
Nonlinear Functional Analysis and Applications
Vol. 24, No. 2 (2019), pp. 241-253

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2019 Kyungnam University Press

KUPress

SUPERSTABILITY OF A GENERALIZED
TRIGONOMETRIC FUNCTIONAL EQUATION

Gwang Hui Kim

Department of Mathematics, Kangnam University
Yongin, Gyounggi, 16979, Korea
e-mail: ghkim@kangnam.ac.kr

Abstract. We will investigate the superstability of the trigonometric functional equation
from the following Pexider type functional equation:

f(x+ y) − f(x− y) = λ · g(x)h(y), λ is constant,

which is a trigonometric functional equation mixed by the sine and cosine function. More-

over, the equation can be considered by the mixed functional equation of the hyperbolic

trigonometric functions, several exponential type functions, and Jensen type equation.

1. Introduction

In 1940, Ulam [24] conjectured the stability problem of the functional equa-
tion. Next year, Hyers [12] obtained partial answer for the case of additive
mapping in this problem. Thereafter this problem was improved by Bourgin
[8] in 1949, Aoki [2] in 1950, Rassias [23] in 1978, and Gǎvruta [11].

In 1979, Baker et al. [6] announced the new concept known as the supersta-
bility as follows: If f satisfies |f(x+ y)− f(x)f(y)| ≤ ε for some fixed ε > 0,
then either f is bounded or f satisfies the exponential functional equation
f(x+ y) = f(x)f(y).

D’Alembert [1] in 1769(see, Kannappen book [14]) had introduced the cosine
functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), (C)
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which superstability is proved by Baker [5] in 1980.
Baker’s result is generalized by Badora [3] in 1998 to a noncommutative

group by using of the Kannappen condition [13]: f(x+ y+ z) = f(x+ z+ y),
and it again is improved by Badora and Ger [4] in 2002 under the condition
|f(x+ y) + f(x− y)− 2f(x)f(y)| ≤ ϕ(x) or ϕ(y).

The d’Alembert equation (C) is generalized by Wilson as follows:

f(x+ y) + f(x− y) = 2f(x)g(y) (Wfg)

f(x+ y) + f(x− y) = 2g(x)f(y), (Wgf)

which is called as Wilson equation.
The superstability of the cosine type equations (C), (Wfg) and (Wgf) is

founded in Badora, Ger, Kannappan, and Kim ([7], [15], [21], [22])
In 1983, Cholewa [9] investigated the superstability of the sine functional

equation

f(x)f(y) = f
(x+ y

2

)2 − f(x− y
2

)2
. (S)

His result was improved by Kim ([17], [19]) for the following generalized
sine functional equation

g(x)h(y) = f
(x+ y

2

)2 − f(x− y
2

)2
. (Sgh)

In [16], Kim had obtained the superstability of sine functional equation from
the Pexider type functional equation

f(x+ y) + g(x− y) = λh(x)k(y). (Cfghk)

Recently, Fassi, Kabbaj, and Kim [10] also obtained the superstability of
cosine functional equation from (Cfghk).

The alternative difference type equation for the cosine functional equation
(C) as follows:

f(x+ y)− f(x− y) = 2f(x)f(y), (T )

was investigated by Kim [18].
In 1769, d’Alembert [1] obtained solution the difference type equation f(x+

y)− f(x− y) = 2g(x)h(y), which stability is proved by Kim [18].
A trigonometric functional equation : cos(x + y) − sin(x − y) = (cosx −

sinx)(cos y + sin y) implies the functional equation f(x + y) − g(x − y) =
h(x)k(y).

The aim of this paper is to investigate the transferred superstability for
the cosine and sine functional equation from the difference type trigonometric
functional equation:

f(x+ y)− f(x− y) = λ · g(x)h(y), λ is constant. (T λffgh)

under the conditions ‖f(x+ y)− f(x− y)− λg(x)h(y)‖A ≤ ϕ(x) or ϕ(y) on a
unital commutative normed algebra A.
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The obtained superstability results for (T λffgh) can be applied to the hy-
perbolic trigonometric functions, several exponential functions, and Jensen
equation as follows:

cosh(x+ y)− cosh(x− y) = 2 sinh(x) sinh(y)

sinh(x+ y)− sinh(x− y) = 2 cosh(x) sinh(y)

sinh2
(x+y

2

)
− sinh2

(x−y
2

)
= sinh(x) sinh(y)

ex+y − ex−y = 2 e
x

2 (ey − e−y) = 2ex cosh(y)

n(x+ y)− n(x− y) = 2ny : for f(x) = nx.

