) = AS(2) = 2. Hence Axn → 1 and
Sxn → 1, ASxn → 2, and SAxn → 1. Now, limn→∞D∗(ASxn, ASxm, Sy) =
D(2, 2, 2) = 0, limn→∞D∗(ASxn, SAxn, ASxn) = D(2, 1, 2) = 1 6= 0. Hence
(A,S) is D∗-semicompatible but it is not D∗-compatible
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2. Main Results

Let Φ denotes a family of mappings such that each φ ∈ Φ, φ : (R+)5 →
R+, and φ is continuous and increasing in each coordinate variable. Also
φ(t, t, a1t, a2t, t) < t for every t ∈ R+ where a1 + a2 = 3.

Lemma 2.1. For every t > 0, γ(t) < t if and only if limn→∞ γn(t) = 0, where
γn denotes the composition of γ with itself n times.

Theorem 2.2. Let A be a self-mapping of a complete D∗-metric space (X,D∗),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A, S} and {A, T} are semicompatible pairs such that

A(X) ⊂ S(X) ∪ T (X),

(ii) there exists a φ ∈ Φ such that for all x, y ∈ X,

D∗(Ax,Ay,Az) ≤ φ(D∗(Sx, Ty, Tz), D∗(Sx, Ax, Ax), D∗(Sx, Ay, Ay),

D∗(Ty, Ax,Ax), D∗(Ty,Ay, Ay)).

Then A,S, and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be given. Construct a sequence {xn}, as follows

Sx2n+1 = Ax2n = y2n, n = 0, 1, 2, · · · ,

Tx2n+2 = Ax2n+1 = y2n+1, n = 0, 1, 2, · · · .

Denote dn = D∗(yn, yn+1, yn+1), n = 0, 1, 2, · · · . We prove that d2n ≤ d2n−1.
Now, if d2n > d2n−1 for some n ∈ N , since φ is an increasing function,

d2n = D∗(y2n, y2n+1, y2n+1) = D∗(Ax2n, Ax2n+1, Ax2n+1)

= D∗(Ax2n+1, Ax2n, Ax2n)

≤ φ((D∗(Sx2n+1, Tx2n, Tx2n), D∗(Sx2n+1, Ax2n+1, Ax2n+1),

D∗(Sx2n+1, Ax2n, Ax2n), D∗(Tx2n, Ax2n+1, Ax2n+1),

D∗(Tx2n, Ax2n, A2n))

= φ(D∗(y2n, y2n−1, y2n−1), D∗(y2n, y2n+1, y2n+1), D∗(y2n, y2n, y2n),

D∗(y2n−1, y2n+1, y2n+1), D∗(y2n−1, y2n, y2n).

Since

D∗(y2n−1, y2n+1, y2n+1) ≤ D∗(y2n−1, y2n−1, y2n) + D∗(y2n, y2n+1, y2n+1)
= d2n−1 + d2n,

from the above inequality we have
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d2n ≤ φ(d2n−1, d2n, 0, d2n−1 + d2n, d2n−1)

≤ φ(d2n, d2n, d2n, 2d2n, d2n)
< d2n,

which is a contradiction. Hence d2n ≤ d2n−1. Similarly, one can prove that
d2n+1 ≤ d2n for n = 0, 1, 2, · · · . Consequently, {dn} is a nonincreasing sequence
of nonnegative reals. Now,

d1 = D∗(y1, y2, y2) = D∗(Ax1, Ax2, Ax2)

≤ φ(D∗(Sx1, Tx2, Tx2), D∗(Sx1, Ax1, Ax1), D∗(Sx1, Ax2, Ax2),

D∗(Tx2, Ax1, Ax1), D∗(Tx2, Ax2, Ax2))

= φ(D∗(y0, y1, y1), D∗(y0, y1, y1), D∗(y0, y2, y2), D∗(y1, y1, y1), D∗(y1, y2, y2))

= φ(d0, d0, d0 + d1, 0, d0) ≤ φ(d0, d0, 2d0, d0, d0)

