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Abstract. This paper introduces a new extended generalized linear operator of Noor-type
of harmonic multivalent functions correlated with Fox-Wright generalized hypergeometric
functions (FWGH). Moreover, a certain subclass of harmonic multivalent functions, which
include this new formulation of the operator, is posed. In this study, an attempt has also been
made to investigate several geometric properties such as coefficient condition and by showing
the significance of this condition for the negative coefficient, growth bounds, extreme points,

convolution property, convex linear combination, and a class-preserving integral operator.

1. INTRODUCTION

Harmonic functions have widely known to have a plethora of applications
in the seemingly diverse fields of medicine, engineering, electronics, physics,
aerodynamics, operation research and other branches of applied mathematics.
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From the perspective of geometric function theory (GFT), in 1984, Clunie
and Sheil-Small [7] initiated the study of these functions by introducing class
Sm of normalized harmonic univalent functions defined on the open unit disk
D ={z € C: |z] <1}. In their studies, they managed to find its geomet-
ric properties such as the classical coefficient bounds, growth and distortion
theorems and covering theorems. Actually, the study of harmonic univalent
functions is a natural generalization of analytic univalent functions, which is
opened up a new direction for numerous prominent complex analysts to inves-
tigate many other subclasses of harmonic univalent functions. Some of their
main contributions, one may refer to Sheil-Small [41], Silverman [42], Jahangiri
and Ahuja [25], Murugusundaramoorthy and Uma [29], Ahuja [2], Pathak et
al. [35], Ponnusamy et al. [36], Nagpal and Ravichandran [30], Porwal [37],
Ibrahim et al. (][22],[23]), Hussain et al. [21] and others.

Recall that the class Sy of harmonic functions w = p+ & that are univalent,
sense-preserving in the open unit disc I, and normalized by the conditions
w(0) = w'(0) — 1 = 0, where the analytic part p and the co-analytic part o are
given as follows [7]:

o0 [e.9]
p(2) :z+2a,€z“, o(z) :ZB,{Z“, |61] < 1.
K=2 k=1

Note that Sy reduces to the class S of normalized analytic univalent func-
tions if the co-analytic part o is zero. Consequently, the function w(z) for this
class can be expressed as

o
w(z) =z+ Za,ﬁ 2",
K=2

Encouraged by wide investigation in the study of harmonic univalent func-
tions, many authors attempted to apply this technique to multivalent function
theory (which is the natural generalization of univalent function theory) too
and brought to daylight many new facets of this field. In 2001, Jahangiri and
Ahuja [25] defined the class Sy, of harmonic multivalent (p—valent) func-
tions, w = h+ g that are sense-preserving in I, and p and o are of the formula

pz) = 2P+ D ane®, o(z) =Y Bez" I8 <1, peN={1,2,..}. (11)
r=p+1 k=p

Note that S, reduces to the class M, of normalized analytic multivalent
functions if the co-analytic part o is zero. Consequently, the function w(z) for
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this class can be expressed as

z)=2P + Z a2 (1.2)
rk=p+1
Also, denoted by NS, the subclass of Sy, consisting of functions w = p+7,
such that functions p and o are of the form
p(z) = 2P — Z ||z, o Z 1B 2%, Byl <1, peN. (1.3)

Kk=p+1

Since then, several interesting subclasses of harmonic multivalent functions
have been successfully accomplished by some renowned mathematicians re-
searchers. For instance, Ghanim et al. [20], El-Ashwah and Aouf [14], Yasar
and Yalen [44], Ezhilarasi et al. [17], Seoudy [40], Al-Janaby and Ahmad [4]
and others.

