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1. Introduction and preliminary

Banach contraction principle [7] is a classical and powerful tool in nonlinear
analysis, more precisely a self-mapping Ton a complete metric space (X, d)
such that

d (Tx, Ty) ≤ kd (x, y) forall x, y ∈ X,where k ∈ [0, 1)

has a unique fixed point.
Since then, the Banach contraction principle has been generalized and in-

vestigated in several direction.
In a wide range of mathematical problems the existence of a solution is

equivalent to the existence of a fixed point for a suitable map. The existence
of a fixed point is therefore of paramount importance in several areas of mathe-
matics and other sciences. Fixed point results provide conditions under which
maps have solutions. The theory itself is a beautiful mixture of analysis (pure
and applied), topology, and geometry. Over the last 50 years or so the theory
of fixed points has been revealed as a very powerful and important tool in the
study of nonlinear phenomena.

Several generalization of metric spaces were proposed by several mathe-
maticians such as 2-metric spaces, Gahler [10], D-metric spaces, Dhage [9], G-
metric spaces [14], and Huaug and Zhang, b- metric spaces[11].

Recently, Tallafha and Khalil [22] defined a space which is a mixture of
analysis and topology, namely semi-linear uniform space. Semi-linear uniform
space is weaker than metric space and stronger than topological space since
several authors studied the properties of semi-linear uniform spaces and fixed
point in such spaces, see [5, 16, 17, 22, 23, 24, 25, 26].

A self-mapping T on a metric space (X, d) is called Kannan contraction if
there is a α ∈ [0, 1\2) such that

d(Tx, Ty) ≤ α[d(x, Tx) + d(y, Ty)] for all x, y ∈ X.

Kannan [13] proved that every Kannan contraction in a complete metric
space has a uinque fixed point. It is worth mentioning that Kannan theorem
is an important result since it characterizes the metric completeness.

The concept of quasi metric space was introduced by Wilson [27].

Definition 1.1. ([27]) Let X be a nonempty set and q : X× X → [0,∞) be
a given function which satisfies:

(i) q(x, y) = 0 if and only if x = y.
(ii) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X.

Then q is called a quasi metric on X, and the pair (X, q) is called a quasi
metric space.
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It is obvious that every metric space is a quasi metric space, but the converse
need not be true.

A quasi metric q induces a metric qm as follows:

qm(x, y) = max{q(x, y), q(y, x)}.

The notion of convergence and completeness in quasi metric spaces are given
as follows:

Definition 1.2. ([12]) Let (X, q) be a quasi metric space, {xn} be a sequence
in X, and x ∈ X. Then the sequence {xn} is convergent to x if lim

n→∞
q(xn, x) =

lim
n→∞

q(x, xn) = 0.

Definition 1.3. ([12]) Let (X, q) be a quasi metric space and {xn} be a
sequence in X. Then

(i) We say that the sequence {xn} is left-Cauchy if and only if for every
ε > 0, there is a positive integer N = Nε such that q(xn, xm) < ε for
all n ≥ m > N.

(ii) We say that the sequence {xn} is right-Cauchy if and only if for every
ε > 0, there is a positive integer N = Nε such that q(xn, xm) < ε for
all m ≥ n > N.

Definition 1.4. ([12]) Let (X, q) be a quasi metric space and {xn} be a
sequence in X. We say that the sequence {xn} is Cauchy if and only if for
every ε > 0, there is a positive integer N = Nε such that q(xn, xm) < ε for all
n,m > N.

It is obvious that a sequence {xn} in a quasi metric space (X, q) is Cauchy
if and only if it is right-Cauchy and left-Cauchy.

Definition 1.5. ([12]) Let (X, q) be a quasi metric space. We say that

(i) (X, q) is left-complete if and only if every left-Cauchy sequence in X
is convergent.

(ii) (X, q) is right-complete if and only if every right-Cauchy sequence in
X is convergent.

(iii) (X, q) is complete if and only if every Cauchy sequence in X is con-
vergent.

For some fixed point theorems in a quasi metric we refer the reader to
[3, 4, 8, 15, 19, 20, 21, 27].

A modified ω−distance mapping on quasi metric space was defined by Ale-
gre and Marin [4] as follows:

Definition 1.6. ([4]) A modified ω−distance (shortly mω−distance) on a
quasi metric space (X, q) is a function p : X× X → [0,∞), which satisfies:
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(W1) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X.
(W2) p(x, .) : X → [0,∞) is lower semi-continuous for all x ∈ X.

