EXISTENCE OF POSITIVE SYMMETRIC SOLUTIONS FOR A CLASS OF SINGULAR SECOND ORDER THREE-POINT BOUNDARY VALUE PROBLEMS

Chengfei Li ${ }^{1}$, Zengqin Zhao ${ }^{2}$ and Jie Yan ${ }^{3}$
${ }^{1}$ School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, P. R. China e-mail: lichengfei02@126.com
${ }^{2}$ School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, P. R. China
${ }^{3}$ The Number 11 Middle School of Suzhou, Anhui, P. R China

Abstract

In this paper, by applying the Guo-Krasnosel'skii fixed point theorem and some fixed index theorem we study the existence of positive symmetric solutions for a class of singular second-order three-point boundary value problems. The nonlinear term may be singular at $t=0,1$ and can be allowed to change sign.

1. Introduction

In this paper, we will study the existence of positive symmetric solutions for the following boundary value problems(BVP):

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+a(t) x^{\prime}(t)+f(t, x(t))=0, \quad 0<t<1 \tag{1.1}\\
x(0)=x(1)=\alpha x(\eta)
\end{array}\right.
$$

where $\alpha \in\left[0, \frac{1}{2}\right], \eta \in(0,1)$ is a constant, $a(t) \in C[0,1], f \in C((0,1) \times$ $[0,+\infty), R)$.

In recent years, the problems for the existence of positive solutions to second order multi-point BVP have received much attention, and many excellent

[^0]results have been established, for instance, ([4]-[6], [8]). However, to the best of our knowledge, it seems there are few results about symmetric positive solutions to multi-point BVP in the relevant literatures. In [1] Avery and Henderson studied the existence of symmetric positive solutions for the twopoint BVP
\[

\left\{$$
\begin{array}{l}
u^{\prime \prime}(t)+f(u(t))=0, \quad t \in(0,1) \\
u(0)=u(1)=0
\end{array}
$$\right.
\]

by applying a fixed point theorem due to Avery. In [10], Wang investigated three-point BVP

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+h(t) f(t, u(t))=0, \quad 0<t<1 \\
u(t)=u(1-t), \alpha u^{\prime}(0)-\beta u^{\prime}(1)=\gamma u\left(\frac{1}{2}\right),
\end{array}\right.
$$

and obtained the existence of symmetric positive solutions by using the fixed index theorem in cones.

However, in the above literatures they assumed that the nonlinear term f was non-singular and non-negative. Motivated by the above excellent works, in this paper, we intend to study the existence of symmetric positive solutions to a class of BVP in which the nonlinear term f was allowed be singular at $t=0,1$ and be sign-changing by applying Guo-Krasnosel'skii fixed point theorem and some fixed point index theorem in cones.

For the convenience of readers several main assumptions are provided as the following:
(H1) for $a \in C[0,1]$ and $t \in[0,1], a(t)=-a(1-t)$. In addition, $q(t) \in$ $C(0,1)$ is nonnegative and $q(t)=q(1-t)$ for any $t \in(0,1)$.
(H2) $f(t, x) \in C((0,1) \times[0,+\infty), R)$ is symmetric on $(0,1)$ (i.e., $f(t, x)=$ $f(1-t, x)$ for any $t \in(0,1))$. For any $t \in(0,1), f(t, x)$ is nonincreasing about x on $(0,+\infty)$, and $f(t, x) \geq-q(t) x$ for any $(t, x) \in(0,1) \times$ $[0,+\infty)$.
(H3) $\left|\max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) f\left(s, k \phi_{1}(s) \phi_{2}(s)\right) d s\right|<+\infty$ for any $k>0$, $\max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) q(s) d s<+\infty$ and there exists some $r>0$ such that $\max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) f\left(s, r \phi_{1}(s) \phi_{2}(s)\right) d s>0$, where $\gamma(t, s)=$ $G(t, s)+\frac{\alpha\left(\phi_{1}(t)+\phi_{2}(t)\right)}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s)$.
Throughout this paper, let $E=C[0,1]$ be a Banach space with the norm $\|x\|=\max _{0 \leq t \leq 1}|x(t)|$ for any $x \in E$.