Convolution (Hadamard product) is a mathematical operation on two func-
tions w1 and ws to produce a third function. It is an important tool in GFT

for defining new subclasses and operators. The following convolution is given
by Hadamard in 1899 [9]:

For two functions w, € Sis given by w,(2) = 24+ ooy ax,2", 1 =1,2, z € D,
the convolution is denoted by wj * wo and defined as

o0
(w1 *xw2)(2) =2+ Z Q1 Q2 27
K=2

In the harmonic function case, the convolution of two functions belong to
the class Sy was initially studied by Clunie and Sheil-Small [7] as: for two
functions w, € Sy, ©+ = 1,2, z € D given by

wz(z):p( )+Uz _Z+Zanzz +Zﬁnzz ‘51,1|<17 ’/81,2‘<17

the convolution is denoted by w1 * wy and deﬁned as

(w1 *wa)(z —Z"‘Zanl k2 2 +Zﬂnl Br,2 25

K=2 k=1

More generally, the convolution of two functions w, € Sg(,), 1 =1,2, 2 €D
given by (see, [28])

wl(z):p( )+01 _Zp+ Z anzz +Zﬁnzz ’ﬁp,l

k=p+1

<1, ‘/Bp,2| <1,
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the convolution is denoted by wj * wo and defined as

00 oo
(w1 *xwa)(z) = 2P + Z Q1 Qg2 27+ Zﬁn,l Br,2 2. (1.4)
r=p+1 K=p

The study of operators plays an important role in mathematics, especially in
GFT. Indeed, operators are used to obtain new subclasses and their properties.
Integral, differential and convolution are three typical types of operators. Since
the beginning of the previous century, many prominent authors have employed
various methods to study the different types of integral operators. The first
integral operator defined on the class of analytic functions A was introduced
by Alexander [3], in 1915. Since then, several types of the well-known classical
integral operators have been introduced by notable complex analysts, such as
Miller et al. [27], Pascu and Pescar [34], Ong et al. [33], Frasin and Breaz [18],
El-Ashwah et al. [15], Deniz [10], Rahrovi [38], Al-Jnaaby and et al. [5] and
others. The convolution technique has a significant part in the development of
this area. Several differential and integral operators can be written in terms
of the convolution of certain analytic functions. Recall that the Pochhammer
symbol (7), defined by

IRCEDRN e
)= =50 _{wwnwm)-.-(wnl% (reny.

By utilizing the technique of convolution, in 1975, Ruscheweyh [39] imposed
the differential operator D7w(z) as: for w € A, v > —1 and D7 : A — A is
given by

Dw(z) = ﬁ xw(z) =2+ ;m oy 27, (1.6)

such that D%w(z) = ¢(z) and D'w(z) = 2w/ (2).

Corresponds to the Ruscheweyh operator, in 1999, Noor [31] introduced an
integral operator I,w(z) called the Noor Integral of y—th order as: for w € A,
v € Npand I7: A — A, is defined by

Lw(z) = wgfl)(z) * w(z)

B {(1—22)7“}1 re) (1.7)

(o)
K!
:z+§ —_— 27,
— (’7+1)H—1 "
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such that

e

Notice that Ipw(z) = zw'(z) and [w(z) = w(z). This operator, which is a very
useful tool in defining several subclasses of analytic functions, has attracted
the attention of many renowned mathematicians globally. Recently, most of

operators have been extended to harmonic functions. For example, El-Ashwah,
and Aouf [14] Yasar and Yalcn [44], Hussain et al. [21], Seoudy [40] and others.

The hypergeometric functions have been included in GFT. In 1984, De
Branges [11] used these special functions in proofing the important problem
called the 'Bieberbachs conjecture’ which gave renewed stimulation authors to
develop and study various special functions. Since then, the theory of hyper-
geometric functions has been utilized to study numerous linear and nonlinear
operators in the field.

The incomplete beta function is given as: for & and ( be real or complex
numbers with ¢ other than 0,—1,—2, ..., and

R N (3 N S (e VA
w(ﬁ,é,z)—;(oﬁz —l+ et (1.8)

This post provided by (1.8) has a generalized form, namely the Gauss hyper-
geometric function: for &£,n and ¢ be real or complex numbers with ¢ other
than 0,—1,—2, ..., and

i (s _ &n_ &€+ Dnmn+1)2°

20 T eyt Y

F(&m¢z2) =

The well-known generalized hypergeometric function named the Fox-Wright
generalized hypergeometric (FWGH) function is given as follows:(see for ex-
ample [19], and [43])

TWel(pas A1) - -+ (s Ar); (w1, Br) -+ - (v, B )5 2

o MITu+r i)

= TWel(h, A1 (0 B 2l = Y 5 =,
= ([T +rB) ™
=1

(1.10)

where A >0 (I =1,2,...,7), By >0 (1 =1,2,....,¢), 1+ ZAZ ZBZ >
0, yp+rk A4 #0,-1,...(1=1,2,.71; k =0,1,2,...), I/l—|—I£Bl750 (=

1,2,..5; K = 0,1,...) and z € C. The condition 1 + ZA[ ZBZ > 0 is
=1 =1
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essential so that the series in (1.10) is absolutely convergent for all z € C, and
is an entire function of z (for details, see [26]).