(mW3) for each ε > 0 there exist δ > 0 such that if p(x, y) ≤ δ and p(y, z) ≤ δ,
then q(x, z) ≤ ε for all x, y, z ∈ X.

Definition 1.7. ([4]) A strong mω−distance on a quasi metric space (X, q) is
an mω−distance p : X× X → [0,∞) and the following properties are satisfied:

(sW2) p(., x) : X → [0,∞) is lower semi -continuous for all x ∈ X.
Remark 1.8. ([4]) Every quasi metric q on X is an mω−distance on the quasi
metric space (X, q).

Definition 1.9. ([19]) The function ϕ : [0,∞)→ [0,∞) is called ultra distance
if the following properties are satisfied:

(i) ϕ(t) = 0 if and only if t = 0.
(ii) If {xn} is a sequence in [0,∞) such that lim

n→∞
ϕ(xn) = 0, then

lim
n→+∞

xn = 0.

Here, we have an example of ultra distance function.

Example 1.10. ([19]) Define a function ϕ : [0,∞)→ [0,∞) by ϕ(t) = sin(t)
if 0 ≤ t ≤ 3π\4 and ϕ(t) = 1 if 3π\4 ≤ t < ∞. Then it is clear that ϕ is an
ultra distance function.

Lemma 1.11. ([15]) Let (X, q) be a quasi metric space equipped with an mω−
distance p. Let {xn} be a sequence in X and {αn}, {βn} be sequences in [0,∞)
converging to zero.Then we have the following statements:

(i) If p (xn, xm) ≤ αn for any n,m ∈ N with m ≥ n, then {xn} is a right
Cauchy sequence in (X, q) .

(ii) If p (xn, xm) ≤ βm for any n,m ∈ N with n ≥ m, then {xn} is a left
Cauchy sequence in (X, q) .

Remark 1.12. ([15]) The above Lemma 1.11 implies that if lim
m,n→∞

p(xn, xm) =

0, then {xn} is a Cauchy sequence in (X, q) .

2. Main results

Definition 2.1. Let (X, q) be a quasi metric space equipped with an mω−
distance mapping p and F,G : X → X be two self mappings. Then the pair
(F,G) is called a (k, ϕ, L)− mω contraction if there exist an ultra distance
function ϕ and a constant k ∈ [0, 1) such that for all x, y ∈ X, we have

ϕ (p (Fx,Gy)) ≤ kmax {ϕ (p (x, Fx)) , ϕ (p (y,Gy))}
+ Lmin {q (x,Gy) , q (y, Fx) , q (x, Fx)}
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and

ϕ (p (Gx,Fy)) ≤ kmax {ϕ (p (x,Gx)) , ϕ (p (y, Fy))}
+ Lmin {q (x, Fy) , q (y,Gx) , q (x,Gx)} .

Theorem 2.2. Let (X, q) be a complete quasi metric space equipped with an
mω−distance mapping p and F,G : X → X be two self mappings such that
the pair (F,G) is a (k, ϕ, L)− mω contraction. Also, assume that one of the
following conditions is satisfied:

(i) F and G are continuous.
(ii) If F or G is continuous and for each u ∈ X, Fu 6= Gu then

inf {p (Fx, u) + p (Gy, u) : x, y ∈ X} > 0. (2.1)

Then F and G have a unique common fixed point in X.

Proof. Let x0 ∈ X. Define a sequence {xn} in X such that x2n+1 = Fx2n,
x2n+2 = Gx2n+1 for all n ≥ 0. Now we want to show that if there exists
k ∈ N ∪ {0} such that p (xk, xk+1) = 0 or p (xk+1, xk) = 0, then xk is a
common fixed point for F and G.
Case I: If p (xk, xk+1) = 0 for some k ∈ N ∪ {0}.