Note that (G,+) is a 2-divisible Abelian group, C is a set of complex num-
bers. V is a vector space, A is a unital commutative normed algebra with unit
1A, and a−1 is an invertible element of 0 6= a ∈ A (i.e., a−1a = aa−1 = 1A).
Let ϕ, λ > 0 be a constant.

2. Superstability of the Wilson type equation from (T λffgh).

We will investigate the superstability of the Wilson type equation from the
mixed trigonometric functional equation (T λffgh).

Theorem 2.1. Assume that f, g, h : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)h(y)‖ ≤ ϕ(x) ∀x, y ∈ G. (2.1)

Suppose that there exists a sequence {yn} in G such that

lim
n→∞

‖h(yn)−1‖ = 0.

Then, we have the following statements:

(i) g satisfies the Wilson type equation

g(x+ y) + g(x− y) = λg(x)lh(y) (Wglh)

for all x, y ∈ G, where lh : G → A is an even function such that
lh(0) = 2λ−1.

(ii) In particular, if h satisfies the cosine type equation

h(x+ y) + h(x− y) = λh(x)h(y), (Cλ)

then g and h satisfy the Wilson type equation

g(x+ y) + g(x− y) = λ · g(x)h(y) ∀x, y ∈ G. (Wgh)

Proof. (i) From assumption, we can choose {yn} such that ‖h(yn)−1‖ → 0 as
n→∞. Substituting y = yn (with n ∈ N) in (2.1), we have

‖f(x+ yn)− f(x− yn)− λg(x)h(yn)‖ ≤ ϕ(x)
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for all x, yn ∈ G. Then

‖(f(x+ yn)− f(x− yn))h(yn)−1 − λg(x)‖
=
∥∥[f(x+ yn)− f(x− yn)− λg(x)h(yn)]h(yn)−1

∥∥
≤ ‖f(x+ yn)− f(x− yn)− λg(x)h(yn)‖ ‖h(yn)−1‖
≤ ‖h(yn)−1‖ϕ(x) (2.2)

for all y ∈ G. As n→∞ in (2.2), we get

g(x) = λ−1 lim
n→∞

[f(x+ yn)−f(x− yn)]h(yn)−1 (2.3)

for all y ∈ G. Replacing y by y + yn in (2.1),

‖f(x+ (y + yn))− f(x− (y + yn))− λg(x)h(y + yn)‖ ≤ ϕ(x) (2.4)

for all x, y, yn ∈ V. Substituting y by −y + yn in (2.1),

‖f(x+ (−y + yn))− f(x− (−y + yn))− λg(x)h(−y + yn)‖ ≤ ϕ(x) (2.5)

for all x, y ∈ G. Then,

‖f(x+ (y + yn))− f(x− (y + yn))− λg(x)h(y + yn) + f(x+ (−y + yn))

− f(x− (−y + yn))− λg(x)h(−y + yn)‖ ≤ 2ϕ(x) (2.6)

for all x, y ∈ G.
The inequality (2.6) implies that

‖[f((x+ y) + yn)− f((x+ y)− yn)]h(yn)−1

+ [f((x− y) + yn)− f((x− y)− yn)]h(yn)−1

− λg(x)[h(y + yn) + h(−y + yn)]h(yn)−1‖
= ‖[f((x+ y) + yn)− f((x+ y)− yn)− λg(x)h(y + yn)

+ f((x− y) + yn)− f((x− y)− yn)− λg(x)h(−y + yn)]h(yn)−1‖
≤ ‖h(yn)−1‖2ϕ(x) (2.7)

for all x, y ∈ G.
The right-hand side in (2.7) converges to zero as n → ∞. Hence, a limit

function lh : G→ F can be defined as follows:

lh(y) := lim
n→∞

h(y + yn) + h(−y + yn)

λ · h(yn)
, (2.8)

for all y ∈ G, then lh(0) = 2λ−1, and lh is an even function. Letting n → ∞
in (2.7), we see from (2.3) that

g(x+ y) + g(x− y) = λg(x)lh(y) (2.9)

for all x, y ∈ G, as desired.
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(ii) In the case h satisfies (Cλ), the limit lh states nothing else but h from
(2.8). Hence, g and h validate a required equation (Wgh). �

Theorem 2.2. Assume that f, g, h : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)h(y)‖ ≤ ϕ(y) ∀x, y ∈ G. (2.10)

Suppose that there exists a sequence {xn} in G such that

lim
n→∞

‖g(xn)−1‖ = 0.

