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Abstract. In this paper, we first prove a generalization of Fan-Browder type fixed point

theorem for multimaps on a geodesic convex subset in a Hadamard manifold due to Kim [5],

and next we will prove general existence theorems of Nash equilibrium for generalized games

G with geodesic convex values in Hadamard manifolds.

1. Introduction

In 1950, Nash [9] established the pioneering result on the existence of equi-
librium for abstract economies. Since then, the classical results of Nash [9] and
Debreu [4] have served as basic references for the existence of Nash equilibrium
for generalized games. As in [1,2,4,9,13], in most results on the existence of
equilibria for abstract economies, the underlying spaces (commodity spaces or
choice sets) are always compact and convex sets in topological vector spaces.
Till now, there have been a number of generalizations, and also many appli-
cations of those theorems have been found in several areas, e.g., see [1] and
references therein.

In the last three decades, without assuming the linear structures, several
important concepts of nonlinear analysis have been extended from Euclidian
spaces to Riemannian manifold settings in order to go further in the studies of
convex analysis, fixed point theory, variational problems, and related topics.
In recent papers (e.g. [11,12]), there have been some Fan-Browder type fixed
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point theorem for multimaps in a geodesic convex subset of a Hadamard man-
ifold. However, there are some typical problems in the concept of geodesic
convex hull as remarked in [8]. In a recent paper [5], the author provided
an exact Fan-Browder type fixed point theorems for multimaps on a geodesic
convex subset of a Hadamard manifold by using a geodesic KKM theorem for
closed valued multimaps. Actually, Fan-Browder type fixed point theorems for
geodesic convex sets in Hadamard manifolds can be basic tools for solving non-
linear problems in Hadamard manifolds, and there might have been numerous
generalizations and applications in numerous areas of nonlinear analysis where
various generalized geodesic convexity concepts are equipped.

In this paper, we first prove a generalization of Fan-Browder type fixed point
theorem for multimaps on a geodesic convex subset in a Hadamard manifold
due to Kim [5], and next we will prove general existence theorems of Nash
equilibrium for generalized games G = (Xi;Ai, Pi)i∈I with geodesic convex
values in Hadamard manifolds.

2. Preliminaries

We begin with some basic definitions and terminologies on Riemannian
manifolds in [3,7,8,10]. Let M be a complete finite dimensional Riemannian
manifold with the Levi-Civita connection ∇ on M . Let x ∈ M and let TxM
denote the tangent space at x to M . For x, y ∈ M , let γx,y : [0, 1] → M
be a piecewise smooth curve joining x to y. Then, a curve γx,y (γ for short)
is called a geodesic if γ(0) = x, γ(1) = y, and ∇γ̇ γ̇ = 0 for all t ∈ [0, 1]. A
geodesic γx,y : [0, 1] → M joining x to y is minimal if its arc-length equals
its Riemannian distance between x and y. And, M is called a Hadamard
manifold if M is a simply connected complete Riemannian manifold of non-
positive sectional curvature. In a Hadamard manifold, the geodesic between
any two points is unique, and the exponential map at each point of M is a
global diffeomorphism. Therefore all convexities in a Hadamard manifold as
in [8] coincide.

Let X be a nonempty subset of a Riemannian manifold M , we shall denote
by 2X the family of all subsets of X. If T : X → 2M and S : X → 2M are
multimaps (or correspondences), then S ∩ T : X → 2M is a correspondence
defined by (S ∩ T )(x) = S(x) ∩ T (x) for each x ∈ X. When a multimap
T : X → 2X is given, we shall denote T−1(y) := {x ∈ X | y ∈ T (x)} for
each y ∈ X. A multimap T has open graph in X if the graph Gr T :=
{(x, y) ∈ X ×X | x ∈ X and y ∈ T (x)} is open in X ×X. When a multimap
Ti : X → 2Xi has open graph in X for each i ∈ I, where X = Πi∈IXi, and
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let T : X → 2X be a multimap defined by T (x) := Πi∈ITi(x) for each x ∈ X,
then it is easy to see that the graph of T is open in X ×X.

Recall the following concept which generalize the convex condition in linear
spaces to Riemannian manifolds:

Definition 2.1. A nonempty subset X of a Riemannian manifold M is said
to be geodesic convex if for any x, y ∈ X, the geodesic joining x to y is
contained in X. For an arbitrary subset C of M , the minimal geodesic convex
subset which contains C is called the geodesic convex hull of C, and denoted
by Gco(C).

