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Abstract. This paper introduces a new extended generalized linear operator of Noor-type

of harmonic multivalent functions correlated with Fox-Wright generalized hypergeometric

functions (FWGH). Moreover, a certain subclass of harmonic multivalent functions, which

include this new formulation of the operator, is posed. In this study, an attempt has also been

made to investigate several geometric properties such as coefficient condition and by showing

the significance of this condition for the negative coefficient, growth bounds, extreme points,

convolution property, convex linear combination, and a class-preserving integral operator.

1. Introduction

Harmonic functions have widely known to have a plethora of applications
in the seemingly diverse fields of medicine, engineering, electronics, physics,
aerodynamics, operation research and other branches of applied mathematics.
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From the perspective of geometric function theory (GFT), in 1984, Clunie
and Sheil-Small [7] initiated the study of these functions by introducing class
SH of normalized harmonic univalent functions defined on the open unit disk
D = {z ∈ C : |z| < 1}. In their studies, they managed to find its geomet-
ric properties such as the classical coefficient bounds, growth and distortion
theorems and covering theorems. Actually, the study of harmonic univalent
functions is a natural generalization of analytic univalent functions, which is
opened up a new direction for numerous prominent complex analysts to inves-
tigate many other subclasses of harmonic univalent functions. Some of their
main contributions, one may refer to Sheil-Small [41], Silverman [42], Jahangiri
and Ahuja [25], Murugusundaramoorthy and Uma [29], Ahuja [2], Pathak et
al. [35], Ponnusamy et al. [36], Nagpal and Ravichandran [30], Porwal [37],
Ibrahim et al. ([22],[23]), Hussain et al. [21] and others.

Recall that the class SH of harmonic functions ω = ρ+ σ̄ that are univalent,
sense-preserving in the open unit disc D, and normalized by the conditions
ω(0) = ω′(0)− 1 = 0, where the analytic part ρ and the co-analytic part σ are
given as follows [7]:

ρ(z) = z +
∞∑
κ=2

ακz
κ, σ(z) =

∞∑
κ=1

βκz
κ, |β1| < 1.

Note that SH reduces to the class S of normalized analytic univalent func-
tions if the co-analytic part σ is zero. Consequently, the function ω(z) for this
class can be expressed as

ω(z) = z +

∞∑
κ=2

ακ z
κ.

Encouraged by wide investigation in the study of harmonic univalent func-
tions, many authors attempted to apply this technique to multivalent function
theory (which is the natural generalization of univalent function theory) too
and brought to daylight many new facets of this field. In 2001, Jahangiri and
Ahuja [25] defined the class SH(p) of harmonic multivalent (p−valent) func-
tions, ω = h+ ḡ that are sense-preserving in D, and ρ and σ are of the formula

ρ(z) = zp +
∞∑

κ=p+1

ακz
κ, σ(z) =

∞∑
k=p

βκz
κ, |βp| < 1, p ∈ N = {1, 2, ...}. (1.1)

Note that SH(p) reduces to the class Mp of normalized analytic multivalent
functions if the co-analytic part σ is zero. Consequently, the function ω(z) for
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this class can be expressed as

ω(z) = zp +
∞∑

κ=p+1

ακz
κ. (1.2)

Also, denoted by NSH(p) the subclass of SH(p) consisting of functions ω = ρ+σ̄,
such that functions ρ and σ are of the form

ρ(z) = zp −
∞∑

κ=p+1

|ακ|zκ, σ(z) = −
∞∑
κ=p

|βκ zκ, |βp| < 1, p ∈ N. (1.3)

Since then, several interesting subclasses of harmonic multivalent functions
have been successfully accomplished by some renowned mathematicians re-
searchers. For instance, Ghanim et al. [20], El-Ashwah and Aouf [14], Yaşar
and Yalçn [44], Ezhilarasi et al. [17], Seoudy [40], Al-Janaby and Ahmad [4]
and others.

Convolution (Hadamard product) is a mathematical operation on two func-
tions ω1 and ω2 to produce a third function. It is an important tool in GFT
for defining new subclasses and operators. The following convolution is given
by Hadamard in 1899 [9]:

For two functions ωı ∈ S is given by ωı(z) = z+
∑∞

κ=2 ακ,ız
κ, ı = 1, 2, z ∈ D,

the convolution is denoted by ω1 ∗ ω2 and defined as

(ω1 ∗ ω2)(z) = z +
∞∑
κ=2

ακ,1 ακ,2 z
κ.