= γ(d0),

which implies thate dn ≤ γn(d0). So if d0 > 0, then limn→∞ dn = 0. For
d0 = 0, we clearly have limn→∞ dn = 0, since then dn = 0 for each n. Now
we prove that sequence {Axn = yn} is Cauchy. Since limn→∞ dn = 0, it is
sufficient to show that the sequence {Ax2n = y2n} is Cauchy. Suppose that
{Ax2n = y2n} is not a Cauchy sequence. Then there is an ε > 0 such that for
each even integer 2k, for k = 0, 1, 2, · · · , there exist even integers 2n(k) and
2m(k) with 2k ≤ 2n(k) < 2m(k) such that D∗(Ax2n(k), Ax2n(k), Ax2m(k)) >
ε. Let, for each even integer 2k, 2m(k) be the least integer exceeding 2n(k)
satisfying the above inequality. Therefore D∗(Ax2n(k), Ax2n(k), Ax2m(k)−2) ≤
ε,D∗(Ax2n(k), Ax2n(k), Ax2m(k)) > ε. Then, for each even integer 2k we have

ε < D∗(Ax2n(k), Ax2n(k), Ax2m(k))

≤ D∗(Ax2n(k), Ax2n(k), Ax2m(k)−2) + D∗(Ax2m(k)−2, Ax2m(k)−2), Ax2m(k)−1)

+ D∗(Ax2m(k)−1, Ax2m(k)−1, Ax2m(k))

= D∗(Ax2n(k), Ax2n(k), Ax2m(k)−2) + d2m(k)−2 + d2m(k)−1.

From, dn → 0, we obtain limk→∞D∗(Ax2n(k), Ax2n(k), Ax2m(k)) = ε. It follows
immediately from the triangular inequality that

|D∗(Ax2n(k), Ax2n(k), Ax2m(k)−1)−D∗(Ax2n(k), Ax2n(k), Ax2m(k))| ≤ d2m(k)−1,

|D∗(Ax2n(k)+1, Ax2n(k)+1, Ax2m(k)−1)−D∗(Ax2n(k), Ax2n(k), Ax2m(k))|
< d2m(k)−1 + d2n(k). Hence as k →∞,

D∗(Ax2n(k), Ax2n(k), Ax2m(k)−1) → ε,

D∗(Ax2n(k)+1, Ax2n(k)+1, Ax2m(k)−1)) → ε.
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Now

D∗(Ax2n(k), Ax2n(k), Ax2m(k))

≤ D∗(Ax2n(k), Ax2n(k), Ax2n(k)+1) + D∗(Ax2n(k)+1, Ax2m(k), Ax2m(k))

≤ d2n(k) + φ((D∗(Ax2n(k), Ax2m(k)−1, Ax2m(k)−1), d2n(k),

D∗(Ax2n(k), Ax2m(k), Ax2m(k)),

D∗(Ax2m(k)−1, Ax2n(k)+1, Ax2n(k)+1), d2m(k)−1)).

Using, limk→∞ dn = 0, and continuity and nondecreasing property of φ in
each coordinate variable, we have

ε ≤ φ(ε, 0, ε, ε, 0) ≤ φ(ε, ε, 2ε, ε, ε) = φ(ε) < ε

as k → ∞, which is a contradiction. Thus {Axn = yn} is a Cauchy se-
quence and hence by completeness of X, it converges to z ∈ X. That is,
limn→∞Axn = limn→∞ yn = z. Since the sequences {Sx2n+1 = y2n+1} and
{Tx2n = y2n} are subsequences of {Axn = yn}; they have the same limit
z. As S and T are continuous, we have STx2n → Sz and TSx2n+1 → Tz.
Since {A, S} is semicompatible, hence ASx2n+1 → Sz. Put x = Sx2n+1, y =
Sx2n+1, z = Tx2n in (ii) we have

D∗(ASx2n+1, ASx2n+1, ATx2n)

≤ φ(D∗(SSx2n+1, TSx2n+1, TTx2n), D∗(SSx2n+1, ASx2n+1, ASx2n+1),

D∗(SSx2n+1, ASx2n+1, ASx2n+1), D∗(TSx2n+1, ASx2n+1, ASx2n+1),

D∗(TSx2n+1, ASx2n+1, ASx2n+1)).