Then the above definition of geodesic convex hull in a Riemannian manifold
M overcomes the delicate problems of geodesic convexity remarked in [8]. As
shown in [3], note that Gco (C) =

⋃∞
n=1Cn, where C0 = C, and Cn = {z ∈

γx,y | x, y ∈ Cn−1} for each n ∈ N.

If S is geodesic convex, then Gco (S) = S, and the intersection of two
geodesic convex subsets of M is clearly geodesic convex; but the union two
geodesic convex subsets need not be geodesic convex.

The following operations are essential in proving the geodesic convexity:

Lemma 2.2. Let X and Y be nonempty subsets of a Hadamard manifold M ,
X ∩Y be nonempty, and Gco (X) and Gco (Y ) be two geodesic convex hulls of
X and Y in M , respectively. Then we have

(1) Gco (X) ∩Gco (Y ) is geodesic convex;
(2) Gco (X ∩ Y ) is a geodesic convex subset of Gco (X) ∩Gco (Y );
(3) Gco (X × Y ) is a geodesic convex subset of Gco (X)×Gco (Y ).

Proof. (1) Let any x, y ∈ Gco (X) ∩ Gco (Y ). Then x, y ∈ Gco (X) and
Gco (Y ), respectively. Then the geodesic γx,y joining x to y is contained in
Gco (X) and Gco (Y ) so that γx,y ∈ Gco (X) ∩ Gco (Y ) and hence Gco (X) ∩
Gco (Y ) is geodesic convex.
(2) Since X∩Y ⊆ Gco (X∩Y ) ⊆ Gco (X) and X∩Y ⊆ Gco (X∩Y ) ⊆ Gco (Y )
are clear, it follows from (1).
(3) Similarly, we can show that Gco (X) × Gco (Y ) is geodesic convex which
contains X × Y so that we obtain the conclusion. �

Next, we recall some notions and terminologies on the generalized Nash
equilibrium for pure strategic games as in [1,4,13]. Let I = {1, 2, . . . , n} be a
finite (or possibly countably infinite) set of players. For each i ∈ I, let Xi be
a nonempty set of actions. An abstract economy (or generalized game) Γ =
(Xi;Ai, Pi)i∈I is defined as a family of ordered triples (Xi;Ai, Pi) where Xi is
a nonempty topological space (a choice set), Ai : Πj∈I Xj → 2Xi is a constraint
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correspondences and Pi : Πj∈I Xj → 2Xi is a preference correspondence. An
equilibrium for Γ is a point x̂ ∈ X = Πi∈I Xi such that for each i ∈ I, x̂i ∈
Ai(x̂) and Ai(x̂)∩Pi(x̂) = ∅. When I is singleton, then G is called an 1-person
game.

In a recent paper [6], the author proves a Fan-Browder type fixed point
theorem for geodesic convex sets in Hadamard manifolds which is a slight
generalized form of Theorem 3.1 in [5] as follows:

Lemma 2.3. ([6]) Let X be a nonempty geodesic convex subset of a Hadamard
manifold M , and S, T : X → 2X be two multimaps such that

(1) for each x ∈ X, T (x) is nonempty;
(2) for each x ∈ X, Gco T (x) ⊆ S(x);
(3) for each x ∈ X, there exists an y ∈ X such that x ∈ int T−1(y);
(4) there exists an xo ∈ X such that X \ int T−1(xo) is compact.

Then S has a fixed point x̄ ∈ X, i.e., x̄ ∈ S(x̄).

From now on, let M be a finite dimensional Hadamard manifold, and X be
a nonempty geodesic convex subset of M . For the other standard notations
and terminologies, we shall refer to Colao et al. [3], Kim [5,6], Kristály [7],
Németh [10], and the references therein.

3. Equilibrium existence in Hadamard manifolds

First we begin with a generalization of Lemma 2.3 to geodesic convex n-sets
in a Hadamard manifold as follows:

Theorem 3.1. For each i ∈ I = {1, . . . , n}, let Xi be a nonempty geodesic
convex subset of a Hadamard manifold M , and let X := Πi∈IXi = Xi ×
X−i where X−i = Πj∈I,j 6=iXj . For each i ∈ I, let Si, Ti : X → 2Xi be two
multimaps such that

(1) for each x ∈ X, Ti(x) is nonempty, and GcoTi(x) ⊆ Si(x);
(2) for each y ∈ X, there exists an x̄i ∈ Xi such that y ∈ int T−1i (x̄i);

(3) there exists an x̂i ∈ Xi such that X \ int T−1i (x̂i) is compact.