Then, we have the following statements:

(i) h satisfies

h(x+ y) + h(x− y) = λh(x)lg(y) (Whlg)

for all x, y ∈ G, where lg : G → A is an even function such that
lg(0) = 2λ−1.

(ii) In particular, if g satisfies (Cλ), then h and g satisfy

h(x+ y) + h(x− y) = λ · h(x)g(y). (Whg)

Proof. We choose {xn} in G such that limn→∞ ‖g(xn))−1‖ = 0.
Taking x = xn (with n ∈ N) in (2.10), dividing both sides by ‖λ · g(xn)‖,

and passing to the limit as n→∞, then

h(y) = λ−1 lim
n→∞

[f(xn + y)− f(xn − y)]g(xn)−1 (2.11)

for all xn, y ∈ G.
Replace (x, y) by (xn + y, x) and (x, y) by (xn − y, x) in (2.10). The same

procedure as those of the equations (2.4) ∼ (2.7) of Theorem 2.1, is performed.
That is, adding the above two inequalities obtained by replacing, and dividing
by λ · g(xn), as n→∞, then it imply the existence of a limit function

lg(y) := lim
n→∞

g(xn + y) + g(xn − y)

λ · g(xn)
, (2.12)

where lg : G→ C satisfies

h(x+ y) + h(x− y) = λh(x)lg(y) ∀x, y ∈ G
for all x, y ∈ G, as desired.

For remainder, let go through the same steps as Theorem 2.1, then we get
the required results. �

The following corollary follows immediate from the Theorems 2.1 and 2.2.

Corollary 2.3. Assume that f, g, h : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)h(y)‖ ≤

{
min{ϕ(x), ϕ(y)} or

ε
∀ x, y ∈ G.
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Then we have the following statements:

(i) Suppose that there exists a sequence {yn} in G such that

lim
n→∞

‖h(yn)−1‖ = 0.

Then, g satisfies (Wglh) with the even function lh s.t. lh(0) = 2λ−1.

In particular, if h satisfies (Cλ), then g and h satisfy (Wgh).

(ii) Suppose that there exists a sequence {xn} in G such that

lim
n→∞

‖g(xn)−1‖ = 0.

Then, h satisfies (Whlg) with the even function lg s.t. lg(0) = 2λ−1.

In particular, if g satisfies (Cλ), then h and g satisfy (Whg).

By replacing h by f , g by f , h by g in Theorem 2.1 and Theorem 2.2, we
obtain the following corollaries.

Corollary 2.4. Assume that f, g : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)f(y)‖ ≤ ϕ(x), ∀x, y ∈ G.
Suppose that there exists a sequence {yn} in G such that

lim
n→∞

‖f(yn)−1‖ = 0.

Then, we have the following statements:

(i) g satisfies

g(x+ y) + g(x− y) = λg(x)lf (y), ∀x, y ∈ G,
where lf : G→ A is an even function such that lf (0) = 2λ−1.

(ii) In particular, if f satisfies (Cλ), then g and f satisfy

g(x+ y) + g(x− y) = λ · g(x)f(y).

Corollary 2.5. Assume that f, g : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)f(y)‖ ≤ ϕ(y), ∀x, y ∈ G.
Suppose that there exists a sequence {xn} in G such that

lim
n→∞

‖g(xn)−1‖ = 0.

Then, we have the following statements:

(i) h satisfies

f(x+ y) + f(x− y) = λf(x)lg(y), ∀x, y ∈ G,
where lg : G→ A is an even function such that lg(0) = 2λ−1.

(ii) In particular, if g satisfies (Cλ), then f and g satisfy

f(x+ y) + f(x− y) = λ · f(x)g(y).
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Corollary 2.6. Assume that f, h : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λf(x)h(y)‖ ≤ ϕ(x), ∀x, y ∈ G.