Let k be even. Then k = 2t for some t ∈ N ∪ {0} . So, p (x2t, x2t+1) = 0,
and so by definition of ϕ, we have ϕ (p (x2t, x2t+1)) = 0. Since the pair (F,G)
is a (k, ϕ, L)− mω contraction, we have

ϕ (p (x2t+1, x2t+2))

= ϕ (p (Fx2t, Gx2t+1))

≤ kmax {ϕ (p (x2t, Fx2t)) , ϕ (p (x2t+1, Gx2t+1))}
+ Lmin {q (x2t, Gx2t+1) , q (x2t+1, Fx2t) , q (x2t, Fx2t)}

= kmax {ϕ (p (x2t, x2t+1)) , ϕ (p (x2t+1, x2t+2))}
+ Lmin {q (x2t, x2t+2) , q (x2t+1, x2t+1) , q (x2t, x2t+1)}

= kmax {ϕ (p (x2t, x2t+1)) , ϕ (p (x2t+1, x2t+2))}
= kϕ (p (x2t+1, x2t+2)) .

Since k < 1, we get ϕ (p (x2t+1, x2t+2)) = 0. Hence we have

p (x2t+1, x2t+2) = 0. (2.2)
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Now, also we have

ϕ (p (x2t+2, x2t+1))

= ϕ (p (Gx2t+1, Fx2t))

≤ kmax {ϕ (p (x2t+1, Gx2t+1)) , ϕ (p (x2t, Fx2t))}
+ Lmin {q (x2t+1, Fx2t) , q (x2t, Gx2t+1) , q (x2t+1, Gx2t+1)}

= kmax {ϕ (p (x2t+1, x2t+2)) , ϕ (p (x2t, x2t+1))}
+ Lmin {q (x2t+1, x2t+1) , q (x2t, x2t+2) , q (x2t+1, x2t+2)}

= kmax {ϕ (p (x2t+1, x2t+2)) , ϕ (p (x2t, x2t+1))}
= 0.

Hence, ϕ (p (x2t+2, x2t+1)) = 0. It implies that

p (x2t+2, x2t+1) = 0. (2.3)

Therefore, by (W1) of the definition of p we have

p (x2t, x2t+2) ≤ p (x2t, x2t+1) + p (x2t+1, x2t+2)

= 0.

Thus,
p (x2t, x2t+2) = 0. (2.4)

Using (2.3), (2.4) and (mW3), we get

q (x2t, x2t+1) = 0. (2.5)

Therefore q (xk, xk+1) = 0 which implies that xk = xk+1. Hence, xk is a fixed
point for F.

Also, we have

p (x2t, x2t+1) ≤ p (x2t, x2t+2) + p (x2t+2, x2t+1)

= 0. (2.6)

Using (2.2), (2.6) and (mW3), we get that

q (x2t, x2t+2) = 0. (2.7)

So, we have

q (x2t+1, x2t+2) ≤ q (x2t+1, x2t) + q (x2t, x2t+2)

= 0.

Thus, x2t = x2t+1 = x2t+2 and so xk = xk+1 = xk+2. Therefore, xk is a
common fixed point of F and G.

Case II: If k is odd, then k = 2t+ 1 for some t ∈ N ∪ {0} , so,

p (x2t+1, x2t+2) = 0. (2.8)
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By the definition of ϕ, we get

ϕ (p (x2t+1, x2t+2)) = 0.

Since the pair (F,G) is a (k, ϕ, L)− mω contraction, we have

ϕ (p (x2t+2, x2t+3))

= ϕ (p (Gx2t+1, Fx2t+2))

≤ kmax {ϕ (p (x2t+1, Gx2t+1)) , ϕ (p (x2t+2, Fx2t+2))}
+ Lmin {q (x2t+1, Fx2t+2) , q (x2t+2, Gx2t+1) , q (x2t+1, Gx2t+1)}

= kmax {ϕ (p (x2t+1, x2t+2)) , ϕ (p (x2t+2, x2t+3))}
+ Lmin {q (x2t+1, x2t+3) , q (x2t+2, x2t+2) , q (x2t+1, x2t+2)} .

Therefore, ϕ (p (x2t+2, x2t+3)) ≤ kϕ (p (x2t+2, x2t+3)) . So we have

ϕ (p (x2t+2, x2t+3)) = 0.

It implies that
p (x2t+2, x2t+3) = 0. (2.9)

Now,

ϕ (p (x2t+3, x2t+2))

= ϕ (p (Fx2t+2, Gx2t+1))

≤ kmax {ϕ (p (x2t+2, Fx2t+2)) , ϕ (p (x2t+1, Gx2t+1))}
+ Lmin {q (x2t+2, Gx2t+1) , q (x2t+1, Fx2t+2) , q (x2t+2, Fx2t+2)}

= kmax {ϕ (p (x2t+2, x2t+3)) , ϕ (p (x2t+1, x2t+1))}
+ Lmin {q (x2t+2, x2t+2) , q (x2t+1, x2t+3) , q (x2t+2, x2t+3)} .