Then there exists a fixed point x̄ = (x̄i)i∈I ∈ X for Si, i.e., for each i ∈ I,
x̄i ∈ Si(x̄).

Proof. We first define two multimaps S, T : X → 2X by for each x ∈ X,

S(x) :=

n⋂
i=1

S′i(x) where S′i(x) := Si(x)×X−i;
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T (x) :=

n⋂
i=1

T ′i (x) where T ′i (x) := Ti(x)×X−i.

Then, by the assumption (1), for each x ∈ X, T (x) is nonempty, and by
Lemma 2.2, we have

GcoT (x) = Gco
(⋂
i∈I

T ′i (x)
)
⊆
⋂
i∈I

GcoT ′i (x) ⊆
⋂
i∈I

S′i(x) = S(x).

Note that for each y = (yi)i∈I ∈ X, we have

T−1(y) =
(⋂
i∈I

T ′i
)−1

(y) =
⋂
i∈I

T−1i (yi).

Indeed,

T−1(y) = {x ∈ X | yi ∈ Ti(x) for each i ∈ I}
= {x ∈ X | x ∈ T−1i (yi) for each i ∈ I}

=
⋂
i∈I

T−1i (yi).

For each y ∈ X, by the assumption (2), there exists x̄ = (x̄i)i∈I ∈ X such that

y ∈
⋂
i∈I

int T−1i (x̄i) ⊆ int
⋂
i∈I

T−1i (x̄i) = int T−1(x̄);

so that the assumption (2) of Lemma 2.3 is satisfied.
Next, if we let x̂ := (x̂i)i∈I ∈ X, by the assumption (3),

X \ int T−1(x̂) = X \ int
(⋂
i∈I

T−1i (x̂i)
)

= X \
⋂
i∈I

int T−1i (x̂i) =
⋃
i∈I

(
X \ int T−1i (x̂i)

)
is compact so that the assumption (3) of Lemma 2.3 is satisfied. Therefore,
the whole assumptions of Lemma 2.3 are satisfied so that S has a fixed point
x̄ ∈ X, i.e., x̄ ∈ S(x̄). Indeed, x̄ = (x̄i)i∈I ∈ S(x̄) =

⋂
i∈I S

′
i(x̄), i.e., x̄i ∈ Si(x̄)

for each i ∈ I which completes the proof. �

Remark 3.2. When I is singleton, Theorem 3.1 further generalizes Theorem
3.1 due to Kim [5] in the following aspects:

(a) for each y ∈ X, T−1(y) need not be open in X;
(b) for each x ∈ X, S(x) need not be geodesic convex.

In Theorem 3.1, when the set Xi is assumed to be compact geodesic convex
for each i ∈ I, then the coercive assumption (3) is not needed anymore:
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Corollary 3.3. For each i ∈ I = {1, . . . , n} (n ≥ 2), let Xi be a nonempty
compact geodesic convex subset of a Hadamard manifold M , and let X :=
Πi∈IXi, X−i = Πj∈I,j 6=iXj . For each i ∈ I, let Si, Ti : X → 2Xi be two
multimaps such that

(1) for each x ∈ X, Ti(x) is nonempty, and GcoTi(x) ⊆ Si(x);
(2) for each y ∈ X, there exists an x̄i ∈ Xi such that y ∈ int T−1i (x̄i).

Then there exists a fixed point x̄ = (x̄i)i∈I ∈ X for Si, i.e., for each i ∈ I,
x̄i ∈ Si(x̄).

When I is singleton and the set X is assumed to be compact geodesic
convex, S = T , and T−1(y) is open in X for each y ∈ X in Theorem 3.1, we
can obtain the Fan-Browder fixed point theorem in a Hadamard manifold as
follow:

Corollary 3.4. Let X be a nonempty compact geodesic convex subset of a
Hadamard manifold M , and T : X → 2X be a multimap such that

(1) for each x ∈ X, T (x) is a nonempty geodesic convex subset of X;
(2) for each y ∈ X, T−1(y) is an open subset of X.

Then T has a fixed point x̄ ∈ X, i.e., x̄ ∈ T (x̄).