As n →∞ and if D∗(Sz, Sz, Tz) 6= 0, then

D∗(Sz, Sz, Tz) ≤ φ(D∗(Sz, Tz, Tz), D∗(Sz, Sz, Sz), D∗(Sz, Sz, Sz),

D∗(Tz, Sz, Sz), D∗(Tz, Sz, Sz))

≤ φ(D∗(Sz, Sz, Tz), D∗(Sz, Sz, Sz), D∗(Sz, Sz, Sz),

D∗(Sz, Sz, Tz), D∗(Sz, Sz, Tz))

< D∗(Sz, Sz, Tz),

which is a contradiction. Hence D∗(Sz, Sz, Tz) = 0 that is, Sz = Tz.
Now

D∗(SAx2n+1, Az, Az) ≤ D∗(SAx2n+1, ASx2n+1, ASx2n+1)

+ D∗(Az, Az, ASx2n+1).
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Using (ii) and the semicompatibility of (A,S), we have

D∗(SAx2n+1, Az, Az)

≤ D∗(SAx2n+1, ASx2n+1, ASx2n+1) + φ(D∗(Sz, Tz, TSx2n+1),

D∗(Sz, Az,Az), D∗(Sz,Az, Az), D∗(Tz,Az, Az), D∗(Tz,Az, Az)).

Letting n →∞, then we have

D∗(Sz,Az, Az) ≤ D∗(Sz, Sz, Dz) + φ(D∗(Sz, Tz, Tz), D∗(Sz, Az,Az),

D∗(Sz, Az,Az), D∗(Tz, Az,Az), D∗(Tz, Az,Az))

= φ(0, D∗(Sz,Az, Az), D∗(Sz, Az, Az), D∗(Sz, Az,Az),

D∗(Sz, Az,Az))

< D∗(Sz,Az, Az).

Since Sz = Az, Az = Sz = Tz. It now follows that

D∗(Az,Ax2n, Ax2n)

≤ φ(D∗(Sz, Tx2n, Tx2n), D∗(Sz,Az, Az), D∗(Sz, Ax2n, Ax2n),

D∗(Tx2n, Az, Az), D∗(Tx2n, Ax2n, Ax2n))

Then as n →∞, we get

D∗(Az, z, z) ≤ φ(D∗(Sz, z, z), 0, D∗(Sz, z, z), D∗(z, Az,Az), 0)

< D∗(Az, z, z),

which is a contradiction, and therefore Az = z = Sz = Tz. Thus z is a
common fixed point of A,S and T . The uniqueness is easy one. This completes
the proof. ¤

Theorem 2.3. Let A be a self-mapping of complete D∗-metric space (X,D∗),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A, S} and {A, T} are D∗-compatible pairs such that A(X) ⊂ S(X) ∪
T (X);

(ii) there exists a φ ∈ Φ such that for all x, y ∈ X,

D∗(Ax,Ay,Az) ≤ φ(D∗(Sx, Ty, Tz), D∗(Sx, Ax, Ax), D∗(Sx, Ay, Ay),

D∗(Ty, Ax,Ax), D∗(Ty,Ay, Ay)).

Then A,S, and T have a unique common fixed point in X.

Proof. Since the semicompatibility implies D∗-compatibility, the result is ob-
vious. ¤
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Example 2.4. Let X = [0, 1] and consider the D∗-metric space (X, D∗), where
D∗ is defined by D∗(x, y, z) = max{|x− y|, |y− z|, |z− x|}, for all x, y, z ∈ X.
Define a self-map as follows:

Ax =

{
1
2 if 0 ≤ x < 1

2

1 if x ≥ 1
2 .

