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Abstract. In this paper, by applying the Guo-Krasnosel’skii fixed point theorem and some

fixed index theorem we study the existence of positive symmetric solutions for a class of

singular second-order three-point boundary value problems. The nonlinear term may be

singular at t = 0, 1 and can be allowed to change sign.

1. Introduction

In this paper, we will study the existence of positive symmetric solutions
for the following boundary value problems(BVP):

{
x′′(t) + a(t)x′(t) + f(t, x(t)) = 0, 0 < t < 1,

x(0) = x(1) = αx(η),
(1.1)

where α ∈ [0, 1
2 ], η ∈ (0, 1) is a constant, a(t) ∈ C[0, 1], f ∈ C((0, 1) ×

[0, +∞), R).
In recent years, the problems for the existence of positive solutions to sec-

ond order multi-point BVP have received much attention, and many excellent
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results have been established, for instance, ([4]-[6], [8]). However, to the best
of our knowledge, it seems there are few results about symmetric positive
solutions to multi-point BVP in the relevant literatures. In [1] Avery and
Henderson studied the existence of symmetric positive solutions for the two-
point BVP

{
u′′(t) + f(u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

by applying a fixed point theorem due to Avery. In [10], Wang investigated
three-point BVP





u′′(t) + h(t)f(t, u(t)) = 0, 0 < t < 1,

u(t) = u(1− t), αu′(0)− βu′(1) = γu

(
1
2

)
,

and obtained the existence of symmetric positive solutions by using the fixed
index theorem in cones.

However, in the above literatures they assumed that the nonlinear term f
was non-singular and non-negative. Motivated by the above excellent works,
in this paper, we intend to study the existence of symmetric positive solutions
to a class of BVP in which the nonlinear term f was allowed be singular
at t = 0, 1 and be sign-changing by applying Guo-Krasnosel’skii fixed point
theorem and some fixed point index theorem in cones.

For the convenience of readers several main assumptions are provided as
the following:

(H1) for a ∈ C[0, 1] and t ∈ [0, 1], a(t) = −a(1 − t). In addition, q(t) ∈
C(0, 1) is nonnegative and q(t) = q(1− t) for any t ∈ (0, 1).

(H2) f(t, x) ∈ C((0, 1) × [0, +∞), R) is symmetric on (0, 1) (i.e., f(t, x) =
f(1−t, x) for any t ∈ (0, 1)). For any t ∈ (0, 1), f(t, x) is nonincreasing
about x on (0, +∞), and f(t, x) ≥ −q(t)x for any (t, x) ∈ (0, 1) ×
[0, +∞).

(H3) |maxt∈[0,1]

∫ 1
0 γ(t, s)p(s)f(s, kφ1(s)φ2(s))ds| < +∞ for any k > 0,

maxt∈[0,1]

∫ 1
0 γ(t, s)p(s)q(s)ds < +∞ and there exists some r > 0 such

that maxt∈[0,1]

∫ 1
0 γ(t, s)p(s)f(s, rφ1(s)φ2(s))ds > 0, where γ(t, s) =

G(t, s) + α(φ1(t)+φ2(t))
1−α(φ1(η)+φ2(η))G(η, s).

Throughout this paper, let E = C[0, 1] be a Banach space with the norm
‖x‖ = max0≤t≤1 |x(t)| for any x ∈ E.
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2. Preliminaries

In this section, we present some lemmas which are essential in the proof of
our main results.

Lemma 2.1. [5] Let a(t), b(t) ∈ C[0, 1] with b(t) > 0 for any t ∈ [0, 1]. Assume
that φ1(t), φ2(t) are the solutions of the following BVP, respectively

{
φ′′1(t) + a(t)φ′1(t)− b(t)φ1(t) = 0, 0 < t < 1,

φ1(0) = 0, φ1(1) = 1,
(2.1)

and {
φ′′2(t) + a(t)φ′2(t)− b(t)φ2(t) = 0, 0 < t < 1,

φ2(0) = 1, φ2(1) = 0,
(2.2)

then
(i) φ1(t) is strictly increasing on [0, 1] and φ′1(0) > 0;
(ii) φ2(t) is strictly decreasing on [0, 1].