2. Preliminaries

In this section, we present some lemmas which are essential in the proof of our main results.

Lemma 2.1. [5] Let $a(t), b(t) \in C[0,1]$ with $b(t)>0$ for any $t \in[0,1]$. Assume that $\phi_{1}(t), \phi_{2}(t)$ are the solutions of the following $B V P$, respectively

$$
\left\{\begin{array}{l}
\phi_{1}^{\prime \prime}(t)+a(t) \phi_{1}^{\prime}(t)-b(t) \phi_{1}(t)=0, \quad 0<t<1 \tag{2.1}\\
\phi_{1}(0)=0, \quad \phi_{1}(1)=1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\phi_{2}^{\prime \prime}(t)+a(t) \phi_{2}^{\prime}(t)-b(t) \phi_{2}(t)=0, \quad 0<t<1 \tag{2.2}\\
\phi_{2}(0)=1, \quad \phi_{2}(1)=0
\end{array}\right.
$$

then
(i) $\phi_{1}(t)$ is strictly increasing on $[0,1]$ and $\phi_{1}^{\prime}(0)>0$;
(ii) $\phi_{2}(t)$ is strictly decreasing on $[0,1]$.

Lemma 2.2. The above two boundary value problems (2.1) and (2.2) have a unique solution.

Proof. First, we show that $\operatorname{BVP}(2.1)$ has a unique solution.
In fact, if there exists $v_{1}(t)$ and $v_{2}(t)$ be two solutions of $\operatorname{BVP}(2.1)$, then $v_{0}(t)=v_{1}(t)-v_{2}(t)$ is also a solution of $\operatorname{BVP}(2.1)$. Moreover, $v_{0}(t)$ satisfies that

$$
\left\{\begin{array}{l}
v_{0}^{\prime \prime}(t)+a(t) v_{0}^{\prime}(t)-b(t) v_{0}(t)=0 \quad 0<t<1 \tag{2.3}\\
v_{0}(0)=0, v_{0}(1)=0
\end{array}\right.
$$

Thus, by the maximum principle we obtain $v_{0}(t) \equiv 0, t \in[0,1]$. And so, $\operatorname{BVP}(2.1)$ has only one solution. Similarly, BVP(2.2) has also only one solution.

Lemma 2.3. Let $a(t)=-a(1-t), t \in[0,1]$ and $a(t) \in C[0,1]$. Then $\phi_{1}(t)=\phi_{2}(1-t)$ for any $t \in[0,1]$

Proof. Following the above conditions, it is easy to prove $\phi_{2}(1-t)$ satisfying $\operatorname{BVP}(2.1)$. Further, by Lemma 2.2, we obtain $\phi_{1}(t)=\phi_{2}(1-t)$. The proof is complete.

Lemma 2.4. For any $a(t), b(t) \in C[0,1]$ with $b(t)>0, t \in[0,1], y(t) \in$ $C[0,1]$, the $B V P$

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+a(t) x^{\prime}(t)-b(t) x(t)+y(t)=0, \quad 0<t<1 \tag{2.4}\\
x(0)=x(1)=\alpha x(\eta)
\end{array}\right.
$$

has a unique solution. Moreover, this solution can be expressed in the form

$$
\begin{equation*}
u(t)=\int_{0}^{1} \gamma(t, s) p(s) y(s) d s \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
\gamma(t, s)=G(t, s)+\frac{\alpha\left(\phi_{1}(t)+\phi_{2}(t)\right)}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s) \\
G(t, s)=\frac{1}{\phi_{1}^{\prime}(0)}\left\{\begin{array}{l}
\phi_{1}(t) \phi_{2}(s), \quad t \leq s, \quad p(s)=\exp \left(\int_{0}^{s} a(\theta) d \theta\right) \\
\phi_{1}(s) \phi_{2}(t), \\
s \leq t,
\end{array}\right.
\end{gathered}
$$