Therefore, ϕ (p (x2t+3, x2t+2)) = 0 and hence

p (x2t+3, x2t+2) = 0. (2.10)

By (W1) we have

p (x2t+1, x2t+3) ≤ p (x2t+1, x2t+2) + p (x2t+2, x2t+3)

= 0.

Hence we have
p (x2t+1, x2t+3) = 0. (2.11)

Using (2.10), (2.11) and (mW3), we get that

q (x2t+1, x2t+2) = 0. (2.12)

Using (2.8), (2.9) and (mW3), we get

q (x2t+1, x2t+3) = 0. (2.13)
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Thus, x2t = x2t+1 = x2t+2 and so xk = xk+1 = xk+2. Hence, xk is a common
fixed point of F and G.

Similarly, we can prove that if p (xk+1, xk) = 0, then xk is a common fixed
point of F and G.

Now assume that p (xn, xn+1) 6= 0 and p (xn+1, xn) 6= 0 for all n ∈ N∪ {0} .
Since the pair (F,G) is a (k, ϕ, L)− mω contraction, we have

ϕ (p (x2n+1, x2n+2)) = ϕ (p (Fx2n, Gx2n+1))

≤ kmax {ϕ (p (x2n, x2n+1)) , ϕ (p (x2n+1, x2n+2))}
+ Lmin {q (x2n, x2n+2) , q (x2n+1, x2n+1) , q (x2n, x2n+1)} ,

ϕ (p (x2n+1, x2n+2)) ≤ kmax {ϕ (p (x2n, x2n+1)) , ϕ (p (x2n+1, x2n+2))} .

If max {ϕ (p (x2n, x2n+1)) , ϕ (p (x2n+1, x2n+2))} = ϕ (p (x2n+1, x2n+2)), then

ϕ (p (x2n+1, x2n+2)) = 0

which is a contraction. So,

max {ϕ (p (x2n, x2n+1)) , ϕ (p (x2n+1, x2n+2))} = ϕ (p (x2n, x2n+1)) .

Thus,

ϕ (p (x2n+1, x2n+2)) ≤ kϕ (p (x2n, x2n+1)) .

By the same process, we can show that:

ϕ (p (x2n, x2n+1)) ≤ kϕ (p (x2n−1, x2n)) .

Hence,

ϕ (p (xn, xn+1)) ≤ kϕ (p (xn−1, xn)) ∀n ∈ N ∪ {0} . (2.14)

Now,

ϕ (p (xn+1, xn)) = ϕ (p (Fxn, Gxn−1))

≤ kmax{ϕ (p (xn, xn+1) , ϕ (p (xn−1, xn)))}
+ Lmin{q(xn, xn), q(xn−1, xn+1), q(xn, xn+1)}.

Using (2.14) we get

ϕ(p (xn+1, xn)) ≤ kϕ (p (xn−1, xn)) .

Repeating this process n-times, we get that

ϕp (xn, xn+1) ≤ knϕ (p (x◦, x1)) ∀n ∈ N ∪ {0} (2.15)

and

ϕ (p (xn+1, xn)) ≤ knϕ (p (x◦, x1)) ∀n ∈ N ∪ {0}. (2.16)
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Therefore,

max {ϕ (p (xn, xn+1)) , ϕ (p (xn+1, xn))} ≤ knϕ (p (x1, x◦)) . (2.17)

Letting n→∞, we get that

lim
n→∞

ϕ (p(xn, xn+1)) = 0

and

lim
n→∞

ϕ (p(xn+1, xn)) = 0.

Since ϕ is a ultra distance function, we have

lim
n→∞

p(xn, xn+1) = 0

and

lim
n→∞

p(xn+1, xn) = 0.