Special case of FWGH defined in (1.10) which is given as: if 4; =1, (I =
1,2,..,7),B=1(1=1,2,....,6), T<¢+1and

S T -1
= (HNW)) (HWM)) ; (1.11)
=1 =1

Q TW [(Mla )1,7'; (Vla 1)153 ] =T7F [(Mh ce s Vg e Vg Z]7

where 7F[(ug, ---fir; Vi, ... V; 2] is the generalized hypergeometric function, [12].
Other special cases of FWGH were introduced in [26]. Although many complex
analysts have investigated the connections between the well-established theory
of analytic univalent (or multivalent) functions and hypergeometric functions,
the corresponding connections between the newly merging theory of harmonic
univalent functions and hypergeometric functions have not been explored.

then

In 2004, Ahuja together with Silverman [1] discovered interesting corre-
sponding studies on connections between hypergeometric functions and har-
monic univalent functions. Recently, the connections between FWGH and
harmonic functions have investigated and studied by several authors.

Some previous studies that deal with hypergeometric function and FWGH
will be mentioned:

In 2004, Cho-Kwon-Srivastava [8], considered the operator I} (¢,() as
(& Qu(z) = [thgl(f,C; z)] *xw(z)

N (1.12)
= 2P (ODnp(V +P)p
- ’ n%l (f)m—p(lﬁ — p)l n<

where £,( € R\Z;, v> —p, p€e N, w e M, and gp;l(E,C; z) is such that

Zp

90;1(&(; z) * p(€, (5 2) = m-

In 2004, by using FWGH , Dziok and Raina [13] considered the following
linear operator W(u;, A;)1,7; (v, Bi)1¢Jw(2) on S:

W (g, A 1,75 (1, Bi) 1y —2+ZQ [, 1)) e 27,
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P+ (k= 1A (p2 + (k — 1) Ag) - - T'(pr + (k — 1) A7)
T(v1+ (k= 1DB)C(ve + (k= 1)By) - T(ve + (k — 1)B) (k — 1)V

and 2 is defined in (1.11). In 2016, the authors Hussain, Rasheed and Darus
[21] consequently established a new subclass of harmonic functions by utilizing
the above linear operator extended to harmonic functions. Moreover, they
studied some properties as coefficient bounds, extreme points, and inclusion
results and closed under an integral operator for this subclass.

/&l{[,ulv Vl] =

In 2006, Noor [32] once again defined an integral operator by employing the
Gauss hypergeometric function F(&,n;(; z) given by (1.9) as:

L&, Qw(z) = [2F(&m ¢ 2)] T xw(z)

1)
_Z+Z Hl’)’"‘) Hlanzﬁa
nN)k—1

(1.13)

where
) - z

2F(&m: G 2)] * [2F (& m G 2)) T (-2t

Later, in 2008, Ibrahim and Darus [24] imposed a generalized integral op-
erator I[(p, A1)1,7; (v, Bi)1¢cJw(2) by using FWGH on S as:

w T[T+ (5~ DB
L[(m ADvrs (v Brglw(z) = 2+ > = (74 1)1 o 2°
k=2 ll:Il L+ (k= 1)A)

(1.14)

and
[(vy)..T(v)

L(pa)..T(per)

In 2016, El-Ashwah and Hassan [16] introduced the following linear operator
on M, as:

=1.

O[(pu, A)1,rs (v, BgJw(2) = 2P + Z Q (Oslp, vi]) v 2",
r=p+1
I, ] = U(p1 + (5 — p) AT (p2 + (5 — )Az) U(pr + (5 — p)Ar)
M= T+ (5= )BT (s + (s — P)B) -~ Tloe + (5 = p)Bo) 5 — 1)
and ( is defined in (1.11).
In an analogous manner, we define a linear operator by using FWGH ex-

tended to harmonic multivalent functions. Furthermore, we consider a certain
subclass that involves this posed operator. For this subclass, we study several
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geometric properties, such as coefficient conditions, growth bounds, extreme
points, convolution property, convex linear combination and a class-preserving
integral operator.