Suppose that there exists a sequence {yn} in G such that

lim
n→∞

‖h(yn)−1‖ = 0.

Then, we have the following statements:

(i) f satisfies

f(x+ y) + f(x− y) = λf(x)lh(y), ∀x, y ∈ G,

where lh : G→ A is an even function such that lh(0) = 2λ−1.
(ii) In particular, if h satisfies (Cλ), then f and h satisfy

f(x+ y) + f(x− y) = λ · f(x)h(y).

Corollary 2.7. Assume that f, h : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λf(x)h(y)‖ ≤ ϕ(y), ∀x, y ∈ G.

Suppose that there exists a sequence {xn} in G such that

lim
n→∞

‖f(xn)−1‖ = 0.

Then, we have the following statements:

(i) h satisfies

h(x+ y) + h(x− y) = λh(x)lf (y), ∀x, y ∈ G.

where lf : G→ A is an even function such that lf (0) = 2λ−1.

(ii) In particular, if f satisfies (Cλ), then h and f satisfy

h(x+ y) + h(x− y) = λ · h(x)f(y).

Corollary 2.8. Assume that f, g : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)g(y)‖ ≤ ϕ(x) or ϕ(y), ∀x, y ∈ G.

Suppose that there exists sequences {xn} or {yn} in G such that

lim
n→∞

‖g(xn)−1‖ = 0

or

lim
n→∞

‖g(yn)−1‖ = 0,

respectively. Then, g satisfies

g(x+ y) + g(x− y) = λg(x)lg(y)

where lg : G→ A is an even function such that lg(0) = 2λ−1.
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Corollary 2.9. Assume that f : G×G→ A satisfy the inequality

‖f(x+ y)− f(x− y)− λf(x)f(y)‖ ≤ ϕ(x) or ϕ(y), ∀x, y ∈ G.

Suppose that there exists sequences {xn} or {yn} in G such that

lim
n→∞

‖g(xn)−1‖ = 0

or

lim
n→∞

‖g(yn)−1‖ = 0,

respectively. Then, f is bounded.

Proof. Assume that f is not bounded. Then, by applying g = f in Corollary
2.4 and Corollary 2.5, f satisfies (Cλ). By the way, that f satisfies (Cλ) implies
f satisfies (T λ) by Theorem 1 in [18]. Hence, f satisfies simultaneously (Cλ)
and (T λ). This forces that f is a zero function. But we know that there
exists the cosine function which satisfies (C) as a non-zero. Hence the result
is obtained by a contradiction. �

Remark 2.10. In all results in this section, by applying ϕ(x) = ϕ(y) = ε, we
can obtain the same results as those.

3. Applications of the case f̃(x) := f(x)f(0)−1 in equation (T λffgh)

Note that f̃(x) := f(x)f(0)−1. The following lemmas which is easy to verify
shows that the similar argument holds without assuming the continuity. To

ease the presentation, we continue using this notation f̃ and note that it is
legel only when f(0) 6= 0.

We consider the following type functional equation:

f(x+ y)− f(x− y) = λf(x)f(y). (T λ)

Lemma 3.1. ([10]) Let f, g : V → A be functions satisfying

f(x+ y) + f(x− y) = λf(x)g(y), for all x, y ∈ V.

If f is an even function, then either f 6= 0 or f̃ satisfies (C).

Lemma 3.2. Let f, g : V → A be functions satisfying

f(x+ y)− f(x− y) = λf(x)g(y), for all x, y ∈ V. (T λfg)

If f is odd function, then either f 6= 0 or f̃ satisfies (T ).

Proof. Since f is odd, let x = 0 in (T λfg). Then f(y) − f(−y) = λf(0)g(y).
Thus 2f(y) = λf(0)g(y). �
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Theorem 3.3. Let ϕ : V → [0,+∞) be a function, and f, g, h : V → A be
functions satisfying

‖f(x+ y)− f(x− y)− λg(x)h(y)‖ ≤ ϕ(x) (3.1)

for all x, y ∈ V with λ > 0. Suppose that there exists a sequence {yn} in V
such that

lim
n→∞

‖h(yn)−1‖ = 0.

Then, we have the following statements:

(i) g 6= 0 is an even function, then g̃ satisfies (C).
(ii) g 6= 0 is odd function, then g̃ satisfies (T ).

