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Abstract. In this paper, we established the existence and convergence solution of a system

of hierarchical nonlinear mixed variational inequalities in Hilbert spaces.

1. INTRODUCTION

The theory of variational inequality is well known and well developed be-
cause of its application in different areas of science, social science, engineering
and management. The variational inequality problem provides a convenient
framework for the unified study of optimal solutions in many optimization-
related areas including mathematical programming, complementarity prob-
lems, optimal control theory, mathematical economics, equilibria and game
theory, etc. It is well known that the variational inequality theory has emerged
as an important tools in studying a wide class of obstacle, unilateral and equi-
librium problem that areas in several branches of pure and applied sciences in
a unified and general framework. Several numerical methods have been devel-
oped for solving variational inequalities and related optimization problems.

Hierarchical optimization was first defined by Bracken and McGill [3, 4] as
a generalization of mathematical programming.
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Inspired and motivated by the recent works [1, 2, 6, 8, 9, 10, 11, 17, 18], we
established the existence and convergence solution of a system of hierarchical
nonlinear mixed variational inequalities by using the Mainge’s schemes.

2. PRELIMINARIES

Let H be a real Hilbert space with an inner product (-,-) and norm || - ||,
respectively. Let D be a nonempty closed convex subsets of H, and a mapping
T : H — H is called nonexpansive, if

[Tz =Ty <[z —yll, Yo,y € H.
We denotes F(T') by the set of fixed points of T', that is,
FT)={zeH : Tx ==z}

A variational inequality problem is the problem of finding a point x € D
such that
(Az,y —z) > 0,Vy € D, (2.1)
where A : D — D is a nonlinear mapping and solution set of (2.1) is denoted
by €.

The hierarchical fixed point problem [13, 14, 15, 19, 20] is the problem of
finding a point z* € F(T) such that
(Az*,xz —2*) > 0, Yz € F(T). (2.2)

When the set F(T) is replaced by the solution set of variational inequality
(2.1), then (2.2) is known as a hierarchical variational inequality problem.

In this paper, we consider the following system of hierarchical nonlinear
mixed variational inequalities for finding ] € ; such that for given positive
real number n; (1 =1,2,---, N), the following inequalities hold:

(mG(z3) + 2] — 23, ©1 —27) >0, V1 € M,
<772G(£L‘ ) + .TL‘; - x;? xr2 — l‘;> > 07 v T2 € Q27
: (2.3)

(N—1G(T) + 2x_y — T TN-1 —T_q) 20, Van_1 € Ay,
(NG (z3) + a7y —af, onv —2y) >0, Vay € Qy.

Definition 2.1. Let T, G : H — H be the single-valued mappings. Then

(1) T is said to be nonexpansive, if

[Tz =Tyl <z —yl, Vo,y € H.



System of hierarchical nonlinear mixed variational inequalities 209

(2) T is said to be quasi nonexpansive, if F(T) # () and
[Tz —pl| < |z —pl, Yz € H,p e F(T).

It should be noted that T is said to be quasi nonexpansive if and only
if for all z € H,p € F(T)

1
(v =Tz, z—p) > 5|lo - Ta|*

(3) T is said to be strongly quasi nonexpansive, if T' is quasi nonexpansive

and

Ty —Txy — 0
whenever {z,} is a bounded sequence in H and for some p € F(T),
|z = pll = [[ T2y — p|| = 0.
(4) G is said to be p-Lipschitzian, if there exists p > 0 such that
1G(z) = Gl < pllz —yll, Yo,y € H.
(5) G is said to be r-strongly monotone, if there exists r > 0 such that
(G(x) = Gy), & —y) > rllz — y[*, Yo,y € H.

(6) G is said to be a-inverse strongly monotone, if there exists @ > 0 such

that
(G(z) = Gy),x —y) > a||G(z) = G(y)|]*, Vz,y € H.

Lemma 2.2. ([21]) Let A:H — H be an a-inverse strongly monotone map-
ping. Then
(1) Aisan é—Lipschitz continuous and monotone mapping;
(2) |1 =AA)x— (I =AA)y|* < [lz = y[I* + AMA = 2a)[| Az — Ayl|* for X > 0;
(3) for X € (0,2a], I — AA is a nonexpansive mapping where I is the
identity mapping on H.