Proof. It is not difficult to testify the above conclusions.
Lemma 2.5. For any $(t, s) \in[0,1] \times[0,1]$, we have $G(t, s) \geq 0, G(1-t, 1-s)=$ $G(t, s), \phi_{1}(t) \phi_{2}(t) G(s, s) \leq G(t, s) \leq G(s, s), \gamma(t, s) \leq \tilde{\gamma}(s)$, where

$$
\tilde{\gamma}(s)=G(s, s)+\frac{2 \alpha}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s)
$$

Proof. Following the definition for Green's function $G(t, s)$, Lemma 2.1 and Lemma 2.2, we easily obtain the above conclusions.

Now for any $h(t) \in C[0,1]$ with $h(t) \geq 0, t \in[0,1]$, we consider the following BVP

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+a(t) x^{\prime}(t)-q(t) x(t)+f(t, h(t))+q(t) h(t)=0, \quad 0<t<1 \tag{2.6}\\
x(0)=x(1)=\alpha x(\eta)
\end{array}\right.
$$

By Lemma 2.4, if the BVP (2.6) has a solution, then the solution can be expressed by

$$
u(t)=\int_{0}^{1} \gamma(t, s) p(s)(f(s, h(s))+q(s) h(s)) d s
$$

Now for $h(t) \in C[0,1]$ with $h(t) \geq 0, t \in[0,1]$, define an operator

$$
A h(t)=\int_{0}^{1} \gamma(t, s) p(s)(f(s, h(s))+q(s) h(s)) d s
$$

Let

$$
P=\left\{x \in E \mid x(t) \geq 0, x(t) \text { is symmetric on }[0,1], x(t) \geq \phi_{1}(t) \phi_{2}(t)\|x\|,\right\}
$$

It is easy to show that P is a cone in E .
Lemma 2.6. Assume that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ hold. Then for any $0<$ $R_{1}<R_{2}<+\infty, A: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is completely continuous, where $\Omega_{i}=\left\{x \in E \mid\|x\|<R_{i}\right\}, i=1,2$.

Proof. First, for any $x \in P$, by $\left(H_{1}\right)$ and $\left(H_{2}\right), A x(t) \geq 0$ for any $t \in[0,1]$.

$$
\begin{aligned}
& A x(1-t) \\
&= \int_{0}^{1} \gamma(1-t, s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
&= \int_{0}^{1} G(1-t, s) p(s)(f(s, x(s))+x(s)) d s \\
&+\int_{0}^{1} \frac{\alpha\left(\phi_{1}(1-t)+\phi_{2}(1-t)\right)}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
&= \int_{0}^{1} G(1-t, 1-s) p(1-s)(f(1-s, x(1-s))+q(1-s) x(1-s)) d s \\
&+\int_{0}^{1} \frac{\alpha\left(\phi_{1}(t)+\phi_{2}(t)\right)}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
&= \int_{0}^{1} G(t, s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
&+\int_{0}^{1} \frac{\alpha\left(\phi_{1}(t)+\phi_{2}(t)\right)}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
&= A x(t)
\end{aligned}
$$

So, $A x(t)$ is symmetric on $[0,1]$.
Next, for any $x \in E, t \in[0,1]$, we get

$$
\begin{aligned}
A x(t)= & \int_{0}^{1} \gamma(t, s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
\leq & \int_{0}^{1}\left(G(s, s)+\frac{2 \alpha}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s)\right) \\
& \times p(s)(f(s, x(s))+q(s) x(s)) d s
\end{aligned}
$$

Thus,

$$
\|A x(t)\| \leq \int_{0}^{1} \tilde{\gamma}(s) p(s)(f(s, x(s))+q(s) x(s)) d s
$$