Lemma 2.2. The above two boundary value problems (2.1) and (2.2) have a
unique solution.

Proof. First, we show that BVP(2.1) has a unique solution.
In fact, if there exists v1(t) and v2(t) be two solutions of BVP(2.1), then
v0(t) = v1(t) − v2(t) is also a solution of BVP(2.1). Moreover, v0(t) satisfies
that {

v′′0(t) + a(t)v′0(t)− b(t)v0(t) = 0 0 < t < 1,

v0(0) = 0, v0(1) = 0.
(2.3)

Thus, by the maximum principle we obtain v0(t) ≡ 0, t ∈ [0, 1]. And so,
BVP(2.1) has only one solution. Similarly, BVP(2.2) has also only one solu-
tion. ¤

Lemma 2.3. Let a(t) = −a(1 − t), t ∈ [0, 1] and a(t) ∈ C[0, 1]. Then
φ1(t) = φ2(1− t) for any t ∈ [0, 1]

Proof. Following the above conditions, it is easy to prove φ2(1− t) satisfying
BVP(2.1). Further, by Lemma 2.2, we obtain φ1(t) = φ2(1− t). The proof is
complete. ¤

Lemma 2.4. For any a(t), b(t) ∈ C[0, 1] with b(t) > 0, t ∈ [0, 1], y(t) ∈
C[0, 1], the BVP

{
x′′(t) + a(t)x′(t)− b(t)x(t) + y(t) = 0, 0 < t < 1,

x(0) = x(1) = αx(η)
(2.4)
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has a unique solution. Moreover, this solution can be expressed in the form

u(t) =
∫ 1

0
γ(t, s)p(s)y(s)ds, (2.5)

where

γ(t, s) = G(t, s) +
α(φ1(t) + φ2(t))

1− α(φ1(η) + φ2(η))
G(η, s),

G(t, s) =
1

φ′1(0)

{
φ1(t)φ2(s), t ≤ s,

φ1(s)φ2(t), s ≤ t,
p(s) = exp

(∫ s

0
a(θ)dθ

)
.

Proof. It is not difficult to testify the above conclusions. ¤

Lemma 2.5. For any (t, s) ∈ [0, 1]×[0, 1], we have G(t, s) ≥ 0, G(1−t, 1−s) =
G(t, s), φ1(t)φ2(t)G(s, s) ≤ G(t, s) ≤ G(s, s), γ(t, s) ≤ γ̃(s), where

γ̃(s) = G(s, s) +
2α

1− α(φ1(η) + φ2(η))
G(η, s).

Proof. Following the definition for Green’s function G(t, s), Lemma 2.1 and
Lemma 2.2, we easily obtain the above conclusions. ¤

Now for any h(t) ∈ C[0, 1] with h(t) ≥ 0, t ∈ [0, 1], we consider the following
BVP{

x′′(t) + a(t)x′(t)− q(t)x(t) + f(t, h(t)) + q(t)h(t) = 0, 0 < t < 1,

x(0) = x(1) = αx(η).
(2.6)

By Lemma 2.4, if the BVP (2.6) has a solution, then the solution can be
expressed by

u(t) =
∫ 1

0
γ(t, s)p(s)(f(s, h(s)) + q(s)h(s))ds.

Now for h(t) ∈ C[0, 1] with h(t) ≥ 0, t ∈ [0, 1], define an operator

Ah(t) =
∫ 1

0
γ(t, s)p(s)(f(s, h(s)) + q(s)h(s))ds.

Let

P = {x ∈ E | x(t) ≥ 0, x(t) is symmetric on [0,1], x(t) ≥ φ1(t)φ2(t)‖x‖, } .

It is easy to show that P is a cone in E.

Lemma 2.6. Assume that (H1), (H2) and (H3) hold. Then for any 0 <
R1 < R2 < +∞, A : P ∩ (Ω̄2 \ Ω1) → P is completely continuous, where
Ωi = {x ∈ E | ‖x‖ < Ri}, i = 1, 2.