Lemma 2.3. Let x € H and z € D be any points and Pp be the metric
projection of H onto D. Then

(1) z= Pp(z) if and only if (x —z, y—z) >0, Yy € D;

(2) = = Ppla] if and only if | — 2| > o — y|> — lly — 2|2, ¥y € D;

(3) (Pp(z) = Pp(y), = —y) > ||[Pp(x) — Po(y)|?, Vz,y € H;

(4) |Pp(z) = Po(y)|l < llz = ylI*> = |(z = Pp(2)) — (y — Ppo(y))|*.

Lemma 2.4. ([16]) For z,y € H and w € (0,1), the following statements
hold:

@) [z, 9)] < ll=] llyll;
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(2) |z +yl* < HﬂfH22+ 2 x4 ) , ,
B) 1 —w)z +wy|® = (1 = w)llz]* + wlyl® — v - )|z —y[I*.

Lemma 2.5. ([12]) Let {a,} be a sequence of real numbers and there exists a
subsequence {am;} of {an} such that ay,, < am;11 for all j € N where N is the

set of all positive integers. Then there exists a nondecreasing sequence {ny}
of N such that

lim ng = oo
k—o0

and the following properties are satisfied for all (sufficiently large) number
keN,

Ay, < Qnyp+1, Ak < Qng+1- (24)

In fact ny, is the largest number n in the set {1,2,---  k} such that

ap < Gpiq-

Lemma 2.6. ([7]) Let {a,} C [0,00), {a,} C [0,1),{b,} C (—00,+00) and
7 € [0,1] be such that

(1) {an} is a bounded sequence;

1)
(2) Gnt1 < (1 - an)2an + 200, 7/ Gny/On+1 + apbp, Vn > 1;
(3) whenever {ay, } is a subsequence of {a,} satisfying

liminf(apn,+1 — an,) > 0, (2.5)
k—o00

it follows that
lim sup b,,, < 0;

k—o0
(4) limy oo p =0 and >0 | oy = 00.

Then lim,,_,o an = 0.

Lemma 2.7. ([5]) Let A : H — H be an a-inverse strongly monotone mapping
and Q # 0 be a solution set of (2.1). Then the following statements hold:

(1) If X € (0,2¢], then the mapping K : H — D defined by
K = Pp(I — M)

s quasi nonexpansive, where I is an identity mapping;
(2) The mapping I — K : H — H is demiclosed at zero, that is, for any
sequence {xn} C H if

zp =z and (I — K)z, — 0

then x = Kux;
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(3) The mapping Kg defined by
Kg=I—-B)I+BK, forBe(0,1)

is strongly quasi nonexpansive mapping and F'(Kg) = F(K);
(4) I —Kp, B€(0,1) is demiclosed at zero.

3. EXISTENCE AND CONVERGENCE ANALYSIS

Throughout this section, we always assume that the following conditions
are satisfied:

(C1) A;: H — H is an a;-inverse strongly monotone mapping and €2; is the
solution set of (2.1) with A = A; and Q; #0(i =1,2,--- ,N).

(C2) K; and ;5,8 € (0,1), (i =1,2,---,N) are the mappings defined by

{ici = Pp(I — MA;), A € (0,204],

Kip = (1—B)I +pK;i, B€(0,1). (3.1)

Theorem 3.1. Assume that A;,Q;,K; and K; g are satisfying the conditions
(C1)-(C2) and g; - H — H be contraction with a contractive constant 1; €
(0,1)(4=1,2,--- ,N). Then there exists a unique element (x7,23,- - ,xx) €
Q1 X Qo X -+ X QN such that for each x; € Q;, the following inequalities are
satisfied:

(<.'17>f _gl(x;)u Ty — xT) 2 0, le S Ql;
(x5 — go(x}), z2 —a3) >0, Vag € Q,

(3.2)
(ty_1 —9gn-1(@y), eNv-1 —TN_q) 20, Vay_1 € Qn_1,
L(xy —gn(x]), on —a}) >0, Van € Q.
Proof. Given that Qq,---,Qxn are nonempty closed and convex. Therefore,
the metric projection Py, is well defined for each i =1,2,--- , N. Since g; is a
contraction mapping for each i = 1,2,--- | N, Po,g; is a contraction mapping
for each i =1,2,--- , N. Therefore

Pq,g10Pa,920---0 Pa,gn (3.3)

is also a contraction. Hence there exists a unique element z* € H such that
z* = (Pa,g1 0 Pa,g2 0+ 0 Poygn)z™. (3.4)
Putting 23y = Poygn(a}), -, 5 = Pa,g2(x3), 7 = Po,g1(x3), = €

