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Abstract. We will investigate the superstability of the trigonometric functional equation
from the following Pexider type functional equation:

flz+y)— flx—y) =X-g(x)h(y), A is constant,

which is a trigonometric functional equation mixed by the sine and cosine function. More-
over, the equation can be considered by the mixed functional equation of the hyperbolic

trigonometric functions, several exponential type functions, and Jensen type equation.

1. INTRODUCTION

In 1940, Ulam [24] conjectured the stability problem of the functional equa-
tion. Next year, Hyers [12] obtained partial answer for the case of additive
mapping in this problem. Thereafter this problem was improved by Bourgin
[8] in 1949, Aoki [2] in 1950, Rassias [23] in 1978, and Gavruta [11].

In 1979, Baker et al. [6] announced the new concept known as the supersta-
bility as follows: If f satisfies |f(z +y) — f(z)f(y)| < € for some fixed € > 0,
then either f is bounded or f satisfies the exponential functional equation
flz+y) = f(2)f(y).

D’Alembert [1] in 1769(see, Kannappen book [14]) had introduced the cosine
functional equation

flz+y)+ flz—y) =2f(z)f(y), (©)
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which superstability is proved by Baker [5] in 1980.

Baker’s result is generalized by Badora [3] in 1998 to a noncommutative
group by using of the Kannappen condition [13]: f(x+y+2) = f(z+ 2+ vy),
and it again is improved by Badora and Ger [4] in 2002 under the condition

[f(@+y) + f@—y) = 2f(x) f(y)] < p(z) or (y).
The d’Alembert equation (C) is generalized by Wilson as follows:

fle+y)+ flz—y) =2f(2)9(y) (W fg)
fle+y)+ fl@—y) =29(x)f(y), (Waf)
which is called as Wilson equation.
The superstability of the cosine type equations (C), (W fg) and (Wgf) is
founded in Badora, Ger, Kannappan, and Kim ([7], [15], [21], [22])

In 1983, Cholewa [9] investigated the superstability of the sine functional
equation

r+y\2 T —Y\2
His result was improved by m ([17], [1 ]) for the following generalized
sine functional equation
Tty
9(@)h(y) = (= )? f( o (Sgn)

In [16], Kim had obtained the superstablhty of sine functional equation from
the Pexider type functional equation

fl@+y)+g(x —y) = Ah(2)k(y). (Crgnk)

Recently, Fassi, Kabbaj, and Kim [10] also obtained the superstability of
cosine functional equation from (Cygp).

The alternative difference type equation for the cosine functional equation
(C) as follows:

fl@+y) = flz—y) =2f(2)f(y), (T)
was investigated by Kim [18].

In 1769, d’Alembert [1] obtained solution the difference type equation f(z+
y) — f(z —y) = 2g9(z)h(y), which stability is proved by Kim [18].

A trigonometric functional equation : cos(x + y) — sin(x — y) = (cosa: -
sinz)(cosy + siny) implies the functional equation f(z + y) — g(z — y) =
h(x)k(y)-

The aim of this paper is to investigate the transferred superstability for
the cosine and sine functional equation from the difference type trigonometric
functional equation:

fle+y)— f(z—y)=X-g(x)h(y), A is constant. (T}‘fgh)

under the conditions || f(z+y) — f(z —y) — Ag(2)h(y)]|a < ¢(x) or p(y) on a
unital commutative normed algebra A.
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The obtained superstability results for (Tf\fgh) can be applied to the hy-
perbolic trigonometric functions, several exponential functions, and Jensen
equation as follows:

cosh(x + y) — cosh(z — y) = 2sinh(x) sinh(y)

sinh(z + y) — sinh(x — y) = 2 cosh(z) sinh(y)
sinh? (23¥) — sinh? (25%) = sinh(z) sinh(y)

eTTY — 7Y = 2% (e¥ — e ¥) = 2¢” cosh(y)

n(x +y) —n(x —y) =2ny : for f(x) = nax.