Existence of positive symmetric solutions for a class of singular three-point BVP 339

Proof. First, for any x ∈ P , by (H1) and (H2), Ax(t) ≥ 0 for any t ∈ [0, 1].

Ax(1− t)

=
∫ 1

0
γ(1− t, s)p(s)(f(s, x(s)) + q(s)x(s))ds

=
∫ 1

0
G(1− t, s)p(s)(f(s, x(s)) + x(s))ds

+
∫ 1

0

α(φ1(1− t) + φ2(1− t))
1− α(φ1(η) + φ2(η))

G(η, s)p(s)(f(s, x(s)) + q(s)x(s))ds

=
∫ 1

0
G(1− t, 1− s)p(1− s)(f(1− s, x(1− s)) + q(1− s)x(1− s))ds

+
∫ 1

0

α(φ1(t) + φ2(t))
1− α(φ1(η) + φ2(η))

G(η, s)p(s)(f(s, x(s)) + q(s)x(s))ds

=
∫ 1

0
G(t, s)p(s)(f(s, x(s)) + q(s)x(s))ds

+
∫ 1

0

α(φ1(t) + φ2(t))
1− α(φ1(η) + φ2(η))

G(η, s)p(s)(f(s, x(s)) + q(s)x(s))ds

= Ax(t).

So, Ax(t) is symmetric on [0,1].
Next, for any x ∈ E, t ∈ [0, 1], we get

Ax(t) =
∫ 1

0
γ(t, s)p(s)(f(s, x(s)) + q(s)x(s))ds

≤
∫ 1

0

(
G(s, s) +

2α

1− α(φ1(η) + φ2(η))
G(η, s)

)

× p(s)(f(s, x(s)) + q(s)x(s))ds.

Thus,

‖Ax(t)‖ ≤
∫ 1

0
γ̃(s)p(s)(f(s, x(s)) + q(s)x(s))ds.

And also,

Ax(t) ≥
∫ 1

0

(
φ1(t)φ2(t)G(s, s) +

α(φ1(t)φ2(t) + φ2(t)φ1(t))
1− α(φ1(η) + φ2(η))

G(η, s)
)

× p(s)(f(s, x(s)) + q(s)x(s))ds

= φ1(t)φ2(t)
∫ 1

0
γ̃(s)p(s)(f(s, x(s)) + q(s)x(s))ds

≥ φ1(t)φ2(t)‖Ax‖.
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Finally, we will show that A : P ∩ (Ω̄2 \Ω1) → P is completely continuous.
Suppose {xn}n≥1 ⊆ P ∩(Ω̄2\Ω1) and x0 ∈ P ∩(Ω̄2\Ω1) with limn→∞ xn = x0.
Then we obtain R1φ1(t)φ2(t) ≤ xn(t) ≤ R2 for any t ∈ [0, 1] and n ≥ 0.
By virtue of

max
t∈[0,1]

Axn(t) = max
t∈[0,1]

∫ 1

0
γ(t, s)p(s)(f(s, xn(s)) + q(s)xn(s))ds

≤ max
t∈[0,1]

∫ 1

0
γ(t, s)p(s)f(s,R1φ1(s)φ2(s))ds

+ R2 max
t∈[0,1]

∫ 1

0
γ(t, s)p(s)q(s)ds < +∞,

we have from the Lebesgue dominated convergence theorem that ‖Axn−Ax0‖
→ 0, (n →∞). Thus, A : P ∩ (Ω̄2 \ Ω1) → P is continuous.

Next, we will show that A(P ∩ (Ω̄2 \ Ω1)) is relatively compact.
For any x ∈ P ∩ (Ω̄2 \Ω1), we have R1φ1(t)φ2(t) ≤ x(t) ≤ R2 for any t ∈ [0, 1].

Ax(t) ≤ max t ∈ [0, 1]
∫ 1

0
γ(t, s)p(s)f(s,R1φ1(s)φ2(s))ds

+ R2 max
t∈[0,1]

∫ 1

0
γ(t, s)p(s)q(s)ds < +∞, t ∈ [0, 1],

which means that A(P ∩ (Ω̄2 \ Ω1)) is bounded.
Now, for any t1, t2 ∈ [0, 1] and x ∈ P ∩ (Ω̄2 \ Ω1) we get

|Ax(t1)−Ax(t2)|

≤
∫ 1

0
|γ(t1, s)− γ(t2, s)|p(s)(f(s, x(s)) + q(s)x(s))ds

≤
∫ 1

0
|γ(t1, s)− γ(t2, s)|p(s)(f(s,R1φ1(s)φ2(s)) + R2q(s))ds.

