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Abstract. The aim of this paper is to define a new class of Hurwitz-Lerch-Zeta functions by
itroducing two classes of meromorphic functions in terms of the Srivastava-Attiya operator.
Coefficicient inequalities, growth and distortion inequalities, as well as radii of meromorphi-
cally starlikeness are obtained. In addition, some intresting properties depending on some
integral representations are discussed.

1. INTRODUCTION

Let M denote the class of meromorphic functions f(z) defined by

f(z) =%+Zanz”, (1.1)
n=1

which are analytic in the punctured unit disk U* = {z € C: 0 < |z] < 1} . For
0 < B < 1, we denote by S*(5) and k(f), the subclasses of M consisting of all
meromorphic functions which are respectively, starlike of order 8 and convex
of order 5 in U*.

The functions f;(z) (j = 1,2) defined by

1 (o]
fi(z) = —+ > an2" (1.2)
n=1

We denote the Hadamard product (or convolution) of f; and fo by

OReceived August 16, 2018. Revised February 24, 2019.

92010 Mathematics Subject Classification: 30C45, 30C50.

9Keywords: Integral operator, meromorphic functions, starlike function, Hurwitz zeta
function.



196 Hishyar Kh. Abdullah

(i f)(E) =5+ anana?”, (1.3
n=1

where
Zyt=1{0,-1,-2,..},U={2€C:|z| < 1}
and
U ={z€C:|z|=1}.
Now, we recall a general Hurwitz-Lerch zeta function which, as many au-
thors do, see for example ([6, 12 - 15]), we define by the following series.

1 > "
®(z,t,a) = — — 1.4
(Z7 70’) at—i_;(n—l—a)s’ ( )

acC\Zy,teCwhen zeU=U*"U{0}; R(t) > 1 when z € OU . Several
interesting properties and characteristics of the Hurwitz-Lerch zeta function
®(z,t,a) can be found in the recent investigations by Choi and Srivastava [2],
Ferreira and Lopez [4], Garg et al. [7], Lin and Srivastava [8], Lin et al. [10],
and others. Recent results on ®(z,t,a), can be found in the expositions [22],
[23].

In [5] (see also [18] and [19]) Ghanim defined

tha(Z) = (1 + CL)S |:q)(2,t, CL) — CLS + m
1 = /1+a\®
= -+ 2", (2 € UY). (1.5)
z ; (n—l—a)

Corresponding to the functions G ,(z) and using the Hadamard product
for f(z) € M, we define a new linear operator

LZ(O[,ﬂ)f(Z) = (I)(Z’ t a) * Gt,a(z)
1 > (a)n+1

- LS cer) o

for 8 # 0,—1,-2,... and a € C\ {0}. Here Ci(n) = ‘( Lta )s‘ and unless

n+l4a
indicated othewise, throughout this paper the parameter a is constrained to
a € C\ {ZO_ } , and s belongs C. Meromorphic functions in terms of guessean
and generalized hypergeometric functions were considered recently by many
others (see for example [15-22] and the others therein).
It follows from (1.6) that

2 (L, ) f(2) = a(Li(a+1,8)f(2) — (a+1) (Li(a, ) f(2)). (1.7
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Now, for univalently meromorphic function f(z) € M the normalization
22£(2) |—o= 0 and zf(2) |.—0o= 1, (1.8)

is classical. One can obtain interesting results by applying Montel’s normal-
ization [12] of the form

22f(2) |s=o= 0 and zf(2) |,=p= 1, (1.9)

where p is a fixed point from the unit circle. Note that if p = 0 the normal-
ization (1.9) is the classical normalization (1.8)

Meromorphic multivalent functions have been studied by Mogra[11], Raina
and Ganigi[20], Uralegaddi and Somanatha [21], Aouf and Hossen [1], Srivas-
tava et. al [16]. We define the following new subclass M?(c, 3) of meromorphic
starlike function in the parabolic region of function M by making use of the
generalized operator L! with Montel’s normalization. We study its charac-
teristic properties: for example coeflicient inequalities, growth and distortion
inequalities, radii of starlikeness are obtained. And we also establish some new
results concerning the convolution products.