And also,

$$
\begin{aligned}
A x(t) \geq & \int_{0}^{1}\left(\phi_{1}(t) \phi_{2}(t) G(s, s)+\frac{\alpha\left(\phi_{1}(t) \phi_{2}(t)+\phi_{2}(t) \phi_{1}(t)\right)}{1-\alpha\left(\phi_{1}(\eta)+\phi_{2}(\eta)\right)} G(\eta, s)\right) \\
& \times p(s)(f(s, x(s))+q(s) x(s)) d s \\
= & \phi_{1}(t) \phi_{2}(t) \int_{0}^{1} \tilde{\gamma}(s) p(s)(f(s, x(s))+q(s) x(s)) d s \\
\geq & \phi_{1}(t) \phi_{2}(t)\|A x\| .
\end{aligned}
$$

Finally, we will show that $A: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is completely continuous. Suppose $\left\{x_{n}\right\}_{n \geq 1} \subseteq P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ and $x_{0} \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Then we obtain $R_{1} \phi_{1}(t) \phi_{2}(t) \leq x_{n}(t) \leq R_{2}$ for any $t \in[0,1]$ and $n \geq 0$.
By virtue of

$$
\begin{aligned}
\max _{t \in[0,1]} A x_{n}(t)= & \max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s)\left(f\left(s, x_{n}(s)\right)+q(s) x_{n}(s)\right) d s \\
\leq & \max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) f\left(s, R_{1} \phi_{1}(s) \phi_{2}(s)\right) d s \\
& +R_{2} \max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) q(s) d s<+\infty
\end{aligned}
$$

we have from the Lebesgue dominated convergence theorem that $\left\|A x_{n}-A x_{0}\right\|$ $\rightarrow 0, \quad(n \rightarrow \infty)$. Thus, $A: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is continuous.

Next, we will show that $A\left(P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)\right)$ is relatively compact.
For any $x \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, we have $R_{1} \phi_{1}(t) \phi_{2}(t) \leq x(t) \leq R_{2}$ for any $t \in[0,1]$.

$$
\begin{aligned}
A x(t) \leq & \max t \in[0,1] \int_{0}^{1} \gamma(t, s) p(s) f\left(s, R_{1} \phi_{1}(s) \phi_{2}(s)\right) d s \\
& +R_{2} \max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) q(s) d s<+\infty, \quad t \in[0,1],
\end{aligned}
$$

which means that $A\left(P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)\right)$ is bounded.
Now, for any $t_{1}, t_{2} \in[0,1]$ and $x \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ we get

$$
\begin{aligned}
& \left|A x\left(t_{1}\right)-A x\left(t_{2}\right)\right| \\
& \leq \int_{0}^{1}\left|\gamma\left(t_{1}, s\right)-\gamma\left(t_{2}, s\right)\right| p(s)(f(s, x(s))+q(s) x(s)) d s \\
& \leq \int_{0}^{1}\left|\gamma\left(t_{1}, s\right)-\gamma\left(t_{2}, s\right)\right| p(s)\left(f\left(s, R_{1} \phi_{1}(s) \phi_{2}(s)\right)+R_{2} q(s)\right) d s
\end{aligned}
$$

Thus, we have that $A\left(P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)\right)$ is equicontinuous on $[0,1]$. So, by the Arzela-Ascoli theorem we obtain that $A: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is completely continuous.

Lemma 2.7. [2] Let Ω_{1}, Ω_{2} be bounded open subset in a real Banach space E, P be a cone of $E, \theta \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. Let $A: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ be a completely continuous operator such that either
(i) $\|A u\| \leq\|u\|, u \in P \cap \partial \Omega_{1}$, and $\|A u\| \geq\|u\|, u \in P \cap \partial \Omega_{2}$;
or
(ii) $\|A u\| \geq\|u\|, \quad u \in P \cap \partial \Omega_{1}$, and $\|A u\| \leq\|u\|, u \in P \cap \partial \Omega_{2}$.