Thus, we have that A(P ∩ (Ω̄2 \ Ω1)) is equicontinuous on [0, 1]. So, by the
Arzela-Ascoli theorem we obtain that A : P ∩ (Ω̄2 \ Ω1) → P is completely
continuous. ¤
Lemma 2.7. [2] Let Ω1, Ω2 be bounded open subset in a real Banach space
E, P be a cone of E, θ ∈ Ω1 and Ω̄1 ⊂ Ω2. Let A : P ∩ (Ω̄2 \ Ω1) → P be a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2;
or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω̄2 \ Ω1).
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Lemma 2.8. [2] Let X be a Banach space, and P ⊂ X be a cone in E.
Assume Ω is a bounded open subset of E with θ ∈ Ω, and let A : P ∩ Ω̄ → P
be a completely continuous operator with Ax 6= x for any x ∈ P ∩ ∂Ω.

(i) If ‖x‖ ≤ ‖Ax‖, x ∈ P ∩ ∂Ω, then i(A,P ∩ Ω, P ) = 0;

(ii) If Tu 6= µu for any u ∈ P ∩ ∂Ω, µ > 1, then i(A,P ∩ Ω, P ) = 1.

Lemma 2.9. [7] Let P be a cone of a real Banach space E and B : P → P
be a completely continuous operator. Assume that B is order-preserving and
positively homogeneous of degree 1 and that there exist v ∈ P \{θ}, λ > 0 such
that Bv ≥ λv. Then r(B) ≥ λ, where r(B) denotes the spectral radius of B.

3. Main results

In this section, we will present several main results.
Let

Bh(t) =
∫ 1

0
γ(t, s)p(s)q(s)h(s)ds.

Obviously, B : P → P is a completely continuous operator.

Theorem 3.1. Assume that (H1), (H2) and (H3) hold, in addition, suppose
that

(H4) There is a constant ρ1 > 0, 0 < α < β < 1, such that

min
σρ1≤h(t)≤ρ1, α≤t≤β

(f(t, h(t)) + q(t)h(t)) ≥ ∧1ρ1,

where ∧1 = maxα≤t≤β

(∫ β
α γ(t, s)p(s)ds

)−1
, σ = mint∈[α,β] φ1(t)φ2(t).

If ‖B‖ < 1, then the BVP (1.1) has at least one positive symmetric solution.

Proof. By the assumption (H4), let

Ω1 = {h ∈ P | ‖h‖ < ρ1}.
If h ∈ Ω1, then ρ1φ1(t)φ2(t) ≤ h(t) ≤ ρ1. Obviously, for any α ≤ t ≤ β, we
have σρ1 ≤ h(t) ≤ ρ1 and

‖Ah‖ ≥ Ah(t) =
∫ 1

0
γ(t, s)p(s)(f(s, h(s)) + q(s)h(s))ds

≥
∫ β

α
γ(t, s)p(s)(f(s, h(s)) + q(s)h(s))ds

≥
∫ β

α
γ(t, s)p(s)ds · ∧1ρ1 ≥ ρ1 = ‖h‖.
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Let ρ2 > max
{

r, ρ1,
1

1−‖B‖ maxt∈[0,1]

∫ 1
0 γ(t, s)p(s)f(s, rφ1(s)φ2(s))ds

}
and

Ω2 = {h ∈ P | ‖h‖ < ρ2}. Then for any t ∈ [0, 1], we get

Ah(t) =
∫ 1

0
γ(t, s)p(s)f(s, h(s))ds + Bh(t)

≤
∫ 1

0
γ(t, s)p(s)f(s, rφ1(s)φ2(s))ds + Bh(t).