In the harmonic function case, the convolution of two functions belong to
the class SH was initially studied by Clunie and Sheil-Small [7] as: for two
functions ωı ∈ SH, ı = 1, 2, z ∈ D given by

ωı(z) = ρı(z) + σı(z) = z +
∞∑
κ=2

ακ,ı z
κ +

∞∑
κ=1

βκ,ı zκ, |β1,1| < 1, |β1,2| < 1,

the convolution is denoted by ω1 ∗ ω2 and defined as

(ω1 ∗ ω2)(z) = z +

∞∑
κ=2

ακ,1 αk,2 z
κ +

∞∑
κ=1

βκ,1 βκ,2 zκ.

More generally, the convolution of two functions ωı ∈ SH(p), ı = 1, 2, z ∈ D
given by (see, [28])

ωı(z) = ρı(z) + σı(z) = zp +
∞∑

κ=p+1

ακ,ı z
κ +

∞∑
κ=p

βκ,ı zκ, |βp,1| < 1, |βp,2| < 1,



272 H. F. Al-Janaby, F. Ghanim and M. Z. Ahmad

the convolution is denoted by ω1 ∗ ω2 and defined as

(ω1 ∗ ω2)(z) = zp +
∞∑

κ=p+1

ακ,1 ακ,2 z
κ +

∞∑
κ=p

βκ,1 βκ,2 zκ. (1.4)

The study of operators plays an important role in mathematics, especially in
GFT. Indeed, operators are used to obtain new subclasses and their properties.
Integral, differential and convolution are three typical types of operators. Since
the beginning of the previous century, many prominent authors have employed
various methods to study the different types of integral operators. The first
integral operator defined on the class of analytic functions A was introduced
by Alexander [3], in 1915. Since then, several types of the well-known classical
integral operators have been introduced by notable complex analysts, such as
Miller et al. [27], Pascu and Pescar [34], Ong et al. [33], Frasin and Breaz [18],
El-Ashwah et al. [15], Deniz [10], Rahrovi [38], Al-Jnaaby and et al. [5] and
others. The convolution technique has a significant part in the development of
this area. Several differential and integral operators can be written in terms
of the convolution of certain analytic functions. Recall that the Pochhammer
symbol (γ)κ defined by

(γ)κ :=
Γ(γ + k)

Γ(γ)
=

{
1, (κ = 0),

γ(γ + 1)(γ + 2)...(γ + n− 1), (κ ∈ N).
(1.5)

By utilizing the technique of convolution, in 1975, Ruscheweyh [39] imposed
the differential operator Dγω(z) as: for ω ∈ A, γ > −1 and Dγ : A → A, is
given by

Dγω(z) =
z

(1− z)γ+1
∗ ω(z) = z +

∞∑
κ=2

(γ + 1)κ−1

(κ− 1)!
ακ z

κ, (1.6)

such that D0ω(z) = φ(z) and D1ω(z) = zω′(z).

Corresponds to the Ruscheweyh operator, in 1999, Noor [31] introduced an
integral operator Iγω(z) called the Noor Integral of γ−th order as: for ω ∈ A,
γ ∈ N0 and Iγ : A→ A, is defined by

Iγω(z) = ω(−1)
γ (z) ∗ ω(z)

=

[
z

(1− z)γ+1

]−1

∗ ω(z)

= z +

∞∑
κ=2

κ!

(γ + 1)κ−1
ακ z

κ,

(1.7)
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such that

ωγ(z) ∗ ω(−1)
γ (z) =

z

(1− z)2
.

Notice that I0ω(z) = zω′(z) and I1ω(z) = ω(z). This operator, which is a very
useful tool in defining several subclasses of analytic functions, has attracted
the attention of many renowned mathematicians globally. Recently, most of
operators have been extended to harmonic functions. For example, El-Ashwah,
and Aouf [14] Yaşar and Yalçn [44], Hussain et al. [21], Seoudy [40] and others.

The hypergeometric functions have been included in GFT. In 1984, De
Branges [11] used these special functions in proofing the important problem
called the ’Bieberbachs conjecture’ which gave renewed stimulation authors to
develop and study various special functions. Since then, the theory of hyper-
geometric functions has been utilized to study numerous linear and nonlinear
operators in the field.