For fixed parameters o > ﬁ; 0 < 8 < 1, denote the set M («, 3) consisting
of those meromorphic function f(z) € M with two fixed points (or classical

normalization) which satisfy

+a+ap

Lo, B) f(2) L (e, B)f(2)
where L!(a,8)f(z) given by (1.6). In addition the text further, more let the
subclass M} (a, ) satisfying the condition (1.10) with Montel’s (1.9) is denoted

by Mg (a, B,p) .

2 (Ly(. )/ (2) R { —2 (L0, )/ ())

+o— aﬁ} , (1.10)

2. MAIN RESULTS

In this section we will discuss certain characterization properties for f(z) €
M;(a, B).
Theorem 2.1. Let f € M. Then f is in the class M7 («, B) if and only if

Zdn(a,ﬁ) lan| < (1 —ap), (2.1)
n=1

where

—~

et am 22)

(e, B) = [m ~ 1+ o) (5

and
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1
a>——:0<p8<1, neN.
oy 07 0

Proof. Let f(z) € M7 (e, 3). Then by the inequality (1.10), we have

(1.
2 (L. B)f(2)) Ly pf@)
Ly, A)f(2) *‘”O‘“R{ Ll A)f(z) ° 5}’
that is,
2 (L3 (e, B) f(2)) 2 (Ly(a, B) F(2))
R{ Li(a.5)/ () ”‘*“5} = [ Lare T
—=(Ly(a.)f )
= R{ LA () ° ﬁ}

Hence

2 (Lg(a, B)f(2))
R{ La(a. A)f(2) *“5}“

Substituting for L:(«, 5)f(2) and (Lj(a,ﬁ)f(z))l, we get

o0

2ta Y S m)ane - S~ (a+1) 3 (52 Caln)anz"
R n=1 n:l

+af

n+1

Lt 3 G Calmans”
<0.

Since R(z) < |z|, we have

<0

—(1—-apB)+ Z (n—1+ap) EZ;”E Cs(n)a,z"

n=1

and by letting |z| — 17, we get

S (- 1+ aB) Do) 0, < (1 ).
(ﬁ)n—f—l

Now conversely, we assume that the inequality holds. Then, if we let z € 9U,
we find the following from (1.1) and (2.1),

2 (Li(a, B) f(2))
R{ Ly, A)f(2) *“ﬁ}”

n=1
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or

Sta (Ozg)l)”“ Cg(n)anz”—o%l—(a—l—l) > Eg%"“ Cs(n)anz"
R n=1 n+l - - n=1 n+l + Oéﬁ
4 2 GGt
<0.
Since R(z) < |z|, we have
(W) ng1 fvs
io: (n—1+ap) (ﬁ)niC’a(n) |an| -
This completes the proof. O

Theorem 2.2. If fe M;(«,pB), then

(1—W>r1§\f(z)]§ <1+(1_d?ﬁ)r>r1, O<|z|=r<1).

Proof. Using classical normalization (that is by taking p = 0 in Theorem 2.2)
it is very simple to prove the theorem . O

Theorem 2.3. Let the function f(z) defined by equation (1.1) in the class
MZ(a, B). Then f(z) is meramorphically valent starlike of order p (0 < p < 1)
in the disk |z| <r ;(0 <p <1), that is,

()
K ( ) ) z

= ()

Proof. From equation (1.1) we have

where

1 o0
ICEEED we
n=

and we can easily get
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£ (2) > (n+ Day |2

f(2) +1 < n=1
(2 = > o
o L2 21— p)+ X (n— 1+ 2p)ay |2

n=1

Thus, the desired inequality

/

2f (2) 00
+1
# <1, it Y (T+M)an 2" < 1. (2.3)
ey et -
Since f € MJ(a, ) from Theorem 2.1, we have