Proof. Let f, g, h : V → A be functions satisfying (3.1) for all x, y ∈ V
with λ > 0. Assume that there exists a sequence {yn} in V such that
limn→∞ ‖h(yn)−1‖ = 0. Then, by Theorem 2.1, there exists an even func-
tion lh : V → A with lh(0) = 2λ−1 and g satisfies (Wglh). Then, (i) holds by
the Lemma 3.1. By Lemma 3.2, (ii) holds, that is, g̃ satisfies (T ). �

Corollary 3.4. Let ϕ : V → [0,+∞) be a function and f, h, k : V → C be
functions satisfying

|f(x+ y)− f(x− y)− λg(x)h(y)| ≤ ϕ(x)

for all x, y ∈ V with λ > 0. Suppose that g 6= 0 and h is unbounded, Then, we
have the following statements:

(i) if g is even, then g̃ satisfies (C).
(ii) if g is odd, then g̃ satisfies (T ).

Corollary 3.5. Let ϕ : V → [0,+∞) be a function and f, g : V → A be
functions satisfying

‖f(x+ y)− f(x− y)− λg(x)f(y)‖ ≤ ϕ(x)

for all x, y ∈ V with λ > 0. If f 6= 0 is odd and there exists a sequence {yn}
in V such that limn→∞ ‖f(yn)−1‖ = 0, then g̃ = (λ/2) · g satisfies (C).

Proof. Replace h by f in Theorem 3.3. If f 6= 0 is odd, then, by (2.3), it
implies that g is even with g(0) = 2λ−1. Hence the required result holds from
(i) in Theorem 3.3. �
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4. Representation of solution for the Wilson type equations.

The solution of the Wilson equation(Wfg) was investigated in ([1], [14]).

In the following Lemma 4.1, a solution for the Wilson type Eqs.(Wfg) and
(Wgf ) will be investigated. Hence, its explicit solutions for results obtained
in Sections 2 can be represented immediately from Lemma 4.1.

In this section, let C be a set of all complex numbers, C∗ = C \ {0}. When-
ever we only deal with C, (G,+) needs the Abelian which is not λ-divisible.

It is easy to verify shows that the following lemma holds.

Lemma 4.1. Let f, g : G×G→ C∗ satisfy the Wilson type equation:

f(x+ y) + f(x− y) = λf(x)g(y), (Wfg)

f(x+ y) + f(x− y) = λg(x)f(y). (Wgf )

Then, g satisfies (Cλ), and g, f are given by

g(x) =
E(x) + E(−x)

λ
, f(x) = c(E(x)− E(−x)) +

d

λ
(E(x) + E(−x)),

where c, d ∈ C, and E : G→ C∗ is a homomorphism.

Corollary 4.2. Assume that f, g, h : G×G→ C∗ satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)h(y)‖ ≤ ϕ(x), ∀ x, y ∈ G.

If h fails to be bounded, then g and lh satisfy (Wglh). In particular, if h
satisfies (C), then g and h satisfy (Wgh) and g, h are given by

h(x) =
E(x) + E(−x)

λ
, g(x) = c(E(x)− E(−x)) +

d

λ
(E(x) + E(−x)),

where c, d ∈ C, and E : G→ C∗ is a homomorphism.

Corollary 4.3. Assume that f, g, h : G×G→ C∗ satisfy the inequality

‖f(x+ y)− f(x− y)− λg(x)h(y)‖ ≤ ϕ(y), ∀ x, y ∈ G.

If g fails to be bounded, then h and lg satisfy (Whlg). In particular, if g
satisfies (C), then h and g satisfies (Whg), and h, g are given by

g(x) =
E(x) + E(−x)

λ
, h(x) = c(E(x)− E(−x)) +

d

λ
(E(x) + E(−x)),

where c, d ∈ C, and E : G→ C∗ is a homomorphism.
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Corollary 4.4. Suppose that f, g, h : G→ C∗ satisfy the inequality

|f(x+ y)− f(x− y)− λg(x)h(y)| ≤

{
min{ϕ(x), ϕ(y)} or

ε
∀ x, y ∈ G.