The incomplete beta function is given as: for ξ and ζ be real or complex
numbers with ζ other than 0,−1,−2, ..., and

ϕ(ξ; ζ; z) =
∞∑
κ=0

(ξ)κ
(ζ)κ

zκ = 1 +
ξ

ζ
z +

ξ(ξ + 1)

ζ(ζ + 1)

z2

2!
+ · · · . (1.8)

This post provided by (1.8) has a generalized form, namely the Gauss hyper-
geometric function: for ξ, η and ζ be real or complex numbers with ζ other
than 0,−1,−2, ..., and

F(ξ, η; ζ; z) =
∞∑
κ=0

(ξ)κ(η)κ
(ζ)κ(1)κ

zκ = 1 +
ξη

ζ
z +

ξ(ξ + 1)η(η + 1)

ζ(ζ + 1)

z2

2!
+ · · · . (1.9)

The well-known generalized hypergeometric function named the Fox-Wright
generalized hypergeometric (FWGH) function is given as follows:(see for ex-
ample [19], and [43])

τWς [(µ1,A1) · · · (µτ ,Aτ ); (ν1,B1) · · · (νς ,Bς); z]

= τWς [(µl,Al)1,τ ; (νl,Bl)1,ς ; z] =

∞∑
κ=0

τ∏
l=1

Γ(µl + κ Al)

ς∏
l=1

Γ(νl + κ Bl)

zκ

κ!
,

(1.10)

where Al > 0 (l = 1, 2, ..., τ), Bl > 0 (l = 1, 2, ..., ς), 1 +
τ∑
l=1

Al −
ς∑
l=1

Bl ≥

0, µl + κ Al 6= 0,−1, ... (l = 1, 2, ..τ ; κ = 0, 1, 2, ...), νl + κ Bl 6= 0,−1, ... (l =

1, 2, ..ς; κ = 0, 1, ...) and z ∈ C. The condition 1 +
τ∑
l=1

Al −
ς∑
l=1

Bl ≥ 0 is
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essential so that the series in (1.10) is absolutely convergent for all z ∈ C, and
is an entire function of z (for details, see [26]).

Special case of FWGH defined in (1.10) which is given as: if Al = 1, (l =
1, 2, ..., τ), Bl = 1 (l = 1, 2, ..., ς), τ ≤ ς + 1 and

Ω =

(
ς∏
l=1

Γ(νl)

)(
τ∏
l=1

Γ(µl)

)−1

, (1.11)

then

Ω τWς [(µl, 1)1,τ ; (νl, 1)1,ς ; z] = τFς [(µl, ...µτ ; νl, ...νς ; z],

where τFς [(µl, ...µτ ; νl, ...νς ; z] is the generalized hypergeometric function, [12].
Other special cases of FWGH were introduced in [26]. Although many complex
analysts have investigated the connections between the well-established theory
of analytic univalent (or multivalent) functions and hypergeometric functions,
the corresponding connections between the newly merging theory of harmonic
univalent functions and hypergeometric functions have not been explored.

In 2004, Ahuja together with Silverman [1] discovered interesting corre-
sponding studies on connections between hypergeometric functions and har-
monic univalent functions. Recently, the connections between FWGH and
harmonic functions have investigated and studied by several authors.

Some previous studies that deal with hypergeometric function and FWGH
will be mentioned:

In 2004, Cho-Kwon-Srivastava [8], considered the operator Iγp (ξ, ζ) as:

Iγp (ξ, ζ)ω(z) =
[
zϕ−1

p (ξ, ζ; z)
]
∗ ω(z)

= zp +
∞∑

κ=p+1

(ζ)κ−p(γ + p)κ−p
(ξ)κ−p(κ− p)!

αnz
κ,

(1.12)

where ξ, ζ ∈ R\Z−0 , γ > −p, p ∈ N, ω ∈Mp and ϕ−1
p (ξ, ζ; z) is such that

ϕ−1
p (ξ, ζ; z) ∗ ϕp(ξ, ζ; z) =

zp

(1− z)γ+p
.

In 2004, by using FWGH , Dziok and Raina [13] considered the following
linear operator W [(µl,Al)1,τ ; (νl,Bl)1,ς ]ω(z) on S:

W (µl,Al)1,τ ; (νl,Bl)1,ς ] ω(z) = z +
∞∑
κ=2

Ω (ϑκ [µl, νl]) ακ z
κ,
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ϑκ[µl, νl] =
Γ(µ1 + (κ− 1)A1)Γ(µ2 + (κ− 1)A2) · · ·Γ(µτ + (κ− 1)Aτ )

Γ(ν1 + (κ− 1)B1)Γ(ν2 + (κ− 1)B2) · · ·Γ(νς + (κ− 1)Bς)(κ− 1)!
,

and Ω is defined in (1.11). In 2016, the authors Hussain, Rasheed and Darus
[21] consequently established a new subclass of harmonic functions by utilizing
the above linear operator extended to harmonic functions. Moreover, they
studied some properties as coefficient bounds, extreme points, and inclusion
results and closed under an integral operator for this subclass.