To prove that {xn} is a Cauchy sequence, first we show that lim
r,s→∞

p(xr, xs) =

0 for each r, s ∈ N with r odd and s even or r even and s odd.
Case(1): If r is odd and s is even with r < s, then we have

ϕ (p (xr, xs)) = ϕ (p (Fxr−1, Gxs−1))

≤ kmax {ϕ (p (xr−1, Fxr−1)) , ϕ (p (xs−1, Gxs−1))}
+ Lmin {q (xr−1, Gxs−1) , q (xs−1, Fxr−1) , q (xr−1, Fxr−1)}

= kmax {ϕ (p (xr−1, xr)) , ϕ (p (xs−1, xs))}
+ Lmin {q (xr−1, xs) , q (xs−1, xr) , q (xr−1, xr)}
≤ kmax {ϕ (p (xr−1, xr)) , ϕ (p (xs−1, xs))}+ Lq (xr−1, xr)

= kϕ (p (xr−1, xr)) + Lq (xr−1, xr) .

Thus, we get that

ϕ (p (xr, xs)) ≤ krϕ (p (x◦, x1)) + Lq (xr−1, xr) .

Letting s, r → ∞, we have limϕ
s,r→∞

(p(xr, xs)) = 0. Since ϕ is an ultra distance

function, we have

lim
s,r→∞

p(xr, xs) = 0 with r < s. (2.18)
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Case(2): If s, r ∈ N such that r is odd and s is even with r > s, then we have

ϕ (p (xr, xs)) = ϕ (p (Fxr−1, Gxs−1))

≤ kmax {ϕ (p (xr−1, Fxr−1)) , ϕ (p (xs−1, Gxs−1))}
+ Lmin {q (xr−1, Gxs−1) , q (xs−1, Fxr−1) , q (xr−1, Gxr−1)}

= kmax {ϕ (p (xr−1, xr)) , ϕ (p (xs−1, xs))}
+ Lmin {q (xr−1, xs) , q (xs−1, xr) , q (xr−1, xr)}
≤ kϕ (p (xs−1, xs)) + Lq (xr−1, xr)

≤ ksϕ (p (x◦, x1)) + Lq (xr−1, xr) .

Thus, we have

ϕ (p (xr, xs)) ≤ ksϕ (p (x◦, x1)) + Lq (xr−1, xr) .

Letting s, r →∞, we get lim
r,s→∞

ϕ (p(xr, xs)) = 0 and so

lim
r,s→∞

p(xr, xs) = 0 with r > s. (2.19)

Thus, for all r, s ∈ N with r odd and s even we have

lim
s,r→∞

p(xr, xs) = 0 with r > s.

By the same argument, we can show that for all r, s ∈ N with r even and s
odd, then

lim
s,r→∞

p(xr, xs) = 0 with r < s. (2.20)

Now, we show that {xn} is a right Cauchy sequence. To prove that {xn} is
a right Cauchy sequence we have the following cases:
Case(i): If n,m ∈ N such that n is odd and m is even with m > n, then by
(2.18) we have lim

n,m→∞
p(xn, xm) = 0.

Case (ii): If n,m ∈ N such that n is even and m is odd with m > n, then by
(2.20) we have lim

n,m→∞
p(xn, xm) = 0.

Case (iii): If n,m ∈ N such that n m are both even with m > n, then we have

p (xn, xm) ≤ p (xn, xn+1) + p (xn+1, xm) .

Therefore,

lim
m,n→∞

p(xn, xm) = 0, m > n.

Case (iv): If n,m ∈ N such that n m are both odd with m > n, then we have

p (xn, xm) ≤ p (xn, xm+1) + p (xm+1, xm) .

Therefore,
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lim
m,n→∞

p(xn, xm) = 0, m > n.

By the same argument, we can show that {xn} is a left Cauchy sequence.
By Lemma 1.11, (xn) is a Cauchy sequence.

Since (X, q) is a complete quasi metric space, there exists u ∈ X such that
x2n → u. Thus,

lim
n→∞

q(x2n, u) = lim
n→∞

q(u, x2n) = 0.

Now, suppose that F and G are continuous mappings. Then

lim
n→∞

q(Fx2n, Fu) = lim
n→∞

q(Fu, Fx2n) = 0.

To show that u = Fu, we have

lim
n→∞

q(x2n+1, Fu) = lim
n→∞

q(Fu, x2n+1) = 0.

So, x2n+1 → Fu and hence u = Fu.
Similarly, we can prove that u = Gu. Hence F and G have a common fixed

point.
Now, suppose that F or G is continuous. Without loss of generality, we

may assume that F is continuous. As above argument, we figure out u is a
fixed point of F .