Let Sx = x and Tx = 1 − x. Let xn = 1/2 − 1/n be sequence in X. Then
Axn = 1

2 , {Sxn} = {1
2 − 1

2} → 1/2 and {Txn} = {1− 1
2 + 1

n} → 1/2. Again,
{ASxn} = A(1

2) = 1
2 = S(1

2) and {ATxn} = A(1
2) = 1

2 = T (1
2). Thus (A,S)

and (A, T ) is semicompatible. For all x, y, z ∈ X, we have D∗(1
2 , 1

2 , 1) =
D∗(1

2 , 1, 1) = D∗(1, 1
2 , 1

2) = D∗(1, 1
2 , 1) = D∗(1, 1, 1

2) = D∗(1
2 , 1, 1

2) = 1
2 and

D ∗ (1
2 , 1

2 , 1
2) = D∗(1, 1, 1) = 0. we easily verified that

D∗(Ax,Ay,Az) ≤ φ(D∗(Sx, Ty, Tz), D∗(Sx, Ax, Ax), D∗(Sx, Ay, Ay),

D∗(Ty, Ax,Ax), D∗(Ty,Ay, Ay)).

That requirement of Theorem 2.2 is fulfil and clearly A,S and T have unique
fixed point.

As Theorem 2.2 it is easy to prove following theorem.

Theorem 2.5. Let A be a self-mapping of a complete D∗-metric space (X,D∗),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A, S} and {A, T} are semicompatible pairs such that A(X) ⊂ S(X)∪
T (X);

(ii) there exists a φ : R+ → R+ such that φ(0) = 0, φ(t) < t and for all
x, y ∈ X,

D∗(Ax,Ay, Az) ≤ φ(max{(D∗(Sx, Ty, Tz), D∗(Sx, Ax,Ax), D∗(Sx, Ay,Ay),

D∗(Ty, Ax, Ax), D∗(Ty, Ay,Ay))}).
Then A,S, and T have a unique common fixed point in X.

Theorem 2.6. Let A be a self-mapping of a complete D∗-metric space (X,D∗),
and let S, T be continuous self-mappings on X satisfying the following condi-
tions:

(i) {A, S} and {A, T} are D∗-compatible pairs such that A(X) ⊂ S(X) ∪
T (X);
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(ii) there exists a φ : R+ → R+ such that φ(0) = 0, φ(t) < t and for all
x, y ∈ X,

D∗(Ax,Ay, Az) ≤ φ(max{(D∗(Sx, Ty, Tz), D∗(Sx, Ax,Ax), D∗(Sx, Ay,Ay),

D∗(Ty, Ax, Ax), D∗(Ty, Ay,Ay))}).
Then A,S, and T have a unique common fixed point in X.

Theorem 2.7. Let A be a self-mapping of a complete D∗-metric space (X,D∗),
and let S be continuous self-mappings on X satisfying the following conditions:

(i) {A, S} is a semicompatible pair such that A(X) ⊂ S(X);
(ii) there exists a φ ∈ Φ such that for all x, y ∈ X,

D∗(Ax, Ay, Az) ≤ φ(D∗(Sx, Ay, Az), D∗(Sx, Ax, Ax), D∗(Sx,Ay, Ay),

D∗(Ay,Ax, Ax)).

Then A and S have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.1 by putting T = A. ¤

Theorem 2.8. Let A be a self-mapping of a complete D∗-metric space (X,D∗),
and let S be continuous self-mappings on X satisfying the following conditions:

(i) {A, S} is a D∗-compatible pair such that A(X) ⊂ S(X);
(ii) there exists a φ ∈ Φ such that for all x, y ∈ X,

D∗(Ax, Ay, Az) ≤ φ(D∗(Sx, Ay, Az), D∗(Sx, Ax, Ax), D∗(Sx,Ay, Ay),

D∗(Ay,Ax, Ax)).

Then A and S have a unique common fixed point in X.

Proof. The proof follows from Theorem 2.3 by putting T = A. ¤

Corollary 2.9. Let A,R, S, T, and H be self-mappings of a complete D∗-
metric space (X, D∗), and let SR, TH be continuous self-mappings on X sat-
isfying the following conditions:

(i) {A, SR} and {A, TH} are semicompatible pairs such that A(X) ⊂
SR(X) ∩ TH(X);

(ii) there exists a φ ∈ Φ such that for all x, y ∈ X,

D∗(Ax,Ay,Az) ≤ φ(D∗(SRx, THy, THz), D∗(SRx,Ax, Ax), D∗(SRx,Ay, Ay),

D∗(THy, Ax,Ax), D∗(THy, Ay,Ay)).