2. PROPOSED OPERATOR GV, [(u1, A1 (11, B1)1.¢] (2)

This section introduces a new extended generalized linear operator of Noor-
type GNp[(pr, A1+ (11, Bi)1,¢] w(z) for harmonic multivalent functions in the
terms of FWGH.

By giving the extended of FWGH in (1.10)
oo T+ (E=-p)A)

LIV Az (v B 2] = 3 o @
= T+ (x=p) B) =1

we consider a new function as:

—n

L(v + (k= p)By)
ZPTWC[(NlaAl)l,TQ (VlvBl)l,C;Z]_l = - (7+p)n—p Zn’
I+ (5 —p)A)

o~
Il

o

l

Il
—

(2.2)
such that, for v > —p
(PTWel (i, A1, (v, B s 2) # (2P Wel (s A s (v B, 21)

o0

_ 2P _ (Y +D)i—p e
R S

Corresponding to (2.2), we impose the following linear operator:

ng[(Mla Al)l,r% (v, Bl)l,g] w(z) : SH(p) — SH(p)

defined by the convolution

GN (s A1, (v, B cJw(2) = APty A s (1, B 21) a()(z)»
2.3)

where

A= (ﬁ”m)) (HF(W)) : (2.4)



Harmonic multivalent functions 277

Therefore, the operator formula as:

GN B [(1, Ai) 1,3 (v, Bi) 1] w(z)

S
oo ATIT(w+ (k—p)Bi)
=P+ Z .,%:1 ('7 +p)ﬁfp a2,

r=p+1 zl:[1 L + (k= p)Ar)

(2.5)

Remark 2.1. For some suitably chosen parameters p, ¢, 7, Ay, As, Bi, 1, us
and vy, the operator GN p[(u, Ai)1,7; (11, B)1,cJw(z) defined in (2.5) can be re-
duced to several operators mentioned above. The following are some special
cases:
(1) Forp=1,¢=1,7=2 A =Ay=By=1,and py =pg =11, =1 in
(2.5), the Ruscheweyh’s differential operator given in (1.6) is obtained.
(2) By takingp=1, ¢=1, 7=2 A1 =Ay=B1=1, py=p2=1+7
and v; = 2 in (2.5), we obtain the Noor integral operator defined in
(1.7).
(3) By taking s = 1,7 =2, A1 = Ay =By =1, iy =&, pe =1 and
v1 = ( in (2.5), gives us the general linear operator defined by (1.12).
(4 Forp=1,¢=1,7=2,and A4y = A =B1 =1, i1 =&, p2 =1
and v; = (, the operator (2.5) provides an integral operator given in
(1.13).
(5) If A = 1, the operator (2.5) reduces to integral operator given by
(1.14).

For brevity, (2.5) is written as
GNpl] w(z) = GNp[(pu AD)17s (i, Bi) 1] w(z),

where GN,[] w(z) satisfy the recurrence relation

! —pA
z(gN;@[m + l]w(z)) - %(g/\/g’g[m]w(z)) - ‘“Tlpl(g/v;’<[u1 + l]w(z)).
(2.6)
The operator GN*[u1]w(z) when extended to harmonic multivalent func-
tion w = p + & is defined by
GN* [mlw(z) = GN* [ulp(z) + GNp* [mlo(2), (2.7)
where
S
o ATIT(w+ (k—p)B)
OGN mlw(z) =22+ Y —— (7 + D)rp Q2"

K=p+1 ll:[l (i + (k —p)A)
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and

o ATIT(n+ (5 - p)B)
GN o (z) = 22+ —— (7 +P)r—p Bez"
K=p ll;ll L(w + (k= p)A1)

3. GEOMETRIC OUTCOMES

In this section, by invoking the operator GN7*[u1]w(z) given in (2.7), we
proceed to introduce a certain geometric subclass of Si. Then, some properties
are acquired by including coefficient bounds, growth formula, extreme points,
convolution, and convex combinations as well as discuss a class-preserving
integral operator.