In 2006, Noor [32] once again defined an integral operator by employing the
Gauss hypergeometric function F(ξ, η; ζ; z) given by (1.9) as:

Iγ(ξ, η; ζ)ω(z) = [zF(ξ, η; ζ; z)](−1) ∗ ω(z)

= z +

∞∑
κ=2

(ζ)κ−1(γ + 1)κ−1

(ξ)κ−1(η)κ−1
αnz

κ,
(1.13)

where

[zF(ξ, η; ζ; z)] ∗ [zF(ξ, η; ζ; z)](−1) =
z

(1− z)γ+1
.

Later, in 2008, Ibrahim and Darus [24] imposed a generalized integral op-
erator Iγ [(µl,Al)1,τ ; (νl,Bl)1,ς ]ω(z) by using FWGH on S as:

Iγ [(µl,Al)1,τ ; (νl,Bl)1,ς ]ω(z) = z +
∞∑
κ=2

ς∏
l=1

Γ(νl + (κ− 1)Bl)

τ∏
l=1

Γ(µl + (κ− 1)Al)
(γ + 1)κ−1 ακ z

κ

(1.14)
and

Γ(ν1)...Γ(νς)

Γ(µ1)...Γ(µτ )
= 1.

In 2016, El-Ashwah and Hassan [16] introduced the following linear operator
on Mp as:

Θ[(µl,Al)1,τ ; (νl,Bl)1,ς ]ω(z) = zp +
∞∑

κ=p+1

Ω (ϑκ[µl, νl]) ακ z
κ,

ϑ[µl, νl] =
Γ(µ1 + (κ− p)A1)Γ(µ2 + (κ− p)A2) · · ·Γ(µτ + (κ− p)Aτ )

Γ(ν1 + (κ− p)B1)Γ(ν2 + (κ− p)B2) · · ·Γ(νς + (κ− p)Bς)(κ− p)!
and Ω is defined in (1.11).

In an analogous manner, we define a linear operator by using FWGH ex-
tended to harmonic multivalent functions. Furthermore, we consider a certain
subclass that involves this posed operator. For this subclass, we study several
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geometric properties, such as coefficient conditions, growth bounds, extreme
points, convolution property, convex linear combination and a class-preserving
integral operator.

2. Proposed operator GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ] ω(z)

This section introduces a new extended generalized linear operator of Noor-
type GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ] ω(z) for harmonic multivalent functions in the
terms of FWGH.

By giving the extended of FWGH in (1.10)

zpτWς [(µl,Al)1,τ ; (νl,Bl)1,ς ; z] =
∞∑
κ=p

τ∏
l=1

Γ(µl + (κ− p) Al)

ς∏
l=1

Γ(νl + (κ− p) Bl)

zκ

(κ− p)!
, (2.1)

we consider a new function as:

zpτWς [(µl,Al)1,τ ; (νl,Bl)1,ς ; z]
−1 =

ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p z

κ,

(2.2)
such that, for γ > −p(

zpτWς [(µl,Al)1,τ ; (νl,Bl)1,ς ; z]
)
∗
(
zpτWς [(µl,Al)1,τ ; (νl,Bl)1,ς ; z]

)−1

=
zp

(1− z)γ+p
=

∞∑
κ=p

(γ + p)κ−p
(κ− p)!

zκ.

Corresponding to (2.2), we impose the following linear operator:

GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ] ω(z) : SH(p) −→ SH(p)

defined by the convolution

GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ]ω(z) = ∆
(
zpτWς [(µl,Al)1,τ ; (νl,Bl)1,ς ; z]

)−1 ∗ ω(z),
(2.3)

where

∆ =

(
τ∏
l=1

Γ(µl)

)(
ς∏
l=1

Γ(νl)

)−1

. (2.4)
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Therefore, the operator formula as:

GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ] ω(z)

= zp +
∞∑

κ=p+1

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p ακz

κ.
(2.5)

Remark 2.1. For some suitably chosen parameters p, ς, τ, A1, A2, B1, µ1, µ2

and ν1, the operator GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ]ω(z) defined in (2.5) can be re-
duced to several operators mentioned above. The following are some special
cases:

(1) For p = 1, ς = 1, τ = 2, A1 = A2 = B1 = 1, and µ1 = µ2 = ν1 = 1 in
(2.5), the Ruscheweyh’s differential operator given in (1.6) is obtained.