If SR = RS, TH = HT, AH = HA, and AR = RA, then A,S, R, H, and T
have a unique common fixed point in X.
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Proof. By Theorem 2.2, A, TH, and SR have a unique common fixed point in
X. That is, there exists a ∈ X, such that A(a) = TH(a) = SR(a) = a. We
prove that R(a) = a. By (ii), we get

D∗(ARa,Aa, Aa) ≤ φ(D∗(SRRa, THa, THa), D∗(SRRa,ARa, ARa),

D∗(SRRa, Aa, Aa), D∗(THa, ARa,ARa),

D∗(THa, Aa, Aa)).

Hence if Ra 6= a, then we have

D∗(Ra, a, a) ≤ φ((D∗(Ra, a, a), D∗(Ra, Ra,Ra), D∗(Ra, a, a), D∗(a,Ra,Ra),

D∗(a, a, a))

≤ φ(D∗(Ra, a, a), D∗(Ra, a, a), D∗(Ra, a, a), 2D∗(Ra, a, a),

D∗(Ra, a, a))

< D∗(Ra, a, a),

which is a contradiction. Therefore it follows that Ra = a. Hence S(a) =
SR(a) = a. Similarly, we get that T (a) = H(a) = a. ¤

Corollary 2.10. Let A,R, S, T, and H be self-mappings of a complete D∗-
metric space (X, D∗), and let SR, TH be continuous self-mappings on X sat-
isfying the following conditions:

(i) {A, SR} and {A, TH} are D∗-compatible pairs such that A(X) ⊂
SR(X) ∩ TH(X);

(ii) there exists a φ ∈ Φ such that for all x, y ∈ X,

D∗(Ax,Ay,Az) ≤ φ(D∗(SRx, THy, THz), D∗(SRx,Ax, Ax), D∗(SRx,Ay, Ay),

D∗(THy, Ax,Ax), D∗(THy, Ay,Ay)).

If SR = RS, TH = HT, AH = HA, and AR = RA, then A,S, R, H, and T
have a unique common fixed point in X.

Corollary 2.11. Let Ai be a sequence self-mapping of complete D∗-metric
space (X, D∗) for each i ∈ N , and let S, T be continuous self-mappings on X
satisfying the following conditions:

(i) there exists i0 ∈ N such that {Ai0, S} and {Ai0, T} are semicompatible
pairs such that Ai0(X) ⊂ S(X) ∩ T (X);

(ii) there exists a φ ∈ Φ and i, j, k ∈ N such that for all x, y ∈ X,

D∗(Aix,Ajy, Akz) ≤ φ(D∗(Sx, Ty, Tz), D∗(Sx, Aix,Aix), D∗(Sx, Ajy, Ajy),

D∗(Ty, Aix,Aix), D∗(Ty, Ajy, Ajy).

Then Ai, S, and T have a unique common fixed point in X for every i ∈ N .
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Proof. By Theorem 2.3, S, T , and Ai0, for some i = j = k = i0 ∈ N , have a
unique common fixed point in X. That is, there exists a unique a ∈ X such
that S(a) = T (a) = Ai0(a) = a and using Corollary 2.6 in [16] Ai, S, and T
have a unique common fixed point in X for every i ∈ N . ¤

Corollary 2.12. Let Ai be a sequence self-mapping of complete D∗-metric
space (X, D∗) for each i ∈ N , and let S, T be continuous self-mappings on X
satisfying the following conditions:

(i) there exists i0 ∈ N such that {Ai0, S} and {Ai0, T} are D∗-compatible
pairs such that Ai0(X) ⊂ S(X) ∩ T (X);

(ii) there exists a φ ∈ Φ and i, j, k ∈ N such that for all x, y ∈ X,

D∗(Aix,Ajy, Akz) ≤ φ(D∗(Sx, Ty, Tz), D∗(Sx, Aix,Aix), D∗(Sx, Ajy, Ajy),

D∗(Ty, Aix,Aix), D∗(Ty, Ajy, Ajy).

Then Ai, S, and T have a unique common fixed point in X for every i ∈ N .
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