Note that (G, +) is a 2-divisible Abelian group, C is a set of complex num-
bers. V is a vector space, A is a unital commutative normed algebra with unit
14, and @™ ! is an invertible element of 0 # a € A (i.e., a la = aa™! = 14).
Let ¢, A > 0 be a constant.

2. SUPERSTABILITY OF THE WILSON TYPE EQUATION FROM (T]%fgh).

We will investigate the superstability of the Wilson type equation from the
mixed trigonometric functional equation (T]%f gh)-

Theorem 2.1. Assume that f,g,h: G x G — A satisfy the inequality
1f(x+y) = flz—y) = Ag(@)hy)|| < () Vr,yeG. (2.1)
Suppose that there exists a sequence {yn} in G such that
. 1y _
Jim [2(y,) || = 0.
Then, we have the following statements:

(i) g satisfies the Wilson type equation

9@ +y) +9(x —y) = Ag(@)ln(y) Wa,)
for all z,y € G, where l, : G — A is an even function such that
IL(0) = 2X71.

(ii) In particular, if h satisfies the cosine type equation

h(z +y) + h(z — y) = A(z)h(y), (ely

then g and h satisfy the Wilson type equation
gz +y)+g(x—y)=A-g(x)h(y) Vr,yeqG. (Wagn)

Proof. (i) From assumption, we can choose {y,} such that ||h(y,) | — 0 as
n — oo. Substituting y = y,, (with n € N) in (2.1), we have

1f (x4 yn) = f(2 = yn) — Ag(x)h(yn) || < o(x)
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for all z,y, € G. Then
1(f (2 + yn) = f(z = ya)) hlyn) ™" = Ag(@)]
= [[[f (@ + yn) — F(& = yn) — Ag(@)h(yn)]P(yn) ||
<N f (@ + yn) = (@ = ya) = Ag(@)h(yn) |l 7 (yn) "]

< [|h(yn) " llp(z) (2.2)
for all y € G. Asn — oo in (2.2), we get
g@) = A" lim [f(z +yn) = f (2 = yn)]A(ya) ™" (2.3)

for all y € G. Replacing y by y + y,, in (2.1),
[f(x+ (Y +yn) = f(@ = (y+yn) = Ag(@)h(y + yn) || < ¢(2) (2.4)
for all x,y,y, € V. Substituting y by —y + y,, in (2.1),
1f @+ (=y +yn) = f(@ = (=y +yn)) = Ag(@)h(—y + yn)|| < @(z) (2.5)
for all x,y € G. Then,
Hf(x + (y + yn)) - f(.%' - (y —+ yn)) - )‘g(x)h(y + yn) + f(x + (_y —+ yn))
— fl@ = (=y+yn) = Ag(@)h(=y + yn) || < 2¢(2) (2.6)

for all z,y € G.
The inequality (2.6) implies that

ILf((x +y) +yn) — F((z+y) = yn)A(yn) "
+ [ ((z =) +yn) — F((&—y) — yn)lh(yn) "
— Ag(@)[(y + yn) + =y + yn)h(yn) |
= [[[f((z +y) +yn) — f((x+y) = yn) — Ag(@)h(y + yn)
+ f((&—y) +yn) — F((x —y) = yn) — Ag(@)h(—y + yn)A(ya) |
< ||h(yn) " |2 (x) (2.7)

for all z,y € G.
The right-hand side in (2.7) converges to zero as n — oco. Hence, a limit
function I, : G — F can be defined as follows:

o hy+yn) + (=Y + yn)
W)= i S

for all y € G, then [;,(0) = 2A~!, and I, is an even function. Letting n — oo
in (2.7), we see from (2.3) that

9(z+y) +g(x—y) = Ag(@)ln(y) (2.9)
for all x,y € G, as desired.