Definition 3.1. A function f € Sy is said to be in the subclass H,(7,<) if
it satisfies the following inequality:

R PG | 0N ) wte))'

L (3.1)
2P pzP

>

aSERSY

where GN[u1]w(z) is given by (2.7), 0 <a <1, 0 < b < p.

Also let N'H,, (7, <) = Hypp(7, <) (N NSy

The first theorem provides a sufficient coefficient condition for function be-
long to the class H, (7, ).

Theorem 3.2. Let w = p+ 7 be of the form (1.1). If

. ATIT( + (5 — p)B)
> (k= pla+pl— (¥ +P)s—p |l
K=p+1 ll:ll D( + (k= p).Ar)
(3.2)
. ATIT( + (5 — p)B)
+> (5 —pa+p—— (Y +P)a—plBsl <p—b,
K=p ll:ll D( + (k= p).Ar)
where 0 < a <1, 0<b<p, then w € H,p(T,5).

Proof. Let

NS |w(z NS g |w(2)]
w(z) = (1—a)g L [;;1] ( )+a[g ppz[f:i]l )] .
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To prove R w(z) > %, it suffices to show that |p — b+ pw(z)| > |p+b—pw(z)|.
Substituting for w(z) and making use of (2.7), we find that

lp—b+p w(z)|
>2p—0b
. ATI T + (k — p)By)
= > (s —pa+p —= (V4 Pl lows] |27
K=p+1 l];ll (tu + (k= p) A1)
o A f[ (v + (k= p)Bi)
=Y (ks =pla+p — (v + P)s—p 1Bsl 2177
K=p ll:llF(m + (k —p) A1)
- (3.3)
and
lp+b—pw(z)|
<b

. ATI T + (5 — p)By)
+ Y l(k—pla+p ——

K=p+1 1:[1 (i + (k= p)A)

(Y +P)r—p || 277

~

ATI T+ (5 - p)B)

—_

+> [(k—p)a+p] (v + Puyp 1Bl [2777.

I
lz[ L + (k= p)A)

=1

~

(3.4)
Evidently, the inequalities (3.3) and (3.4) in conjunction with (3.2) yield

Ip—b+pw(z)] > |p+b— pw(z)|

. ATI T+ (5 — p)B)
>2|(p—b)— Y. [(k—platp—— (v +P)sp ||
K=p+1 [IT(wm + (5 —p)A)

l

A f[lI‘(yl + (k —p)By)

(i + (v —p)A)

1

~

—> [(k—pla+p]

K=p

(Y +P)rp |Bsl | = 0.

=P

l
(3.5)
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The harmonic function

w(z) =2P + Z i Ty o
k=p+1 A T T(v+(sk—p)B1)
[(k —p)a+p] = (7 + Plr—p |ax]
[T T+ (x—p)Ar)
- = (3.6)
Y —K
+ < zZ",
K;Z:;) A T] P(vi+(k—p)Bi)
[(k—pla+p] = (7 + P)r—p [Bxl

[1 C(+(x—p)A;)

=1

where > 3% [z +3°72 [ys| = p—b shows that the coefficient bounds given
by (3.2) are sharp.
The functions of the from (3.2) are in H,;(7,<) because

S

00 AT T+ (k—p)B)
> lk—patp— (7 + D)a—p lat]
r=p+1 [T (i + (5 —p)A)
I=1
S
o ATI T+ (s —p)Bi) (3.7)
+ 3 [k =p)atp—= (7 + P)u—p |Bsl
R=p [T T(w + (k= p)A)
=1
= Z ‘xn‘+2’ym| =p—0b.
k=p+1 K=p
This completes the proof of Theorem 3.2. O

The next theorem gives a sufficient coefficient condition for function to be
in Hpp(7,9).

Theorem 3.3. Let w = p+& be of the form (1.3). Then w € Hp(7,5) if and
only if the condition (3.2) is as:

N ATIT(n + (5 — p)BY)
7 s —p)a+p— (7 + P)r—p vl

K=p+1 ll:ll L+ (k—p)A)
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A

—n

1F(Vl + (k —p)By)

P + (k= p)A)

(’Y +p)m—p |ﬁn’ <p-—b,

+> [(k—p)a+p)

::1\‘7

~

1

where 0 <a <1, 0<b<p.