— dn |an|
— < 1. 2.4
2 Tap) = (24)

Then from (2.3) and (2.4), we get

_dn
1—ap’

n

+ M ‘Z|n+1 S
I1—p
and then

|Z|n+1 < dn (1 — /J/)

T (1-af)(nt+p)’

from which we conclude

5 (T g m)nlﬂ‘

This completes the proof. Il

3. CONVOLUTION PROPERTIES
For the functions
1 o
fi(z) = z+21|an,j|z",(j: 1,2), (3.1)
n=

we denote by (f1 * f2)(z) the Hadamard product or (convolution) of the func-
tions fi(z) and fao(z), that is

(froe f2)(2) = -+ 3 lanallanal 2" (32)
n=1
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Theorem 3.1. Let the function f;j(z), (j = 1,2) defined by (3.1) be in the
class M?(c, 8). Then it follows that (f1 * f2)(z) € M2 («,d) with

0 < ( d% >
“\(1-aB)?Cs(1)+dt)’
where d,(a, B) = [(n —1+ap) EE;ZT] Ca(n), Ca(n) = (nffia)s

Proof. Let fi(z) = 1+ Z |an,1] 2" and fo(z) = 1+ Z lan 2| 2" be in the class
M$(a, 8). Then, by Theorem 2.1, we have

Z;<f—ah>§1

and

[e.e]
3 drltnal g
2 (1-ap)
Employing the technique used earlier by many authors, we need to find

smallest § such that

s n—l—l—ad)CS( )
2 o

|an,1lan2] <1, (3-3)

n=1

where C5(n) = <n}:{ia

By Cauchy-Schwarz inequality, we have

o) dn
> 1—apB) |an1]lan2] <1, (3.4)

n=1

where d,,(«, 8) = [( -1+ aﬁ) "“] C%(n), and then

(n—14 ad) Ci(n) dy /
< — .
(1 o Oé(S) |an71| |a”72| — (1 _ 046) |an71| |a”72|

It implies that
d (1 = ad)
< ‘ '
|an ] lan2| < (n—1+ad) Cs(n)(1 —aB) &

/ (1 —ap)
, 2| < —a (3.6)

n

We know that

Now from (3.5) and (3.6), we see that it suffices to choose 5 > 0 in such a way
that
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(1 _O‘B) < dn (1 _0‘5)
dyo ~ (n—1+ad)Cs(n)(1—apf)’
it follows from this inequality hat

S L(,_ n(-ag2Cim)
o« (1—aB)2Cs(n)+d2 )"
Now define a function ¥(n) by

1 n(1 — aB)%Cs(n)
=5 <1 ~ 1—aB)2Ci(n) + d%) =t

We observe that W(n) is an increasing function of n, we thus conclude that

o (- ap)2C3()
s=90) = (1 e o) (37)

Since dp (o, B) = [(n -1 —1—046)%7:11} C:(n), then d; = [aﬂgggﬂ C:(1) and

c:(1) = <%i—g)s Substituting in equation (3.7) and simplifing we get
2
§ < di .
~\(1=ap)2Ci(1) + df
This complete the proof. O

Theorem 3.2. If fi(z) € M (a, ) and fa(z) € MZ(cr,7y) then (f1 * f2)(z) €
MF(a,m) with

1 < di(a, B)di (v, ) )
« dl(Oé,,@)Ch(Oé,’)/)C;(l) + (1 - O‘ﬂ)(l - O"Y) ’

where dy(a, f) = aﬁ%C’j(l) and di(o,7y) = cw((:iz Ce(1).