(2.8)
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(ii) In the case h satisfies (C?), the limit I; states nothing else but A from
(2.8). Hence, g and h validate a required equation (Wgp). O
Theorem 2.2. Assume that f,g,h: G x G — A satisfy the inequality

1f(@+y) = flz—y) = Ag(x)h(y)| < »ly) Vr,yed. (2.10)
Suppose that there exists a sequence {x,} in G such that

. 1 _
Jim lg(,) ™| = 0.
Then, we have the following statements:
(i) h satisfies

h(z +y) + h(z —y) = A(2)ly(y) (Why,)
for all x,y € G, where l; : G — A is an even function such that
l(0) = 2271,

(ii) In particular, if g satisfies (C*), then h and g satisfy
hx +y) + h(z —y) = X~ h(z)g(y)- (Why)

Proof. We choose {z,} in G such that lim,,_,« ||g(z,)) || = 0.
Taking x = z,, (with n € N) in (2.10), dividing both sides by ||\ - g(x,)]l,
and passing to the limit as n — oo, then

h(y) = A" lim [f(an +y) = flaen —y)lglen) (2.11)

for all x,,,y € G.

Replace (z,y) by (z, +y,z) and (z,y) by (zn — y,x) in (2.10). The same
procedure as those of the equations (2.4) ~ (2.7) of Theorem 2.1, is performed.
That is, adding the above two inequalities obtained by replacing, and dividing
by A - g(x,), as n — oo, then it imply the existence of a limit function

T g(xn+y)+g(xn_y)
ly(y) := lim - g(en) ,

(2.12)

where [, : G — C satisfies
h(z +y) + h(z —y) = Ah(2)lg(y) o,y €G

for all z,y € G, as desired.
For remainder, let go through the same steps as Theorem 2.1, then we get
the required results. O

The following corollary follows immediate from the Theorems 2.1 and 2.2.

Corollary 2.3. Assume that f,g,h: G X G — A satisfy the inequality

15+ 9) — 7z )~ Mgy < {jﬁ“m‘“)’ PWE T vayea
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Then we have the following statements:
(i) Suppose that there exists a sequence {yn} in G such that
. 1y _
Tim [[A(yn) " || = 0.

Then, g satisfies (W, ) with the even function Iy, s.t. 1,(0) = 2A~L.
In particular, if h satisfies (C*), then g and h satisfy (Wgy).

(ii) Suppose that there exists a sequence {x,} in G such that
Tim [lg(a) ! = 0.
Then, h satisfies (Why,) with the even function lg s.t. 1g(0) = 2X71.
In particular, if g satisfies (C*), then h and g satisfy (Why).

By replacing h by f, g by f, h by g in Theorem 2.1 and Theorem 2.2, we
obtain the following corollaries.

Corollary 2.4. Assume that f,g: G x G — A satisfy the inequality
1f(z+y) = fle—y) = Ag(x) fW)] < (z), Vz,yeC.
Suppose that there exists a sequence {yn} in G such that
. 1
Jim [ f(ya) ™| = 0.
Then, we have the following statements:
(i) g satisfies
9@ +y)+9(x—y) = A(@)lf(y), Vo,yeG,

where 1y : G — A is an even function such that l;(0) = 2A71.
(ii) In particular, if f satisfies (C*), then g and f satisfy

9@ +y)+g(x—y) =X g(@)f(y).
Corollary 2.5. Assume that f,g: G x G — A satisfy the inequality
[f(z+y) = fle—y) = Ag(a) fW) < ely), V,yed.
Suppose that there exists a sequence {x,} in G such that
. —1 _
Jim lg(,) ™| = 0.
Then, we have the following statements:
(i) h satisfies
flety)+ fl@—y) =Af(2)ly(y), Va,yeq,

where 1y : G — A is an even function such that 1;(0) = 2271,
(ii) In particular, if g satisfies (C*), then f and g satisfy

flx+y)+ flx—y) =X f(x)g(y).
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Corollary 2.6. Assume that f,h: G x G — A satisfy the inequality
If(@+y) = fle—y) = Af(@)h) < e(z), Vr,yed.
Suppose that there exists a sequence {yn} in G such that
Tim [5(ya)~" = 0.
Then, we have the following statements:
(i) f satisfies
fl@ty)+ fl@—y)=Af(@)h(y), Vo,yed,

where Iy, : G — A is an even function such that 1;,(0) = 2271
(ii) In particular, if h satisfies (C*), then f and h satisfy

fle+y)+ fle—y) =X fx)h(y).