Now, we show that u is a fixed point of G.
Since lim

m,n→∞
p(xn, xm) = 0, for given ε > 0 there exists k ∈ N such that

p(xn, xm) ≤ ε
2 for all n,m ≥ k. By the lower semi continuity of p, we have

p(xn, u) ≤ lim
l→∞

inf p(xn, xl) ≤
ε

2
, for all n ≥ k.

Assume that Fu 6= Gu. Then by (2.1) we have

inf {p (Fx, u) + p (Gx, u) : x ∈ X} ≤ inf {p (Fxn, u) + p (Gxn+1, u) : n ∈ N}
= inf {p (xn+1, u) + p (xn+2, u) : n ∈ N}
≤ ε,

for all ε > 0. This is a contradiction. Therefore u = Fu = Gu. Hence, u is a
common fixed point for F and G.

To prove the uniqueness of u, first we show that if z ∈ X is a common fixed
point of F and G, then p (z, z) = 0. We note that
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ϕ (p (z, z)) = ϕ (p (Fz,Gz))

≤ kmax {ϕ (p (z, Fz)) , ϕ (p (z,Gz))}
+ Lmin {q (z,Gz) , q (z, Fz) , q (z, Fz)}

= kϕ (p (z, z)) .

Hence, ϕ (p (z, z)) = 0. It implies that p (z, z) = 0.
Now, assume that there exists v ∈ X such that Fv = Gv = v. Then

ϕ (p (u, v)) = ϕ (p (Fu,Gv))

≤ kmax {ϕ (p (u, Fu)) , ϕ (p (v,Gv))}
+ Lmin {q (u,Gv) , q (v, Fu) , q (u, Fu)}

= kmax {ϕ (p (u, u)) , ϕ (p (v, v))}
+ Lmin {q (u, v) , q (v, u) , q (u, u)} .

Thus, ϕ (p (u, v)) = 0 and hence p (u, v) = 0. Since p (u, u) = 0, we get
q (u, v) = 0 and so u = v. This completes the proof. �

Putting L = 0 in Theorem 2.2, we get the following result:

Corollary 2.3. Let (X, q) be a complete quasi metric space equipped with an
mω−distance mapping p and F,G : X → X be two self mappings. Assume the
following hypotheses:

(1) If there exists a ultra distance function ϕ and k ∈ [0, 1) such that for
all x, y ∈ X, we have

ϕ (p (Fx,Gy)) ≤ kmax {ϕ (p (x, Fx)) , ϕ (p (y,Gy))}

and

ϕ (p (Gx,Fy)) ≤ kmax {ϕ (p (x,Gx)) , ϕ (p (y, Fy))} .

(2) If one of the following condition is satisfied:
(i) F and G are continuous.
(ii) If F or G is continuous and for each u ∈ X if Fu 6= Gu then

inf {p (Fx, u) + p (Gy, u) : x, y ∈ X} > 0.

Then F and G have a unique common fixed point in X.

Corollary 2.4. Let (X, q) be a complete quasi metric space equipped with an
mω−distance mapping p and F,G : X → X be two self mappings. Assume the
following hypotheses:
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(1) If there exists an ultra distance function ϕ, and two positive numbers
α, β with α+ β < 1, and L ≥ 0 such that for all x, y ∈ X, we have

ϕ (p (Fx,Gy)) ≤ αϕ (p (x, Fx)) + βϕ (p (y,Gy))

+ Lmin {q (x,Gy) , q (y, Fx) , q (x, Fx)}
and

ϕ (p (Gx,Fy)) ≤ αϕ (p (x,Gx)) + βϕ (p (y, Fy))

+ Lmin {q (x, Fy) , q (y,Gx) , q (x,Gx)} .
(2) If one of the following condition is satisfied:

(i) F and G are continuous.
(ii) If F or G is continuous and for each u ∈ X if Fu 6= Gu then

inf {p (Fx, u) + p (Gy, u) : x, y ∈ X} > 0.

Then F and G have a unique common fixed point in X.