Then A has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

Lemma 2.8. [2] Let X be a Banach space, and $P \subset X$ be a cone in E. Assume Ω is a bounded open subset of E with $\theta \in \Omega$, and let $A: P \cap \bar{\Omega} \rightarrow P$ be a completely continuous operator with $A x \neq x$ for any $x \in P \cap \partial \Omega$.
(i) If $\|x\| \leq\|A x\|, x \in P \cap \partial \Omega$, then $i(A, P \cap \Omega, P)=0$;
(ii) If $T u \neq \mu u$ for any $u \in P \cap \partial \Omega, \mu>1$, then $i(A, P \cap \Omega, P)=1$.

Lemma 2.9. [7] Let P be a cone of a real Banach space E and $B: P \rightarrow P$ be a completely continuous operator. Assume that B is order-preserving and positively homogeneous of degree 1 and that there exist $v \in P \backslash\{\theta\}, \lambda>0$ such that $B v \geq \lambda v$. Then $r(B) \geq \lambda$, where $r(B)$ denotes the spectral radius of B.

3. Main results

In this section, we will present several main results.
Let

$$
B h(t)=\int_{0}^{1} \gamma(t, s) p(s) q(s) h(s) d s .
$$

Obviously, $B: P \rightarrow P$ is a completely continuous operator.
Theorem 3.1. Assume that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ hold, in addition, suppose that
(H4) There is a constant $\rho_{1}>0,0<\alpha<\beta<1$, such that

$$
\begin{gathered}
\min _{\sigma \rho_{1} \leq h(t) \leq \rho_{1}, \alpha \leq t \leq \beta}(f(t, h(t))+q(t) h(t)) \geq \wedge_{1} \rho_{1}, \\
\text { where } \wedge_{1}=\max _{\alpha \leq t \leq \beta}\left(\int_{\alpha}^{\beta} \gamma(t, s) p(s) d s\right)^{-1}, \sigma=\min _{t \in[\alpha, \beta]} \phi_{1}(t) \phi_{2}(t) .
\end{gathered}
$$

If $\|B\|<1$, then the $B V P$ (1.1) has at least one positive symmetric solution.
Proof. By the assumption $\left(H_{4}\right)$, let

$$
\Omega_{1}=\left\{h \in P \mid\|h\|<\rho_{1}\right\} .
$$

If $h \in \Omega_{1}$, then $\rho_{1} \phi_{1}(t) \phi_{2}(t) \leq h(t) \leq \rho_{1}$. Obviously, for any $\alpha \leq t \leq \beta$, we have $\sigma \rho_{1} \leq h(t) \leq \rho_{1}$ and

$$
\begin{aligned}
\|A h\| \geq A h(t) & =\int_{0}^{1} \gamma(t, s) p(s)(f(s, h(s))+q(s) h(s)) d s \\
& \geq \int_{\alpha}^{\beta} \gamma(t, s) p(s)(f(s, h(s))+q(s) h(s)) d s \\
& \geq \int_{\alpha}^{\beta} \gamma(t, s) p(s) d s \cdot \wedge_{1} \rho_{1} \geq \rho_{1}=\|h\| .
\end{aligned}
$$

Let $\rho_{2}>\max \left\{r, \rho_{1}, \frac{1}{1-\|B\|} \max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) f\left(s, r \phi_{1}(s) \phi_{2}(s)\right) d s\right\}$ and $\Omega_{2}=\left\{h \in P \mid\|h\|<\rho_{2}\right\}$. Then for any $t \in[0,1]$, we get

$$
\begin{aligned}
A h(t) & =\int_{0}^{1} \gamma(t, s) p(s) f(s, h(s)) d s+B h(t) \\
& \leq \int_{0}^{1} \gamma(t, s) p(s) f\left(s, r \phi_{1}(s) \phi_{2}(s)\right) d s+B h(t)
\end{aligned}
$$