Thus, for any t ∈ [0, 1],

|Ah(t)| ≤ max
t∈[0,1]

∫ 1

0
γ(t, s)p(s)f(s, rφ1(s)φ2(s))ds + ‖B‖ · ρ2

≤ ρ2(1− ‖B‖) + ‖B‖ · ρ2 = ρ2 = ‖h‖,
that is, ‖Ah‖ ≤ ‖h‖. So, by Lemma 2.7, the operator A has a fixed point h∗ ∈
Ω̄2 \Ω1, further, h∗(t) is one positive symmetric solution of the BVP(1.1). ¤

Corollary 3.2. Assume that (H1), (H2) and (H3) are satisfied, and there
exists 0 < α < β < 1, such that lim infh→0+ minα≤β(f(t, h) + q(t)h) > 0. If
‖B‖ < 1, then the BVP (1.1) has at least one positive symmetric solution.

Proof. Obviously, the condition lim infh→0+ minα≤β(f(t, h) + q(t)h) > 0 can
implies that the assumption (H4) holds, hence this conclusion holds. ¤

Theorem 3.3. Assume that (H1), (H2) and (H3) hold. If there exists ρ2 >
0, 0 < α < β < 1, such that

min
σρ1≤h(t)≤ρ1, α≤t≤β

(f(t, h(t)) + q(t)h(t)) > ∧1ρ2,

where ∧1 = maxα≤t≤β

(∫ β
α γ(t, s)p(s)ds

)−1
, σ = mint∈[α,β] φ1(t)φ2(t), then as

r(B) < 1 and there exists R > 0 such that

max
t∈[0,1]

∫ 1

0
γ(t, s)p(s)f(s,Rφ1(s)φ2(s))ds ≤ 0,

the BVP(1.1) has at least one positive symmetric solution.

Proof. Let Ω1 = {h ∈ P | ‖h‖ < ρ2}. Then for any ρ > ρ2 and Ωρ = {h ∈ P |
‖h‖ < ρ}, by Lemma 2.6 we obtain A : Ω̄ρ \Ω1 → P is completely continuous.
By the extended theorem of completely continuous operators, there exists a
completely continuous function Ã : Ω̄ρ → P such that Ãh = Ah for any
h ∈ Ω̄ρ \ Ω1.

Next, we show Ãh 6= h for any h ∈ ∂Ω1.
In fact, if not, then there exists some h ∈ ∂Ω1 such that Ãh = h. For any
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t ∈ [α, β], we get

‖h‖ ≥ h(t) = Ãh(t) = Ah(t) ≥
∫ β

α
γ(t, s)p(s)(f(s, h(s)) + q(s)h(s))ds

>

∫ β

α
γ(t, s)p(s)ds · ∧1ρ2 ≥ ρ2 = ‖h‖,

which gets a contradiction. Modeling the proof of the Theorem 3.1, we obtain
‖Ãh‖ ≥ ‖h‖ for any h ∈ ∂Ω1. Hence, by Lemma 2.8 i(Ã, Ω1, P ) = 0.

Let ρ3 > max{ρ2, R} and Ω2 = {h ∈ P | ‖h‖ < ρ3}.
Finally, we show Ãh = µh, h ∈ ∂Ω2 ⇒ µ < 1.

If not, there exists µ0 ≥ 1, h0 ∈ ∂Ω2 such that Ãh0 = µ0h0, then for any
t ∈ [0, 1] we obtain

h0(t) =
1
µ0

Ãh0 =
1
µ0

Ah0 ≤
∫ 1

0
γ(t, s)p(s)f(s, h0(s))ds + Bh0(t)

≤
∫ 1

0
γ(t, s)p(s)f(s,Rφ1(s)φ2(s))ds + Bh0(t)

≤ Bh0(t).

Thus, by Lemma 2.9 r(B) ≥ 1 which is a contradiction for r(B) < 1.
So, by Lemma 2.8 i(Ã, Ω2, P ) = 1. Hence the operator A has a fixed

point on Ω̄2 \ Ω1, further, the BVP (1.1) has at least one positive symmetric
solution. ¤
Remark 3.4. Even if a(t) ≡ 0 for any t ∈ [0, 1], the results obtained in this
paper are also new.
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