Proof. Since,
αϕ (p (x, Fx))+βϕ (p (y,Gy)) ≤ (α+β) max {ϕ (p (x, Fx)) , ϕ (p (y, Fy))} , we
have desired result. �

By taking G = I in Theorem 2.2, we have the following result:

Corollary 2.5. Let (X, q) be a complete quasi metric space equipped with an
mω−distance mapping p and F : X → X be a self mapping. Assume the
following hypotheses:

(1) If there exists an ultra distance function ϕ, k ∈ [0, 1) , and L ≥ 0 such
that for all x, y ∈ X, we have

ϕ (p (Fx, y))} ≤ kmax {ϕ (p (x, Fx)) , ϕ (p (y, y))}
+ Lmin{p(x, y), p(y, Fx), p(x, Fx)}

and

ϕ (p (x, Fy)) ≤ kmax{ϕ (p (x, x)) , ϕ (p (y, Fy))}.
(2) If one of the following condition is satisfied:

(i) F is continuous.
(ii) If F is any mapping and for each u ∈ X if u 6= Fu then

inf {p (x, u) + p (Fx, u) : x ∈ X} > 0.

Then F has a unique fixed point in X.

By taking F = G in Theorem 2.2 we get the following result:

Corollary 2.6. Let (X, q) be a complete quasi metric space equipped with an
mω−distance mapping p and F : X → X be a self mapping. Assume the
following hypotheses:
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(1) If there exists an ultra distance function ϕ and k ∈ [0, 1) , L ≥ 0 such
that for all x, y ∈ X, we have

ϕ (p (Fx, Fy)) ≤ kmax {ϕ (p (x, Fx)) , ϕ (p (y, Fy))}
+ Lmin{q(x, Fy), q(y, Fx), q(x, Fx)}

(2) If one of the following condition is satisfied:
(i) F is continuous.
(ii) If F is any mapping and for each u ∈ X if u 6= Fu then

inf {p (Fx, u) : x ∈ X} > 0.

Then F has a unique fixed point in X.

Corollary 2.7. Let (X, q) be a complete quasi metric space equipped with an
mω−distance mapping p and let F : X → X be a self mapping such that the
following hypotheses hold true

(1) If there exists an ultra distance function ϕ and and α + β < 1 with
α, β ≥ 0, such that for all x, y ∈ X, we have

ϕ (p (Fx, Fy)) ≤ αϕ (p (x, Fx)) + βϕ (p (y, Fy)) .

(2) If one of the following condition is satisfied:
(i) F is continuous.
(ii) for each u ∈ X if u 6= Fu then

inf {p (x, u) + p (Fx, u) : x ∈ X} > 0.

Then F has a unique fixed point in X.

Corollary 2.8. Let (X, q) be a complete quasi metric space equipped with
an mω−distance mapping p and F : X → X be a self continuous mapping.
Assume that there exists α ∈ [0, 12) such that for all x, y ∈ X, we have

p (Fx, Fy) ≤ α[ϕ (p (x, Fx)) + ϕ (p (y, Fy))].

Then F has a unique fixed point in X.

Now, we give an example to show the useability of our results.

Example 2.9. Let X = N ∪ {0}. Define q : X ×X → [0,∞) as follow:

q(x, y) =

{
0 if x = y,

x+ 2y if x 6= y.

Define p : X × X → X by p(x, y) = 1
3(x + 2y). And define the mappings

F ,G : X → X by

Fx =

{
0, x = 0, 1

1, x ≥ 2.
, Gy =

{
0, y = 0

1, y ≥ 1.
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Also, define ϕ : [0,∞)→ [0,∞) by

ϕ(t) =

{
et − 1 if t ∈ [0, 1)
et if t ≥ 1.

Then, we know that the following statements are hold:

(1) ϕ is an ultra distance function.
(2) (X, q) is a complete quasi metric space.
(3) (X, p) is an mω−distance on q.

(4) The pair (F,G) is (e−
1
3 , ϕ, 0)−mω contraction i.e., ∀x, y ∈ X we have

ϕ (p (Fx,Gy)) ≤ e−
1
3 max {ϕ (p (x, Fx)) , ϕ (p (y,Gy))}

and

ϕ (p (Gx,Fy)) ≤ e−
1
3 max {ϕ (p (x,Gx)) , ϕ (p (y, Fy))} .

(5) F and G are continuous functions.

The statement (1) is clear. Also it is easy matter to figure out that (X, q)
is a quasi metric space and (X, p) is an mω−distance. To show that q is
complete, let {xn} be a Cauchy sequence in X. Then for each n,m ∈ N we
have

lim
m,n→∞

q(xn, xm) = 0.

So, we deduce that xn = xm for all n,m ∈ {0, 1, 2, . . .} but possible for finitely
many. Thus, {xn} is a convergent sequence in X. Hence (X, q) is a complete
quasi metric space. To prove (4), given x, y ∈ X. We divide our proof into the
following cases:
Case I: x = 0, 1, y = 0.