(4.1)
Then, we have the following statements:

(i) If h fails to be bounded, then g and lh satisfy (Wglh). In particular, if
h satisfies (C), then g and h satisfy (Wgh) and g, h are given by

h(x) =
E(x) + E(−x)

λ
and

g(x) = c(E(x)− E(−x)) +
d

λ
(E(x) + E(−x)),

where c, d ∈ C, and E : G→ C∗ is a homomorphism.
(ii) If g fails to be bounded, then h and lg satisfy (Whlg). In particular, if

g satisfies (C), then h and g satisfies (Whg), and h, g are given by

g(x) =
E(x) + E(−x)

λ
and

h(x) = c(E(x)− E(−x)) +
d

λ
(E(x) + E(−x)),

where c, d ∈ C, and E : G→ C∗ is a homomorphism.

5. Extension to the Banach algebra

In all the results presented in Sections 2 and 3, the range of functions on
the Abelian group can be extended to the semisimple commutative Banach
algebra. We will represent just for the main equation (T λffgh).

Theorem 5.1. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra.
Assume that f, g, h : G→ E satisfy one of each inequalities

‖f(x+ y)− f(x− y)− λ · g(x)h(y)‖ ≤

{
(i) ϕ(x)

(ii) ϕ(y)
(5.1)

for all x, y ∈ G with λ > 0 is a constant. For an arbitrary linear multiplicative
functional x∗ ∈ E∗, then we have the following statements:

(i) If x∗ ◦h fails to be bounded, then g satisfies (Wglh): g(x+ y) + g(x−
y) = λg(x)lh(y), where lh : G → A is an even function such that
lh(0) = 2λ−1. In particular, if h satisfies (Cλ), then g and h satisfy
the (Wgh).



252 Gwang Hui Kim

(ii) If x∗ ◦ g fails to be bounded, then g satisfies (Whlg): h(x+ y) + h(x−
y) = λh(x)lg(y), where lg : G → A is an even function such that

lg(0) = 2λ−1. In particular, if g satisfies (Cλ), then h and g satisfies
the (Whg).

Proof. (i) Assume that (5.1) holds and arbitrarily fixes a linear multiplicative
functional x∗ ∈ E∗. As is well known, given that ‖x∗‖ = 1, for every x, y ∈ G,

ϕ(x) ≥ ‖f(x+ y)− f(x− y)− λ · g(x)h(y)‖
= sup
‖y∗‖=1

∣∣y∗(f(x+ y)− f(x− y)− λ · g(x)h(y)
)∣∣

≥
∣∣x∗(f(x+ y)

)
− x∗

(
f(x− y)

)
− λ · x∗

(
g(x)

)
x∗
(
h(y)

)∣∣,
which states that the superpositions x∗ ◦ f , x∗ ◦ g, and x∗ ◦ h yield a solution
of inequality (2.1) in Theorem 2.1. Given the assumption, the superposition
x∗◦h is unbounded, an appeal to (i) of Theorem 2.1 shows that the two results
hold.

First, the superposition x∗ ◦ g solves (Wglh) with x∗ ◦ lh, that is,

(x∗ ◦ g)
(
x+ y) + (x∗ ◦ g)

(
x− y

)
= λ(x∗ ◦ g)(x)(x∗ ◦ lh)(y).

Since x∗ is a linear multiplicative functional, we have

x∗(g(x+ y) + g(x− y)− λ · g(x)lh(y)) = 0.

Hence, an unrestricted choice of x∗ implies that

g(x+ y) + g(x− y)− λ · g(x)lh(y) ∈
⋂
{kerx∗ : x∗ ∈ E∗}.

Since the space E is semisimple,
⋂
{kerx∗ : x∗ ∈ E∗} = 0, which means that

g satisfies the claimed equation (Wglh) with lh(0) = 2λ−1

In particular, if h satisfies (Cλ), then lh implies h. Hence, (Wgh) holds.
(ii) The second cases are also the same because each case of Theorem 2.2 is

similar to case (i). �

Remark 5.2. In all results, we can obtain more corollaries from setting as
the following.

(i) Choosing f, g, h in three places, {ϕ(x), ϕ(y),min{ϕ(x), ϕ(y)}, ε: con-
stant}, and λ = 2, from the such setting, we can obtain more the
stability results for the following number of equations: 3!× 4× 2.

(ii) The case λ = 2 can be applied well known stability results for the
cosine type “+”(Wilson) equation, which are found in papers (Badora
[3], Ger [4], Baker [3], Kannappan and Kim [15], Kim ([16] ∼ [22]).
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