Qn,-- 2t € Q.
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Suppose that there is an element (Z1,---,Zy) € Q1 X Qg X -+ X Qn such
that for all ; € £; the following inequalities are satisfied:

(T1 — g1(Z2), 1 —T1) >0, Va1 € Oy,
(.CZ’Q — 92(5:3), To — f2> >0, Vo € QQ,

(3.5)
(ZN—1—gN-1(ZN), zN—1 — TN-1) >0, Von_1 € Qn_1,
\(jN - gN(Zfl), TN — fZ‘N) >0, Vzy € Qp.
Then, we have
T = P, 91(%2),
Ty = Pa,92(73),
(3.6)
In—1 = Pay_,9Nn-1(ZN).
TN = Poygn(T1).
Therefore, we have
71 = (Pa,g1 0 Po,g2 0+ 0 Poygn) 1. (3.7)
This implies that Z; = x7, 2 = 23, - - -, Ty = 2}y. The proof is completed. [

Theorem 3.2. Let A;,Q;,K; and K; g satisfying the conditions (C1)-(C2
and g; : H — H be a contraction with a contractive constant 1; € (0,1), (¢
1,2,---,N). Let {7} be the sequence defined by z9 € H and

~—

x?iL-‘rl = (1 = )y gt + ang1 (Ko gxh),

.T721+1 =(1- an)l@ﬁﬂﬁg + O‘nQQ(,C?)ﬁxg)’ (3 8)

P = (1 )y + ang (o ),

where {an, } is a sequence in (0,1) satisfying o, — 0 and > o2y c, = 00. Then
the sequence {z]'} generated by (3.8) converges to x} for eachi=1,2,--- N,
where (x7,--- ,x}) is the unique element in Q1 X Qo x - - - x Qn verifying (3.2).

Proof. (i) We first prove that the sequences {z7},---, {2’} are bounded. It
follows from Lemma 2.7 that IC; 4 is strongly quasi nonexpansive and F(IC; 3) =
F(K;)=Q; (i=1,---,N). Since g; is a contraction with coefficient 7; (i =
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1,---,N)and z] € F(K13), 25 € F(Kap), ---, o} € F(Kn,p), it follows that

lz7+! (1 = an)|IK gt — 21|l + cnllgr (Ky pa3) — 27]]

< |
< (I —ap)llay — 27| + anllg1 (K pry) — g1(23)||
Fan||g1(x3) — 27| (3.9)

— ]| )
)
(
(1 = an)l|lzy = 21| + an71 || Ko pry — 23]
(
)

IN

+anllgi(z2) — 27|
< (L=an)|zy =21l + anmiflzy — 23] + anllgr(23) — 1]

Similarly, we can also compute that
lz5 = 23]l < (1 — an)llzh — 23] + anmollzh — 23] + anllg2(23) — 23;
(3.10)
lzi = 2|l < (1= an)llz}y — ey ]| + antwllz] — 25| + anllgn (@) — e |-
This implies that
23+ = 2l + ™ = a3l 4+ ey - ey
< (1 —an)[lla? — 21l + - + lzf — zx]]
+ an[niflay — x| + - + T llal — 2i ] + anlllgr(z3) — 27
+ llg2(23) — 23/l + - + llgn (21) — ¥ |l]
< (1 —ap)[lzf — 21l + - + 2} — 2x[]] + ant[[l2) — 27|
+ o+ ok — 2nll] (3.11)
+ an[llgr(23) — =7l + llga(x3) — 23/l + - - + [lgn (21) — 2N ]
< (I —an(@ =7)lle] —z1] + -+ llzk — 2§l
. lg1(23) — =7]| + llga(23) — 3/l + - - + llgn (27) — 2yl

+ an(1 - —
= max{llw’f il g - ), 2R o () 2] }
where 7 = max{7, 72, -+ ,7v}. By induction, we have
i = a4 g = g e i - (3.12)
< mac { o} il + i o], 2D = o = v
for all n > 1. Hence {27}, - -, {z};} are bounded, consequently {K; gz7}, -,

{Knpxy} are also bounded.
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(ii) Next, we prove that for each n > 1, the following inequalities hold:

[ e e e o e oY
< (1= an)’(l2f — a3]* + [|l25 ~ :v2||2 o R = an )
+ 200 (|27 = @il — 23] + a3 - 23] [k — a3 (3.13)
+oo o = ezt - 23ll) + 20n({g1(23) — 27, 277 — a7)

+ (ga(a3) — ab, o —a5) + -+ (gn(2]) — 2}, x%ﬂ —zN))-

From (3.8) and Lemma 2.4, we have

7t — a7

= |1 = ) (K1 p(2T) — 27) + an(g1(Kz5(23)) — 27)||?
(

1)~
<11 = an)(K,6(27) = 27) 1 + 200 (91 (Ko p(a3)) — 21, 27! —a7)
< (1= an)?|| K p(af) — |
+ 205 (91(Ka(a%)) — g1 (23), a7 —af) (3.14)
+ 20 (g1 (a) — 2, 27 —27)
< (1= an)?[la} = @il + 20m 91 (K2,5(25)) — g1 (@) |27 = a7
+ 20, (g1 (a3) — af, 2ft — )
< (1= an)?llat = a1|? + 2007112, 5(25) — 23| [l7 — a7
+ 205 (g1 (23) — 27, a7t - a7)
< (1= an)?llat = a1|? + 2apm |25 — 23|[[|l27+ - 2
+ 205 (g1 (23) =z, 2T — 7).
Similarly, we can also prove that
ey =23l < (1= an)?llal — 3] + 2anme)|2f — @3|l[|la5 T — 23]
+2an (g2(x3) — b, aytt —a3),
(3.15)
lzi™ =2l < (1= an)’lal — 2|1 + 2007 ||z — 2f[laf - 2|

+20m (g (2]) — 2, oy - 2R).

Adding up (3.14) and (3.15), and take 7 = max{r,--- ,7n}, inequality (3.13)
is proved.
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(iii) Next, we prove that if there exists a subsequence {ny} C {n} such that

. . 1 +1
i inf{([l27* = 27?4+ 4 [l = 2y ]?) = (2% = 27

+oo At l2fE - 2§} 2 0, (3.16)
then
limsup{(g(23) — i, 2% —af) + (ga(a}) — 23, ax* " — a})
k—ro0
o gn () — 2y, 2T i)Y <o (3.17)
Since the norm || - ||? is convex and lim,, ,« a,, = 0, by (3.8) we have

0 < limint{([lo* ! = 22 4 + ol — o))

= (laf* = a2 + - + lahf —ah 1)}

< liminf{(1 - ap,)[[Ky 527" — 2
91 (K p(@5)) = 212 + (1 = o) Ko sy — a3
+ 192 (Ko p (@) = 23]+ -+ (1 = an,) Kt — 2l
+ g (K1,p(a1)) = ol = (ot = il + -+ o = 2i))

< liminf{ (| i - ai|* = i — af|)
+ (K p(a5) = a3 = lla* — 231?) (3.18)
o (K — il = e — vl?)}

< timsup{([fCr pa* = 2l = o = o3%) + (1KC2p(e5") — )

= ll25* = 23|*) + - + (1w g2 — 2y l® = 23 — 25 [1%)}
<0.

This implies that

lim (K gaf* — 22 = o — i])
= lim (|Kz 2" — a3ll” — [|og* — 23]

(3.19)
= lim (|Kn gy —ai|? = 23 — o)

=0.
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Since the sequences {||K1 gz]* — z5|| + [|21* — 25|}, {||C2pzy* — 25|

+ |25k — 5|}, -, {IKN gy — 2y || + lziF — 23|} are bounded, we have
Jim ([fCy 5 — 23] — a7 — 1)
= lim (fCa p5* — w3 — ]2 — a3l
(3.20)
= lim (K gt — il = 2 — 2kl
=0.
From Lemma 2.7, Ky g,--- , Ky g are strongly quasi nonexpansive, we have
Kipai* —a* =0, Ko pay® —ab* =0, -, Kngayt —aif — 0. (3.21)

Consequently, we obtain that

Nk ng+1 Nk ne+1 Nk ne+1
" — — 0, 25" — =0, -, oy —xp T = 0. (3.22)

It follows from the boundedness of {«]*} in Hilbert space H that there exists
a subsequence {m?k“} of {z]*} such that x’f’“é’ — p and

lim (g1(w3) — &, 2, — 2}) = limsup(g1 (23) — 2}, &, — a7)
£—00 k—00
= limsup(g1(23) — z¥, 2™ — 2. (3.23
2 1 1 1
k—o0