Proof. Asw € N'Hpp(7,5) C NHpp(7,), we only need to prove the "only if ”
part of this theorem. To this end, for functions w of the form (1.3), condition
(3.1) is as follows:

NTS w(z NTS w(2)]
§R{(1—a)g p[:pl] ()Jra[g ppL/:l_]l ()]}>27
which implies that
. ATIT( + (k- p)B)
R{p=0 - Y [k =pa+p— (7 + D)y gl
K=p+1 [TT(w + (k—p)A)

l

A Hl T + (k- p)By)

= > (s —p)a+pl—
r=p [1T(u + (k= p)A)

=1

1

(7—+zﬁn_p|ﬁdz“*p} > 0.

The above-mentioned required condition must hold for all values of z in ID.
Upon choosing the values of z on the positive real axis where 0 < |z| =7 < 1,
we must have

S

. ATIT(v + (k—p)By)
(p=b)— Y [(5s—pa+p—= (7 + P)rplaw| 7577
K=p+1 lg(m+w—m&)
o A IS[ L'(v + (k —p)By)
~ 3" (5~ pa+p] - (v + P)uep |Bxl 777 > 0.
K=p [T T(u + (k= p)A)

=1

Letting » — —1 through real values, it follows that
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S

oo ATl (v + (s —p)By)
(=b)= > [(s=pa+p— (7 + Py o
K=p+1 [1 (i + (5 —p)AI)
. (3.8)
%0 AL T+ (k—p)Bi)
= lm—platp)—— (v + Ps—p |l = 0.
K=p ll:Il L + (k= p)A)
Therefore, (3.8) gives (3.2). This completes the proof. O

The following theorem considers the growth relation of the function w €

NHpp(7,5).

Theorem 3.4. Let w € N'H,,(7,5). Then forr=|z| <1,

T

[T T+ A [p(1 = [Bpl) — 0]

=1
rpr1

la+p) Allfll P+ B) (v+p)h

w(z)| <P (14 16p]) +

and

T

T D0+ A) [p(L — |By]) — b]
w(z)] > P (1+8,]) — = ARy

@+ AT[T01+B) (v-+ )

Proof. Let w € NH,(7,¢). By taking the modulus value of w and using
Theorem 3.3, we have

W@ < 18D+ D (el + 18l) 7"
rk=p+1

< L+ 1B+ Y (e + 184])

k=p+1
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PP T T + A
< (14 |By))r? + =L

[a + p]All:[l C(vp+B) (v+ph

> la+p]

rk=p+1

o A f[ (v + B)
X ( . (v +p)1 (Je| + &;I))
C(w + Ar)

I S
’—‘:l Il

I
P TT T+ Ar)

=1

< (1 +Bpl)r? +

[a+p]Alﬁl T+ B1) (v + p)1

. ATI T+ (k- p)B)
. ( S [k - plat p—= ()i (o] + rm)
r=p+1 l]:llr(m + (k—p)A)

T

[T (G + A [p(1 = [Bpl) — ]
< (148, + =2 - sy

la + p] Azljl L(v+B) (v +p)h

In addition,

w(z)] = (1 +|Bp))r? — Z (Jas| + [Bx]) 7"
k=p+1
> (1+|By|)r? — rP ! Z (Jows] + 18x])
rk=p+1
Pl ﬁ L(w + Ar)
> (L+[Bp)r? — =
[a+P]AlH1F(Vl +Bi) (v+ph
0 f[ I'(v + By)
><< > la+p—= <v+p>1<ranr+|ﬁnr>)
K=p+1 [TT(m + A

=1
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T
P TT T + A
> (14 1Bp))r* — =

la+ p]Alljl T+ B) (v+p)

. ATI T+ (k- p)B)
x< S (k- patp) <v+pnp0aﬂ+uxn>
Kk=p+1 zl;[1 L' + (B —p)A)

[T 1T + A)p(1 = |B,]) — B
> (14 |8,))r — =L i

a +P]All:[1 L(vi+B) (v +p)1

This completes the proof. Il

The following theorem determines the extreme points of closed convex hulls

of ./\/-/HpJ)(T, ¢) denoted by EN%p,b(T, o).
Theorem 3.5. A function w € CONHpp(7,<) if and only if

o0

w(z) = > (Xuh(2) + Yigu(2)) | (3.9)