Corollary 2.7. Assume that f,h: G x G — A satisfy the inequality
1f(x+y) = flz—y) = Af(@)hy)] < ely), Va,yed.
Suppose that there exists a sequence {x,} in G such that
. —1 _
Jim [ f(2n) "] = 0.
Then, we have the following statements:
(i) h satisfies
hxz+y)+h(x—y) = A(2)lf(y), Vr,yed.

where Iy : G — A is an even function such that l;(0) = 2\71.
(ii) In particular, if f satisfies (C*), then h and f satisfy

h(z +y) + h(z —y) = X h(z)f(y).
Corollary 2.8. Assume that f,g: G x G — A satisfy the inequality
1f(@+y) = fle—y) = Ag@)g)ll < p(x) or (y), Vr,yed.
Suppose that there exists sequences {xn} or {yn} in G such that
. 1y _
Jim lg(zn) ™| =0
or
. 1y
Jim lg(yn)"" [ =0,
respectively. Then, g satisfies
9(x +y) + gz —y) = Ag(x)ly(y)

where ly : G — A is an even function such that 1;,(0) = 2271
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Corollary 2.9. Assume that f: G x G — A satisfy the inequality

1z +y) = flz—y) = Af(@) f) < plz) or ¢ly), Vryed.
Suppose that there exists sequences {xn} or {yn} in G such that
. 1y _
Jim lg(zq) ™| =0
or
. 1y _
Tim Jlg()~ | =0,
respectively. Then, f is bounded.

Proof. Assume that f is not bounded. Then, by applying g = f in Corollary
2.4 and Corollary 2.5, f satisfies (C*). By the way, that f satisfies (C*) implies
f satisfies (T*) by Theorem 1 in [18]. Hence, f satisfies simultaneously (C*)
and (T?). This forces that f is a zero function. But we know that there
exists the cosine function which satisfies (C) as a non-zero. Hence the result
is obtained by a contradiction. O

Remark 2.10. In all results in this section, by applying ¢(z) = ¢(y) = €, we
can obtain the same results as those.

3. APPLICATIONS OF THE CASE f(x):= f(z)f(0)~! IN EQUATION (T}fgh)

Note that f(z) := f(z)f(0)~!. The following lemmas which is easy to verify
shows that the similar argument holds without assuming the continuity. To

ease the presentation, we continue using this notation ]7 and note that it is
legel only when f(0) # 0.

We consider the following type functional equation:
fle+y) = [z —y) = Af(@)f (). ()
Lemma 3.1. ([10]) Let f,g: V — A be functions satisfying

f@+y)+ flx—y) = Af(x)g(y), forallz,yeV.
If f is an even function, then either f #0 or f satisfies (C).

Lemma 3.2. Let f,g:V — A be functions satisfying

fla+y) = flz—y) = Af(2)g(y), forallz,yeV. (T*f9)
If f is odd function, then either f # 0 or fsatisﬁes (7).

Proof. Since f is odd, let = 0 in (T*fg). Then f(y) — f(—y) = Af(0)g(y)-
Thus 2f(y) = Af(0)g(y). -
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Theorem 3.3. Let ¢ : V — [0,400) be a function, and f,g,h : V — A be
functions satisfying

1f(x+y) = fle—y) = Agl@)h(y)] < ¢(z) (3.1)

for all x,y € V with X\ > 0. Suppose that there exists a sequence {y,} in V
such that

. —1y _
Jim |2 (y,) || = 0.
Then, we have the following statements:
(i) g # 0 is an even function, then g satisfies (C).
(ii) g # 0 is odd function, then g satisfies (T).