Thus, for any $t \in[0,1]$,

$$
\begin{aligned}
|A h(t)| & \leq \max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) f\left(s, r \phi_{1}(s) \phi_{2}(s)\right) d s+\|B\| \cdot \rho_{2} \\
& \leq \rho_{2}(1-\|B\|)+\|B\| \cdot \rho_{2}=\rho_{2}=\|h\|
\end{aligned}
$$

that is, $\|A h\| \leq\|h\|$. So, by Lemma 2.7 , the operator A has a fixed point $h^{*} \in$ $\bar{\Omega}_{2} \backslash \Omega_{1}$, further, $h^{*}(t)$ is one positive symmetric solution of the $\operatorname{BVP}(1.1)$.
Corollary 3.2. Assume that $\left(H_{1}\right)$, $\left(H_{2}\right)$ and $\left(H_{3}\right)$ are satisfied, and there exists $0<\alpha<\beta<1$, such that $\liminf _{h \rightarrow 0^{+}} \min _{\alpha \leq \beta}(f(t, h)+q(t) h)>0$. If $\|B\|<1$, then the $B V P(1.1)$ has at least one positive symmetric solution.

Proof. Obviously, the condition $\liminf _{h \rightarrow 0^{+}} \min _{\alpha \leq \beta}(f(t, h)+q(t) h)>0$ can implies that the assumption $\left(H_{4}\right)$ holds, hence this conclusion holds.

Theorem 3.3. Assume that $\left(H_{1}\right)$, $\left(H_{2}\right)$ and $\left(H_{3}\right)$ hold. If there exists $\rho_{2}>$ $0,0<\alpha<\beta<1$, such that

$$
\min _{\sigma \rho_{1} \leq h(t) \leq \rho_{1}, \alpha \leq t \leq \beta}(f(t, h(t))+q(t) h(t))>\wedge_{1} \rho_{2}
$$

where $\wedge_{1}=\max _{\alpha \leq t \leq \beta}\left(\int_{\alpha}^{\beta} \gamma(t, s) p(s) d s\right)^{-1}, \sigma=\min _{t \in[\alpha, \beta]} \phi_{1}(t) \phi_{2}(t)$, then as $r(B)<1$ and there exists $R>0$ such that

$$
\max _{t \in[0,1]} \int_{0}^{1} \gamma(t, s) p(s) f\left(s, R \phi_{1}(s) \phi_{2}(s)\right) d s \leq 0
$$

the $B V P(1.1)$ has at least one positive symmetric solution.
Proof. Let $\Omega_{1}=\left\{h \in P \mid\|h\|<\rho_{2}\right\}$. Then for any $\rho>\rho_{2}$ and $\Omega_{\rho}=\{h \in P \mid$ $\|h\|<\rho\}$, by Lemma 2.6 we obtain $A: \bar{\Omega}_{\rho} \backslash \Omega_{1} \rightarrow P$ is completely continuous. By the extended theorem of completely continuous operators, there exists a completely continuous function $\tilde{A}: \bar{\Omega}_{\rho} \rightarrow P$ such that $\tilde{A} h=A h$ for any $h \in \bar{\Omega}_{\rho} \backslash \Omega_{1}$.

Next, we show $\tilde{A} h \neq h$ for any $h \in \partial \Omega_{1}$.
In fact, if not, then there exists some $h \in \partial \Omega_{1}$ such that $\tilde{A} h=h$. For any
$t \in[\alpha, \beta]$, we get

$$
\begin{aligned}
\|h\| \geq h(t)=\tilde{A} h(t)=A h(t) & \geq \int_{\alpha}^{\beta} \gamma(t, s) p(s)(f(s, h(s))+q(s) h(s)) d s \\
& >\int_{\alpha}^{\beta} \gamma(t, s) p(s) d s \cdot \wedge_{1} \rho_{2} \geq \rho_{2}=\|h\|
\end{aligned}
$$

which gets a contradiction. Modeling the proof of the Theorem 3.1, we obtain $\|\tilde{A} h\| \geq\|h\|$ for any $h \in \partial \Omega_{1}$. Hence, by Lemma $2.8 i\left(\tilde{A}, \Omega_{1}, P\right)=0$.