ϕ (p (Fx,Gy)) = 0 ≤ e−
1
3 max {ϕ (p (x, Fx)) , ϕ (p (y,Gy))}

and

ϕ (p (Gx,Fy)) = 0 ≤ e−
1
3 max {ϕ (p (x,Gx)) , ϕ (p (y, Fy))} .

Case II: x ≥ 2, y = 0.

ϕ (p (Fx,Gy)) = ϕ (p (1, 0)) = ϕ(
1

3
) = e

1
3 − 1,

ϕ (p (x, Fx)) = ϕ (p (x, 1)) = ϕ

(
x+ 2

3

)
= e(

x+2
3 ) ≥ e

4
3 ,

ϕ (p (y,Gy)) = ϕ (0) = 0.

Hence, we have
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ϕ (p (Fx,Gy)) = e
1
3 − 1

≤ e−
1
3 max {ϕ (p (x, Fx)) , ϕ (p (y,Gy))} .

Also we have

ϕ (p (Gx,Fy)) = e
1
3 − 1

≤ e−
1
3 max {ϕ (p (x,Gx)) , ϕ (p (y, Fy))} .

Case III: x = 0, 1, y ≥ 1. We have the following subcases:
Subcase (1): x = 0, y = 1.

ϕ (p (Fx,Gy)) = ϕ (p (0, 1)) = ϕ(
2

3
) = e

2
3 − 1,

ϕ (p (x, Fx)) = 0,

p (y,Gy) = p(1, 1) = 1

and

ϕ (p (y,Gy)) = e.

Thus,

ϕ (p (Fx,Gy)) = e
2
3 − 1

≤ e−
1
3 max {ϕ (p (x, Fx)) , ϕ (p (y,Gy))} .

Also, p (Gx,Fy) = p(0, 0) = 0 and hence,

ϕ (p (Gx,Fy)) = 0

≤ e−
1
3 max {ϕ (p (x,Gx)) , ϕ (p (y, Fy))} .

Subcase(2): x = 0, y ≥ 2.

ϕ (p (Fx,Gy)) = e
2
3 − 1

≤ e−
1
3 max {ϕ (p (x, Fx)) , ϕ (p (y,Gy))}

= e−
1
3 × e

y+2
3

and

ϕ(p (Gx,Fy)) = ϕ(p(0, 1)) = e
2
3 − 1 ≤ e−

1
3 × e

y+2
3 .
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Subcase(3): x = 1, y = 1.

ϕ (p (Fx,Gy)) = e
2
3 − 1 ≤ e−

1
3 × e

= e
2
3 .

and

ϕ(p (Gx,Fy)) = e
1
3 − 1 ≤ e−

1
3 × e = e

2
3 .

Subcase(4): x = 1, y ≥ 2.

ϕ (p (Fx,Gy)) = e
2
3 − 1 ≤ e−

1
3 × e

y+2
3

and

ϕ(p (Gx,Fy)) = e ≤ e−
1
3 × e

y+2
3 .

Case IV: x ≥ 2, y ≥ 1. Then we have two subcases:
Subcase(1): x ≥ 2, y = 1.

ϕ (p (Fx,Gy)) = ϕ (p (1, 1)) = e,

ϕ (p (x, Fx)) = ϕ (p (x, 1)) = ϕ(
x+ 2

3
) = e(

x+2
3

) ≥ e
4
3 ,

ϕ (p (y,Gy)) = ϕ (p (y, 1)) = ϕ (1) = e,

and

ϕ (p (Fx,Gy)) = e

≤ e−
1
3 max {ϕ (p (x, Fx)) , ϕ (p (y,Gy))}

= e−
1
3 × e(

x+2
3 ).

Also, ϕ(p (Gx,Fy)) = e
1
3 − 1 ≤ e−

1
3 × e(

x+2
3 ).

Subcase(2): x ≥ 2, y ≥ 2.

ϕ (p (Fx,Gy)) = e ≤ e−
1
3 × e(

x+2
3 )

and

ϕ(p (Gx,Fy)) = e ≤ e−
1
3 × e(

x+2
3 ).

Hence, by Theorem 2.1, F and G have a unique common fixed point. Here 0
is the unique common fixed point of F and G.
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