(2) By taking p = 1, ς = 1, τ = 2, A1 = A2 = B1 = 1, µ1 = µ2 = 1 + γ
and ν1 = 2 in (2.5), we obtain the Noor integral operator defined in
(1.7).

(3) By taking ς = 1, τ = 2, A1 = A2 = B1 = 1, µ1 = ξ, µ2 = 1 and
ν1 = ζ in (2.5), gives us the general linear operator defined by (1.12).

(4) For p = 1, ς = 1, τ = 2, and A1 = A2 = B1 = 1, µ1 = ξ, µ2 = η
and ν1 = ζ, the operator (2.5) provides an integral operator given in
(1.13).

(5) If ∆ = 1, the operator (2.5) reduces to integral operator given by
(1.14).

For brevity, (2.5) is written as

GN p[µl] ω(z) = GN p[(µl,Al)1,τ ; (νl,Bl)1,ς ] ω(z),

where GN p[µl] ω(z) satisfy the recurrence relation

z
(
GN τ,ς

p [µ1 + l]ω(z)
)′

=
µ1

Al

(
GN τ,ς

p [µ1]ω(z)
)
− µ1 − pAl

Al

(
GN τ,ς

p [µ1 + l]ω(z)
)
.

(2.6)

The operator GN τ,ς
p [µ1]ω(z) when extended to harmonic multivalent func-

tion ω = ρ+ σ̄ is defined by

GN τ,ς
p [µ1]ω(z) = GN τ,ς

p [µ1]ρ(z) + GN τ,ς
p [µ1]σ(z), (2.7)

where

GN τ,ς
p [µ1]ω(z) = zp +

∞∑
κ=p+1

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p ακz

κ
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and

GN τ,ς
p [µ1]σ(z) = zp +

∞∑
κ=p

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p βκz

κ.

3. Geometric outcomes

In this section, by invoking the operator GN τ,ς
p [µ1]ω(z) given in (2.7), we

proceed to introduce a certain geometric subclass of SH. Then, some properties
are acquired by including coefficient bounds, growth formula, extreme points,
convolution, and convex combinations as well as discuss a class-preserving
integral operator.

Definition 3.1. A function f ∈ SH is said to be in the subclass Hp,b(τ, ς) if
it satisfies the following inequality:

<
{

(1− a)
GN τ,ς

p [µ1] ω(z)

zp
+ a

[
GN τ,ς

p [µ1] ω(z)
]′

pzp−1

}
≥ b

p
(3.1)

where GN τ,ς
p [µ1]ω(z) is given by (2.7), 0 < a ≤ 1, 0 ≤ b < p.

Also let NHp,b(τ, ς) = Hp,b(τ, ς)
⋂
NSH(p).

The first theorem provides a sufficient coefficient condition for function be-
long to the class Hp,b(τ, ς).

Theorem 3.2. Let ω = ρ+ σ be of the form (1.1). If

∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ|

+

∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ| ≤ p− b,

(3.2)

where 0 < a ≤ 1, 0 ≤ b < p, then ω ∈ Hp,b(τ, ς).

Proof. Let

ω(z) = (1− a)
GN τ,ς

p [µ1]ω(z)

zp
+ a

[
GN τ,ς

p [µ1]ω(z)
]′

pzp−1
.
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To prove < ω(z) > b
p , it suffices to show that |p− b+ pω(z)| ≥ |p+ b− pω(z)|.

Substituting for ω(z) and making use of (2.7), we find that

|p− b+ p ω(z)|
≥ 2p− b

−
∞∑

κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ| |z|κ−p

−
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ| |z|κ−p

(3.3)
and

|p+ b− pω(z)|
≤ b

+
∞∑

κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ| |z|κ−p

+

∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ| |z|κ−p.

(3.4)
Evidently, the inequalities (3.3) and (3.4) in conjunction with (3.2) yield

|p− b+ pω(z)| ≥ |p+ b− pω(z)|

≥ 2

[
(p− b)−

∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ|

−
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ|

]
≥ 0.