From Lemma 2.7, since I — K’y g is demiclosed at zero, p € F(K15) = Q.
Hence from (3.2) we have

. * * n * * * *
Jim {g1(23) — af, 2} —af) = (qa(e}) — i, p— i) <O (3.24)
Therefore
lim sup(g; (x5) — =7, x?’”_l — 1) = lim (g1 (x3) — 27, 1:71”% —27) <0. (3.25)
k—ro0 =00

Similarly, we can also prove that

lim sup(go(z3) — 5, 5™ —23) <0,

k—o00

(3.26)

limsup(gy (}) -z, =™ —2}) <0.
k—ro0

Hence, we have the desired inequalities.
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(iv) Finally, we prove that the sequences {z7}, -, {2\ } generated by (3.8)

converge to x7,- -+, T}, respectively. It is clear that
27+ = 2l — 23l + lla5 " — 23|ll|l2} — 23]

+oo [l - anlllat — a7

< \l2f = 2312+ o+ [l — 2|12 (3.27)

et — a2 4 ! — a2
Substituting (3.27) into (3.13), we have

2 = @I + flap = a3)® + -+ ey - 2]

< (1= an)* (2} = afl? + - + ek — 2§]*)

20, {lof = afl -+ ok, — 2k P

et =il e - oy (3.2)
+ 20 ((gn(a3) — 2%, 2 — 27) + (ga(e) — 23, 23— 23)
oot (gw(al) — o, o — k).

Let

an = |2} — 2|* + af — @3l* + - + ok — 2y ],

bn = 2((g1(w3) — @, @™ —a}) + -+ {gn(a]) — 2y, oy —ak). (3.29)

Then, we have the following statements:

(1) From (i), {an} is bounded sequence.
(2) From (3.28) ani1 < (1 — an)?an + 20007 /nr/Gni1 + Qnbn, Y0 > 1.
(3) From (iii), if {ay, } is a subsequence of {a,} satisfying

lim inf(ap,+1 — an,) >0, (3.30)

k—o0

then we have

lim supb,, <O0.
k—oo

Therefore, it follows from Lemma 2.6 that

lim (||lz} — 27 + - + 2} — 2} ) = 0. (3.31)
n—oo
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Hence, we obtain that

lim [|of —af] = lim 25 — a3
(3.32)
= lim o — 2]
=0.
This completes the proof. O

Theorem 3.3. Let A;, 4, K; and K; g (i =1,2,--- ,N) satisfying the condi-
tions (C1)-(C2) and G : H — H be an u-Lipschitz continuous and r-strongly

monotone mapping. Let {1}, {x\} be the sequences defined by
l'(l),-" ,:1:9\, € H,
xrllH = (1 = o)1 g27 + ang1(Ko p(23)),

n+1 __

zy " = (1= an)Kopry + anga(Ks p(5)), (3.33)

n+1 _

oy = (1= an)Kn gy + angn (K1 s(21)),
forn:071727"'7whereglz-[_ana 9221_772G779N:I—77NG
with m,--- ,nn € (0, 2“—7") and {ap} is a sequence in (0,1) satisfying a, — 0
and Y 7 on = oo. Then the sequences {x]},{ab} -, {z%} converge to
x3, x5, -, Xy, respectively, where (x7,--- ,x}) is the unique element in 3 x

Qg X -+ x Qn such that (2.3) is satisfied.

Proof. 1t is easy to see that gi,go, - ,gn are contraction mappings and all
the conditions in Theorem 3.2 are satisfied. From Theorem 3.2, we has the
sequence ({z1},---,{z} ) which converges to (z7,--- ,z}) € Q1 X Qg x -+ X
Qn such that the following inequalities are satisfied.

((zt — g1(x3), 21 —a%) >0, Yoy € Q,
(x5 — g2(x3), x2 —xb) >0, Vg € Qo,
(3.34)

<x7\771 - gN—l(x}kV)7 IN-1— m>|]<\[,1> > 0, Vry_1 € QN—L
(x — gn(a%), oy — %) >0, Vay € Qn.

Substituting g1 = I — mG, go = I — G, ,gv = I — nyG in (3.34),
we obtain that the sequence ({z7},---,{z};}) converges to (x7,---,x}) €
0y X Qg X -+ x Qn such that (2.3) is satisfied. This completes the proof. [
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