Proof. Let f,g,h : V. — A be functions satisfying (3.1) for all z,y € V
with A > 0. Assume that there exists a sequence {y,} in V such that
lim, o0 |R(yn) 7t = 0. Then, by Theorem 2.1, there exists an even func-
tion I, : V. — A with [,,(0) = 2A~! and g satisfies (Wg,, ). Then, (i) holds by
the Lemma 3.1. By Lemma 3.2, (ii) holds, that is, g satisfies (7). O

Corollary 3.4. Let ¢ : V. — [0,+00) be a function and f,h,k : V — C be
functions satisfying

[f(z+y) = flz—y) = Ag(@)h(y)] < ¢(z)
for all x,y € V with A > 0. Suppose that g # 0 and h is unbounded, Then, we
have the following statements:
(i) if g is even, then g satisfies (C).
(ii) if g is odd, then g satisfies (T).

Corollary 3.5. Let ¢ : V — [0,400) be a function and f,g : V — A be
functions satisfying

[f(z+y) — flx—y) = Ag(@) f(y)|| < »(x)

for all z,y € V with X\ > 0. If f # 0 is odd and there exists a sequence {yn }
in V such that lim, .o ||f(yn) Y| = 0, then § = (\/2) - g satisfies (C).

Proof. Replace h by f in Theorem 3.3. If f # 0 is odd, then, by (2.3), it
implies that g is even with g(0) = 2A~!. Hence the required result holds from
(i) in Theorem 3.3. O
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4. REPRESENTATION OF SOLUTION FOR THE WILSON TYPE EQUATIONS.

The solution of the Wilson equation(W fg) was investigated in ([1], [14]).

In the following Lemma 4.1, a solution for the Wilson type Eqgs.(W f;) and
(Wgy) will be investigated. Hence, its explicit solutions for results obtained
in Sections 2 can be represented immediately from Lemma 4.1.

In this section, let C be a set of all complex numbers, C* = C\ {0}. When-
ever we only deal with C, (G, +) needs the Abelian which is not A-divisible.

It is easy to verify shows that the following lemma holds.

Lemma 4.1. Let f,g: G x G — C* satisfy the Wilson type equation:

fle+y)+ fl@—y) = Af(x)g(y), (W fq)
fl@+y)+ f(@z—y) = Ag(x) f(y). (Way)
Then, g satisfies (C*), and g, f are given by
o) = PDEEED iy = @) - B-a)) + LB () + B(-2)),

where ¢,d € C, and E : G — C* is a homomorphism.

Corollary 4.2. Assume that f,g,h : G x G — C* satisfy the inequality

I flx+y)— flz—y) = Ag(@)h(y)|| < o(z), Vz,yed.

If h fails to be bounded, then g and lj, satisfy (Wag, ). In particular, if h
satisfies (C), then g and h satisfy (Wgy) and g, h are given by

ey = POEEED g0y — i) - B + LB + B(-))

where ¢,d € C, and E : G — C* is a homomorphism.

Corollary 4.3. Assume that f,g,h : G x G — C* satisfy the inequality

[f(z+y) = fle—y) = Ag(@)hy)| <ely), Vz,yedl.