(3.5)
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The harmonic function

ω(z) =zp +
∞∑

κ=p+1

xκ

[(κ− p)a+ p]
∆

ς∏
l=1

Γ(νl+(κ−p)Bl)
τ∏
l=1

Γ(µl+(κ−p)Al)
(γ + p)κ−p |ακ|

zκ

+
∞∑
κ=p

yκ

[(κ− p)a+ p]
∆

ς∏
l=1

Γ(νl+(κ−p)Bl)
τ∏
l=1

Γ(µl+(κ−p)Al)
(γ + p)κ−p |βκ|

zκ,

(3.6)

where
∑∞

κ=p+1 |xκ|+
∑∞

κ=p |yκ| = p−b shows that the coefficient bounds given

by (3.2) are sharp.
The functions of the from (3.2) are in Hp,b(τ, ς) because

∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ|

+
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ|

=
∞∑

κ=p+1

|xκ|+
∞∑
κ=p

|yκ| = p− b.

(3.7)

This completes the proof of Theorem 3.2. �

The next theorem gives a sufficient coefficient condition for function to be
in Hp,b(τ, ς).

Theorem 3.3. Let ω = ρ+σ be of the form (1.3). Then ω ∈ Hp,b(τ, ς) if and
only if the condition (3.2) is as:

∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ|
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+

∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ| ≤ p− b,

where 0 < a ≤ 1, 0 ≤ b < p.

Proof. As ω ∈ NHp,b(τ, ς) ⊂ NHp,b(τ, ς), we only need to prove the ”only if ”
part of this theorem. To this end, for functions ω of the form (1.3), condition
(3.1) is as follows:

<
{

(1− a)
GN τ,ς

p [µ1] ω(z)

zp
+ a

[
GN τ,ς

p [µ1] ω(z)
]′

pzp−1

}
≥ b

p
,

which implies that

<
{

(p− b)−
∞∑

κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ|zκ−p

−
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ|zκ−p

}
≥ 0.

The above-mentioned required condition must hold for all values of z in D.
Upon choosing the values of z on the positive real axis where 0 < |z| = r < 1,
we must have

(p− b)−
∞∑

κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p|ακ| rκ−p

−
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ| rκ−p ≥ 0.

Letting r → −1 through real values, it follows that
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(p− b)−
∞∑

κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ|

−
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ| ≥ 0.

(3.8)

Therefore, (3.8) gives (3.2). This completes the proof. �

The following theorem considers the growth relation of the function ω ∈
NHp,b(τ, ς).

Theorem 3.4. Let ω ∈ NHp,b(τ, ς). Then for r = |z| < 1,

|ω(z)| ≤ rp (1 + |βp|) +

τ∏
l=1

Γ(µl +Al) [p(1− |βp|)− b]

[a+ p] ∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

rp+1

and

|ω(z)| ≥ rp (1 + |βp|)−

τ∏
l=1

Γ(µl +Al) [p(1− |βp|)− b]

[a+ p] ∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

rp+1.

Proof. Let ω ∈ NHp,b(τ, ς). By taking the modulus value of ω and using
Theorem 3.3, we have

|ω(z)| ≤ (1 + |βp|)rp +
∞∑

κ=p+1

(|ακ|+ |βκ|) rκ

≤ (1 + |βp|)rp + rp+1
∞∑

κ=p+1

(|ακ|+ |βκ|)
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≤ (1 + |βp|)rp +

rp+1
τ∏
l=1

Γ(µl +Al)

[a+ p]∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

×

( ∞∑
κ=p+1

[a+ p]

∆
ς∏
l=1

Γ(νl + Bl)

τ∏
l=1

Γ(µl +Al)
(γ + p)1 (|ακ|+ |βκ|)

)

≤ (1 + |βp|)rp +

rp+1
τ∏
l=1

Γ(µl +Al)

[a+ p]∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

×

( ∞∑
κ=p+1

[(k − p)a+ p]

∆
ς∏
l=1

Γ(νl + (k − p)Bl)

τ∏
l=1

Γ(µl + (k − p)Al)
(γ + p)

k−p (|ακ|+ |βκ|)

)

≤ (1 + |βp|)rp +

τ∏
l=1

Γ(µl +Al) [p(1− |βp|)− b]

[a+ p] ∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

rp+1.

In addition,

|ω(z)| ≥ (1 + |βp|)rp −
∞∑

κ=p+1

(|ακ|+ |βκ|) rκ

≥ (1 + |βp|)rp − rp+1
∞∑

κ=p+1

(|ακ|+ |βκ|)

≥ (1 + |βp|)rp −
rp+1

τ∏
l=1

Γ(µl +Al)

[a+ p]∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

×

( ∞∑
κ=p+1

[a+ p]

∆
ς∏
l=1

Γ(νl + Bl)

τ∏
l=1

Γ(µl +Al)
(γ + p)1 (|ακ|+ |βκ|)

)
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≥ (1 + |βp|)rp −
rp+1

τ∏
l=1

Γ(µl +Al)

[a+ p]∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

×

( ∞∑
κ=p+1

[(k − p)a+ p]

∆
ς∏
l=1

Γ(νl + (k − p)Bl)

τ∏
l=1

Γ(µl + (k − p)Al)
(γ + p)

k−p (|ακ|+ |βκ|)

)

≥ (1 + |βp|)rp −

τ∏
l=1

rp+1Γ(µl +Al)[p(1− |βp|)− b]

[a+ p]∆
ς∏
l=1

Γ(νl + Bl) (γ + p)1

.