K=p

where

T

[IT(w + (5 —p)A)(p —b)
hi(z) = 2P — =l c 2",

[(k —p)a+plA ll;Il L+ (k= p)Bi) (v +P)r—p

(k=p+1,p+2,..),

and

T

ll_ll L(w + (5 —p)A)(p —b)
gi(2) = 2" — — z",

[(’KG - p)a + p]All;Il F(Vl + (H - p)Bl) (’7 + p)n—p

(k=p,p+1,..),
and Y00 (Xe+Ye) =1, X >0 and Y, > 0.
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Proof. For a function w of the form (3.9), we have

o0

w(z) = E (Xihi(2) + Yigi(2))

R=p

o0
— Z (Xx+Y5) 2P
K=p

N [T T + (s — p)A)(p — b)

=1
o Z S X"

k=p+1 [(k — p)a + p|A ll:ll L+ (k=p)Bi) (v +P)e—p

III L(w + (5 —p)A))(p —b)

- i =1 Y, 2"
= [(x — p)a +p]Al1j1 T+ (5 — P)B) (7 + Pey

(i + (5 —p)A)(p —b)

3
=P

X, 2"

= 3 !
S (5= p)a+ PIATI 01+ (5 = DB (3 + Py

ﬁ L(w + (5 —p)A)(p —b)

- i =1 Y, 2",
= [(x — p)a +p]Al1j1 T+ (5 = P)B) (7 + Pey

Therefore, in view of Theorem 3.3, we obtain

S

- ATIT(v+ (v —p)B)
> (k- pla+p—— (Y +P)r—p
K=p [IT(u + (5 = p)A)

=1

[T T + (5 — p)A)(p — b)

=1
X < XK

[(k —p)a+ plA ll:Il L+ (k—p)Bi) (v +D)k—p

- ATI T + (5 — p)B)
+> " (5= pla+pl—— (v +P)k—p

K=p ll;Il (i + (5 —p)A1)
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T

[T1T(m + (k—p)A)(p—b)
X =1 Y.

(= p)a-+ 218 [T D01+ (5= D)B) (7 + Py

<(p-0b) (i (X +Y5) —Xp>

K=p
=(—-0b)(1-Xp)
<p-b

Therefore, w € CONH, (T, ).

Conversely, suppose that w € coNH,,,(7,<). Set

ATIT(m+ (5 — p)B)

Xy = [(k —pa+p=—— (v + P)n-plasl,
;QTWHWH—MAMP—M
(k=p+1,p+2,..),
and
A ﬁ L(v + (k= p)Bi)
Y. = [(k —p)a+ p] p= - ('Y‘i‘p)n—pwn’a

lHl (1 + (k= p)A)(p — b)
(k=p,p+1,p+2,..).

On the basis of Theorem 3.3, we note that 0 < X, <1, (k=p+1,p+2,...)
and 0 < Y, <1, (k=p,p+1,p+2,...). Let X, = 1— Z:‘;pHXH +
> nep Y and note that by Theorem 3.3, Xj, > 0. Consequently, w(z) =
> ey (Xihis(2) + Yiegu(2)) is obtained as required. O

Subclass N'Hp(7,<) is closed under convolution and will be shown in the
next theorem.

Theorem 3.6. 0 < ¢ < b <1, let w e NHp(1,¢) and F(z) € NH,p(7,5).
Then (w* F) € NHpo(1,5) C NHpp(7,5).

Proof. Using convolution concept, let the harmonic function w(z) = 2P —

Z:O:p-H || 2" — Z:O:p |B[z" and F(z) = 2P — Zzo:p_u | A" — Z:ip | By [2".
Then, the convolution of w and F is

(W F)(2) =2" = D |aeAslz® =) [BxBalz".
K=p

Kk=p+1
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In Theorem 3.3, because F(z) € N'H,4(7,<), we conclude that [A.| < 1 and
|B..| < 1. However, w € N'Hp o(7,5). We then have

N ATIT(m + (5 —p) B)
37 (5 —pa+p)+—= (7 + P)rp lan]
K—pt1 [IT(m+ (k—p)A) (p—c)

=1

S

- ATI T + (k- p)By)
+3 [k —pla+p = (7 + P)rp 1Bl

ZQFWrHﬁ—mAQ@—d
N ATIT(m + (5 — p)B)
< Z [(k —p)a+p]— =l (Y +P)a—p |l
K=pt1 [IT(m+ (k—p)A)(p—0b)

—~
Il

1
S

- ATI T+ (k — p)By)
+> " [(k = pa+p|—= (v+DP)wp |84l
K=p L(u + (5 —p)A) (p —b)

=

N
Il
R

<1.