If g fails to be bounded, then h and l, satisfy (Why,). In particular, if g
satisfies (C), then h and g satisfies (Why), and h, g are given by

o) = POHECD ) i) - B + LB + B(-))

where ¢,d € C, and E : G — C* is a homomorphism.
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Corollary 4.4. Suppose that f,g,h : G — C* satisfy the inequality

min{e(x), e(y or
£+ )~ (&~ 9) = Mg(@)hly)| < { et 2t} Vayed
(4.1)

Then, we have the following statements:

(i) If h fails to be bounded, then g and 1y, satisfy (W, ). In particular, if

h satisfies (C), then g and h satisfy (Wgp) and g, h are given by
W) = E(z)+ E(—x)

A
and

d
9(z) = c(E(z) - E(=2)) + T (E(z) + E(~2)),
where ¢,d € C, and E : G — C* is a homomorphism.
(ii) If g fails to be bounded, then h and l, satisfy (Why,). In particular, if
g satisfies (C), then h and g satisfies (Why), and h,g are given by

o) = E(x) —i—/\E(—x)
and

(z) = e(B(x) ~ B(~a)) + S (B(z) + B(~)),

where ¢,d € C, and E : G — C* is a homomorphism.
5. EXTENSION TO THE BANACH ALGEBRA

In all the results presented in Sections 2 and 3, the range of functions on
the Abelian group can be extended to the semisimple commutative Banach
algebra. We will represent just for the main equation (T]%f gh).

Theorem 5.1. Let (E,| - ||) be a semisimple commutative Banach algebra.
Assume that f,g,h : G — E satisfy one of each inequalities
1) o(x
£z )~ Fa— )~ A- gl < { DA (5.1
(12) ©(y)

for all x,y € G with A > 0 is a constant. For an arbitrary linear multiplicative
functional x* € E*, then we have the following statements:
(i) If * o h fails to be bounded, then g satisfies (W, ): g(z+y)+g(z—
y) = Ag(x)lp(y), where I, : G — A is an even function such that
1,(0) = 2A7L. In particular, if h satisfies (C*), then g and h satisfy
the (Wgh)
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(ii) If * o g fails to be bounded, then g satisfies (Why,): h(z +y) + h(z —
y) = A(2)ly(y), where ly ©: G — A is an even function such that
1,(0) = 2X\~L. In particular, if g satisfies (C*), then h and g satisfies
the (Why).

Proof. (i) Assume that (5.1) holds and arbitrarily fixes a linear multiplicative
functional x* € E*. As is well known, given that ||z*| = 1, for every z,y € G,

p) = 1f(x+y) = flz—y) = A-gl@)hy)ll

= sup " (f(z+y) = flz—y) =X g(x)h(y))]
y*lI=1

> o (fa+y) — 2" (flz —y)) = A-2"(9(2))2" (h(y))
which states that the superpositions z* o f, z* o g, and x* o h yield a solution
of inequality (2.1) in Theorem 2.1. Given the assumption, the superposition
x*oh is unbounded, an appeal to (i) of Theorem 2.1 shows that the two results
hold.

First, the superposition z* o g solves (Wg;, ) with z* o [, that is,

(2" 0 g)(z +y) + (z" 0 g)(z —y) = Aa" 0 g)(z)(z" o l1) (y)-

Since z* is a linear multiplicative functional, we have
(9@ +y) + gz —y) — A g(@)l(y)) = 0.

Hence, an unrestricted choice of z* implies that

gz +y)+g(x—y)— X g(x)lp(y) € ﬂ{kerx* cxt e E*}
Since the space E is semisimple, [{kerz* : z* € E*} = 0, which means that
g satisfies the claimed equation (Wg;, ) with [,(0) = 2A~*

In particular, if h satisfies (C?), then [; implies h. Hence, (Wgz,) holds.

(ii) The second cases are also the same because each case of Theorem 2.2 is
similar to case (i). O

Y

Remark 5.2. In all results, we can obtain more corollaries from setting as
the following.

(i) Choosing f,g,h in three places, {¢(x), ¢(y), min{p(x), p(y)},e: con-
stant}, and A = 2, from the such setting, we can obtain more the

stability results for the following number of equations: 3! x 4 x 2.

(ii) The case A = 2 can be applied well known stability results for the
cosine type “+”(Wilson) equation, which are found in papers (Badora
[3], Ger [4], Baker [3], Kannappan and Kim [15], Kim ([16] ~ [22]).
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