This completes the proof. �

The following theorem determines the extreme points of closed convex hulls
of NHp,b(τ, ς) denoted by coNHp,b(τ, ς).

Theorem 3.5. A function ω ∈ coNHp,b(τ, ς) if and only if

ω(z) =
∞∑
κ=p

(Xκhκ(z) + Yκgκ(z)) , (3.9)

where

hp(z) = zp,

hκ(z) = zp −

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

zκ,

(κ = p+ 1, p+ 2, ...),

and

gκ(z) = zp −

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

zκ,

(κ = p, p+ 1, ...),

and
∑∞

κ=p (Xκ + Yκ) = 1, Xκ ≥ 0 and Yκ ≥ 0.
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Proof. For a function ω of the form (3.9), we have

ω(z) =
∞∑
κ=p

(Xκhκ(z) + Yκgκ(z))

=
∞∑
κ=p

(Xκ + Yκ) zp

−
∞∑

κ=p+1

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

Xκz
κ

−
∞∑
κ=p

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

Yκz
κ

= zp −
∞∑

κ=p+1

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

Xκz
κ

−
∞∑
κ=p

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

Yκz
κ.

Therefore, in view of Theorem 3.3, we obtain

∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p

×


τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

Xκ



+
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p
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×


τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)

[(κ− p)a+ p]∆
ς∏
l=1

Γ(νl + (κ− p)Bl) (γ + p)κ−p

Yκ


≤ (p− b)

( ∞∑
κ=p

(Xκ + Yκ)−Xp

)
= (p− b) (1−Xp)

≤ p− b.
Therefore, ω ∈ coNHp,b(τ, ς).

Conversely, suppose that ω ∈ coNHp,b(τ, ς). Set

Xκ = [(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)
(γ + p)κ−p|ακ|,

(κ = p+ 1, p+ 2, ...) ,

and

Yκ = [(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)(p− b)
(γ + p)κ−p|βκ|,

(κ = p, p+ 1, p+ 2, ...) .

On the basis of Theorem 3.3, we note that 0 ≤ Xκ ≤ 1, (κ = p+ 1, p+ 2, ...)
and 0 ≤ Yκ ≤ 1, (κ = p, p+ 1, p+ 2, ...). Let Xp = 1 −

∑∞
κ=p+1Xκ +∑∞

κ=p Yκ and note that by Theorem 3.3, Xp ≥ 0. Consequently, ω(z) =∑∞
κ=p (Xκhκ(z) + Yκgκ(z)) is obtained as required. �

Subclass NHp(τ, ς) is closed under convolution and will be shown in the
next theorem.

Theorem 3.6. 0 ≤ c ≤ b < 1, let ω ∈ NHp,c(τ, ς) and F(z) ∈ NHp,b(τ, ς).
Then (ω ∗ F) ∈ NHp,c(τ, ς) ⊂ NHp,b(τ, ς).

Proof. Using convolution concept, let the harmonic function ω(z) = zp −∑∞
κ=p+1 |ακ|zκ−

∑∞
κ=p |βκ|zκ and F(z) = zp−

∑∞
κ=p+1 |Aκ|zκ−

∑∞
κ=p |Bκ|zκ.

Then, the convolution of ω and F is

(ω ∗ F) (z) = zp −
∞∑

κ=p+1

|ακAκ|zκ −
∞∑
κ=p

|βκBκ|zκ.



Harmonic multivalent functions 287

In Theorem 3.3, because F(z) ∈ NHp,b(τ, ς), we conclude that |Aκ| ≤ 1 and
|Bκ| ≤ 1. However, ω ∈ NHp,c(τ, ς). We then have

∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p) Bl)

τ∏
l=1

Γ(µl + (κ− p)Al) (p− c)
(γ + p)κ−p |ακ|

+
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al) (p− c)
(γ + p)κ−p |βκ|

≤
∞∑

κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al) (p− b)
(γ + p)κ−p |ακ|

+

∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al) (p− b)
(γ + p)κ−p |βκ|

≤ 1.