(o) [o¢]
Proof. Since f1(z) = % + > |an| 2™ € ME(a, B) and fa(z) = % + > lan2| 2" €
n=1 n=1
MZ(a,7y), from Theorem 2.1 we have

Zdn <n> |an1|<1

n=1
and

<1,
1—a \an2|

n=1
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where

tnla5) = (0= 1+ a0 ] i) 39
and
dp (e, 6) = [(n —1+a) (;}‘L"jrll] C3(n). (3.9)

Morover, we have (f1* f2)(z) € M7 (c,n) then, from Theorem 2. 1, we have

[e’e} dn Cs
> ( )]an1|\an2| <1, (3.10)

n=1

where

—

a)

dn(a,n) = [(n— 14 an) "H] Cs(n). (3.11)

(n)n—‘rl

Now, using the Caucy—Schwarz inequality, we get

Z CS\/ 1 _aﬂ 6) (a)w lan1] [an2| < 1. (3.12)

n=1

From equations (3.10) and (3.12), we get

dn(0n)Ci(n), o Ca(m)Vdn(a, Bdn(ay) [
(1_77/8) ‘ n,lH n’Q‘ = \/(1—05)(1—@7) ‘ n,lH n,2’7

from which we get

an1|la (1 = nB)Ca(n)/dn(ax, B)dn(a,7) 3.13
|lan1] [an2| < () Cs(n )\/(1—aﬁ)(1—a7) 1

But from (3.12) we have

o T < VA= af) ) -
121 Gty o i) .

Therefore from equations (3.13) and (3.14) we will have
VA —ap)d—ay) _ (1=nB)Ci(n)y/dn(a, B)dn(a,7)
n)y/dn (e, B)dn(c,7) ~ dn(a,n)Cs(n)\/(1 - 045)(1 —ay)
Solving this inquality for n, we get
I n(1 = aB)(1— ) }

n< —

o {1  dn(@, B)dn(a,7)Ci(n) + (1 - aB)(1 - ay)
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Define the function ¥(n) by

1{1_ n(1—aB)(1 —av) }

o dn(ct; B)dn (0, 7)Ci(n) + (1 —af)(1 —ay) |’

then it is clear that W(n) is an inceasing function of n. Hence we have
1

g, (- af)(1 - ay)
=3 {1 dr (@ B (o, 1) O3 (1) + (1 — a1 — ) } ’

S
and then, for n = 1, we have C%(1) = (%) . Substituting in (3.15) and

U(n) =

(3.15)

simplifing we get

< l ( dl(aaﬁ)dl(avv) )
"= 0 \di(e, Bydi(a,)Cs () + (1 — o) — o))
This complet the proof. 0

Theorem 3.3. If the function f;(z)(j = 1,2) defined by
1 «— n
fi2) =<+ lanj| 2
n=1
is in the class M:(«, B), then the function h(z) defined by

h(z) = g + Z_:l (\an,1|2 + Ian,2!2) 2" (3.16)

belonges to the class M (a,y) with

7<l Ci+p
Ta|Ct+2(1-ap)(Cs()-p) |

where C5(1) = (%_,_ig)s and C1 = aBC;(1) + (1 — afB) p.

Proof. Noting that

g:l [(1_07;5)} 2 JanI* < g:l {(1?;5) Ian,j@2 <1, (3.17)

where

Co=[n—(1—aB)] C2(n) + (1 - aB) ™.
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Since fj(z)eMS(a, 5),(j = 1,2), we have

n=1
Now we have to find largest v such that

i [[n —(1- cw()l] fif:)) +(1- oz'y)] (\%,1!2 n !%,2\2) <1. (3.19)

n=1
From equations (3.18) and (3.19) we get

[[n—(l—w()l]f:z;’b))“l_a”)] < % [U_C’;mr,(nz 1).

Solving this inequality for v and simplifing we get

1 [C2=2(n = 1)(1 - aB)PC(n) + "
a { C2+2(1-aB)’ (Ca(n) — p")
Define a function ¥(n) by

1 {0% ~ 200 11— aPCim) + pn} -
al CR+2(1—af)” (Ci(n)—p")

then we know that WU(n) is an inceasing function of n and for n =1 , we have

o G+
=3 {C%+2<1 " aB) () —p>}' (3:20)

7=
a

},(nZl).

U(n) =

We conlude that

7<1{ Ci+p }
Sa e -apR(Ci) - )

This complets the proof. O
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