Thus (w* F) € NHp(T,5) T NHpp(T,5). O

In the following result, we show that the convex combination of subclass
NH,5(7,6). Let the functions wj(z) be defined, for j = 1,2, ..., by

o o
wi(2) =22+ Y Jawgl2® = 1Bz (3.10)
K=p

k=p+1

Theorem 3.7. Let the functions w;j(z) defined by (3.10) be in N'H, p(,<) for
every j = 1,2,.... Then, the function 0(z) defined by

0(z) = cjwi(z) (0<¢ <), (3.11)
j=1

is also in N'Hpp(7,<), where 3722, ¢j = 1.
Proof. According to the definition of €, we can write

o0 o0

o0
0(z) =2"+ Y | D cjlawyl | 25 =D ¢l Bl | 2"
j=1 1

K=p j:
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Then, by Theorem 3.3, we have

- ATIT(m + (5 — p)BY) N
7 (k- pla+p—= (Y+P)ep | D Clanl
r=p+1 11;[1 L + (k —p)A) i=1
N ATIT(m + (5 — p)BY) .
+ 37 [(k — p)a+p] = Y+ P)p | D cjlBrl
R=p ££11M1+(ﬂ-—P%40 j=1
N ATIT(m + (5 — p)BY)
=Y ¢ ( > (k= pla+p—= (v + P)r—p [l
j=1  \w=p+l ll;[l I'(w+ (k—p)A)
ATIT(m + (5 — p)B)

1

(i + (k= p)A)

+> (s —pla+p] (v +P)s—p |ﬁm|)
K=p

:“F

=1

00
< j{:(yiz 1.
j=1

This completes the proof. [

In this last result, a closure property of subclass N'H,, (7, <) is examined un-
der the generalized Bernardi-Libera-Livingston integral operator F(z) defined
as: (see [6])

Flz) = BED) /0 o1 w()dt, (1> —p).

M

Theorem 3.8. Let w € NH,5(7,5). Then F € NH,pp(7,5).

Proof. Let

x (0@
w(z)=2"— Y Jolz" =) |Balz".
K=p

Kk=p+1
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From the representation of F(z), it follows that

F(z) = (“;:p)/o v plz) + o (2) pat
:(“;;p){/oz th tp—ﬁillan’t” dt—/oz tn=1 <§;\6f;! t“)dt}
Z A" —ZB

k=p+1

w+p H+p
" (u-%n>’ad o " <u-%ﬂ>’ﬁH
Thus, because w € N'H,pp(7,5),

where

. AT+ (k= p)B) .
[(k—p)a+ p)]—— (v + p)i— ||
2 [T TG+ (0 — p) A - ( *k> h
=1
ATIT(w + (k- p)B))

—

(o]
+§: [(k —p)a+ p]

(7+PM19<M+p>M%

:l“r

k
k=p L+ (k= p)A) e
=1
S
ATl T+ (k—p)Bi)
=1
< Z (k —pla+pl— (v + P)r—p laxl
k=p+1 I10( + (k= p)A)
=1
S
00 AT (v + (k—p)Br)
=1
+) [(k—pla+p— (v + P)i—p 8]
k=p [T T+ (k= p)A)
=1
<p-b.
By considering Theorem 3.3, we have F(z) € N'H,(7,5). O

4. CONCLUSION

In this paper, we have introduced and discussed a new extended general-
ized linear operator of Noor-type GNp[u]w(z) on the class Sgy,). Moreover,
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a certain subclass H,;(7,<) including the above operator is considered. In
addition, some results are gained by involving coefficient conditions and by
showing the significance of these conditions for negative coefficient, growth
bounds, extreme points, convolution property, convex linear combination and
a class-preserving integral operator.
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