Let $\rho_{3}>\max \left\{\rho_{2}, R\right\}$ and $\Omega_{2}=\left\{h \in P \mid\|h\|<\rho_{3}\right\}$.
Finally, we show $\tilde{A} h=\mu h, h \in \partial \Omega_{2} \Rightarrow \mu<1$.
If not, there exists $\mu_{0} \geq 1, h_{0} \in \partial \Omega_{2}$ such that $\tilde{A} h_{0}=\mu_{0} h_{0}$, then for any $t \in[0,1]$ we obtain

$$
\begin{aligned}
h_{0}(t)=\frac{1}{\mu_{0}} \tilde{A} h_{0}=\frac{1}{\mu_{0}} A h_{0} & \leq \int_{0}^{1} \gamma(t, s) p(s) f\left(s, h_{0}(s)\right) d s+B h_{0}(t) \\
& \leq \int_{0}^{1} \gamma(t, s) p(s) f\left(s, R \phi_{1}(s) \phi_{2}(s)\right) d s+B h_{0}(t) \\
& \leq B h_{0}(t)
\end{aligned}
$$

Thus, by Lemma $2.9 r(B) \geq 1$ which is a contradiction for $r(B)<1$.
So, by Lemma $2.8 i\left(\tilde{A}, \Omega_{2}, P\right)=1$. Hence the operator A has a fixed point on $\bar{\Omega}_{2} \backslash \Omega_{1}$, further, the BVP (1.1) has at least one positive symmetric solution.

Remark 3.4. Even if $a(t) \equiv 0$ for any $t \in[0,1]$, the results obtained in this paper are also new.

References

[1] R. I. Avery and A. C. Henderson, Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett., 13 (2000), 1-7.
[2] D. Guo and V. Lakshmikantham, Nonlinear Problem in Abstract ones, Academic Press, San Diego, 1988, 297-316.
[3] N. Kosmatov, Symmetric solutions of a multi-point boundary value problem, J. Math. Anal. Appl., 309 (2005), 25-36.
[4] B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Appl. Math. Comput., 132 (2002), 11-28.
[5] L. Liu, B. Liu and Y. Wu, Nontrivial solution of m-point boundary value problems for singular second-order differential equations with a sign-changing nonlinear term, J. Comput. Appl. Math., 224 (2009), 373-382.
[6] R. Ma, Existence theorems for a second-order three-point boundary value problem, J. Math. Anal. Appl., 212 (1997), 430-442.
[7] R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear KreinRutman theorem, in:Fixed Point Theorem, in:LNM, vol.886, Springer-Verlag, New York, Berlin, 1980, 309-330.
[8] R. Ma, Existence theorems for a second order three-point boundary value problem, J. Math. Anal. Appl., 212 (1997), 430-442.
[9] Y. P. Sun, Optimal existence criteria for symmetric positive solutions to a three-point boundary value problem, Nonlinear Anal.,66 (2007), 1051-1063.
[10] Sh. J. Wang and H. R. Sun, Optimal existence criteria for symmetric positive solutions to a singular three-point boundary value problem, Nonlinear Anal., 69 (2008), 4266-4276.

[^0]: ${ }^{0}$ Received April 23, 2009. Revised October 27, 2009.
 ${ }^{0} 2000$ Mathematics Subject Classification: 34B15, 34B16.
 ${ }^{0}$ Keywords: Three-point BVP, singularity, Green's function, symmetric positive solution.
 ${ }^{0}$ Research supported by the National Natural Science Foundation of China (10871116),and the Natural Science Foundation of Shandong Province of China (Y2006A04).