Thus (ω ∗ F) ∈ NHp,c(τ, ς) ⊂ NHp,b(τ, ς). �

In the following result, we show that the convex combination of subclass
NHp,b(τ, ς). Let the functions ωj(z) be defined, for j = 1, 2, ..., by

ωj(z) = zp +
∞∑

κ=p+1

|ακ,j |zκ −
∞∑
κ=p

|βκ,j |zκ. (3.10)

Theorem 3.7. Let the functions ωj(z) defined by (3.10) be in NHp,b(τ, ς) for
every j = 1, 2, .... Then, the function θ(z) defined by

θ(z) =
∞∑
j=1

cjωj(z) (0 ≤ cj ≤ 1), (3.11)

is also in NHp,b(τ, ς), where
∑∞

j=1 cj = 1.

Proof. According to the definition of θ, we can write

θ(z) = zp +
∞∑

κ=p+1

 ∞∑
j=1

cj |ακ,j |

 zκ −
∞∑
κ=p

 ∞∑
j=1

cj |βκ,j |

 zκ.
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Then, by Theorem 3.3, we have

∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p

 ∞∑
j=1

cj |ακ,j |



+
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p

 ∞∑
j=1

cj |βκ,j |



=
∞∑
j=1

cj

( ∞∑
κ=p+1

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |ακ,j |

+
∞∑
κ=p

[(κ− p)a+ p]

∆
ς∏
l=1

Γ(νl + (κ− p)Bl)

τ∏
l=1

Γ(µl + (κ− p)Al)
(γ + p)κ−p |βκ,j |

)

≤
∞∑
j=1

cj = 1.

This completes the proof. �

In this last result, a closure property of subclass NHp,b(τ, ς) is examined un-
der the generalized Bernardi-Libera-Livingston integral operator F(z) defined
as: (see [6])

F(z) =
(µ+ p)

zµ

∫ z

0
tµ−1 ω(t)dt, (µ > −p).

Theorem 3.8. Let ω ∈ NHp,b(τ, ς). Then F ∈ NHp,b(τ, ς).

Proof. Let

ω(z) = zp −
∞∑

κ=p+1

|ακ|zκ −
∞∑
κ=p

|βκ|zκ.
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From the representation of F(z), it follows that

F(z) =
(µ+ p)

zµ

∫ z

0
tµ−1

{
ρ(z) + σ(z)

}
dt

=
(µ+ p)

zµ

{∫ z

0
tµ−1

tp − ∞∑
κ=p+1

|ακ|tκ
 dt−

∫ z

0
tµ−1

( ∞∑
κ=p

|βκ| tκ
)
dt
}

= zp −
∞∑

κ=p+1

Aκz
κ −

∞∑
κ=p

Bκz
κ,

where

Aκ =

(
µ+ p

µ+ κ

)
|ακ| and Bκ =

(
µ+ p

µ+ κ

)
|βκ|.

Thus, because ω ∈ NHp,b(τ, ς),

∞∑
k=p+1

[(k − p)a+ p]

∆
ς∏
l=1

Γ(νl + (k − p)Bl)

τ∏
l=1

Γ(µl + (k − p)Al)
(γ + p)k−p

(
µ+ p

µ+ k

)
|αk|

+
∞∑
k=p

[(k − p)a+ p]

∆
ς∏
l=1

Γ(νl + (k − p)Bl)

τ∏
l=1

Γ(µl + (k − p)Al)
(γ + p)k−p

(
µ+ p

µ+ k

)
|βk|

≤
∞∑

k=p+1

[(k − p)a+ p]

∆
ς∏
l=1

Γ(νl + (k − p)Bl)

τ∏
l=1

Γ(µl + (k − p)Al)
(γ + p)k−p |αk|

+

∞∑
k=p

[(k − p)a+ p]

∆
ς∏
l=1

Γ(νl + (k − p)Bl)

τ∏
l=1

Γ(µl + (k − p)Al)
(γ + p)k−p |βk|

≤ p− b.

By considering Theorem 3.3, we have F(z) ∈ NHp,b(τ, ς). �

4. Conclusion

In this paper, we have introduced and discussed a new extended general-
ized linear operator of Noor-type GN p[µl]ω(z) on the class SH(p). Moreover,
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a certain subclass Hp,b(τ, ς) including the above operator is considered. In
addition, some results are gained by involving coefficient conditions and by
showing the significance of these conditions for negative coefficient, growth
bounds, extreme points, convolution property, convex linear combination and
a class-preserving integral operator.
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