As an application of Theorem 3.1, we shall prove a basic equilibrium ex-
istence theorem for an abstract economy with geodesic convex values in a
Hadamard manifold as follow:

Theorem 3.5. Let Γ = (Xi;Ai, Pi)i∈I be an abstract economy where I is a
finite set of agents such that for each i ∈ I,

(1) Xi is a nonempty compact geodesic convex subset of a Hadamard man-
ifold M ;

(2) for each x ∈ X := Πi∈IXi, Ai(x) is a nonempty geodesic convex subset
of Xi, and A−1i (y) is open in X for each y ∈ Xi;

(3) for each x ∈ X, (Ai ∩ Pi)(x) is geodesic convex and xi /∈ Pi(x);
(4) for each y ∈ Xi, (Ai ∩ Pi)−1(y) is open in X;
(5) the set Wi := {x ∈ X | (Ai ∩ Pi)(x) 6= ∅} is (possibly empty) such that

(X \Wi) ∩A−1i (y) is open for each y ∈ Xi.

Then Γ has an equilibrium choice x̂ ∈ X, i.e. for each i ∈ I,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Proof. Suppose that Wi = ∅ for all i ∈ I. Then we first define a multimap
A : X → 2X by

A(x) := Πi∈I Ai(x) for each x ∈ X.
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Then, by the assumption (2), we have
(i) for each x ∈ X, A(x) is a nonempty geodesic convex subset of X;
(ii) for each y = (yi)i∈I ∈ X,

A−1(y) = {x ∈ X | y ∈ A(x) = Πi∈I Ai(x)}
= {x ∈ X | yi ∈ Ai(x) for all i ∈ I}
= {x ∈ X | x ∈ A−1i (yi) for all i ∈ I}

=
⋂
i∈I

A−1i (yi).

Here, by the assumption (4), for each y = (yi)i∈I ∈ X such that A−1(y) is
open in X. Therefore, by Corollary 3.4, there exists a fixed point x̂ ∈ X for
A, i.e. for each i ∈ I, x̂i ∈ Ai(x̂), and Ai(x̂) ∩ Pi(x̂) = ∅.

Next, suppose that Io be a nonempty maximal subset of I such that Wi is
nonempty for each i ∈ Io. Then, for each i ∈ Io, we define a correspondence
φi : X → 2Xi by

φi(x) =

{
(Ai ∩ Pi)(x), if x ∈Wi;

Ai(x), if x /∈Wi.

Then, for each i ∈ Io, by the assumptions (2) and (3), we have φi(x) is
a nonempty geodesic convex subset of Xi for each x ∈ X. Also, by the
assumptions (4) and (5), for each yi ∈ Xi, we have

φ−1i (yi) = {x ∈ X | yi ∈ φi(x)}
= {x ∈Wi | yi ∈ φi(x)} ∪ {x ∈ X \Wi | yi ∈ φi(x)}
= {x ∈Wi | yi ∈ (Ai ∩ Pi)(x)} ∪ {x ∈ X \Wi | yi ∈ Ai(x)}
= {x ∈ X | yi ∈ (Ai ∩ Pi)(x)} ∪ {x ∈ X \Wi | yi ∈ Ai(x)}
= (Ai ∩ Pi)−1(yi) ∪ [(X \Wi) ∩A−1i (yi)]

is open in X.
Finally we define a multimap Ψ : X → 2X by

Ψ(x) := Πi∈I ψi(x) for each x ∈ X,

where ψi : X → 2Xi is defined by

ψi(x) =

{
φi(x), if i ∈ Io;
Ai(x), if i /∈ Io.

Then Ψ(x) is a nonempty geodesic convex subset of X for each x ∈ X. We
shall show that Ψ−1(y) is an open subset of X for each y = (yi) ∈ X. Indeed,
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for each y = (yi) ∈ X, we have

Ψ−1(y) = {x ∈ X | y = (yi) ∈ Ψ(x) = Πi∈I ψi(x)}

=
⋂
i∈I
{x ∈ X | yi ∈ ψi(x)}

=
( ⋂
i∈Io

{x ∈ X | yi ∈ ψi(x)}
)⋂( ⋂

i/∈Io

{x ∈ X | yi ∈ ψi(x)}
)

=
( ⋂
i∈Io

{x ∈ X | yi ∈ φi(x)}
)
∩
( ⋂
i/∈Io

{x ∈ X | yi ∈ Ai(x)}
)

=
( ⋂
i∈Io

φ−1i (yi)
)⋂( ⋂

i/∈Io

A−1i (yi)
)

is open in X. Therefore, the multimap Ψ : X → 2X satisfies the whole
assumptions of Corollary 3.4 so that there exists x̂ = (x̂i)i∈I ∈ X such that
x̂ ∈ Ψ(x̂), i.e., x̂i ∈ ψi(x̂) for each i ∈ I. Then, for each i ∈ Io, x̂i ∈ ψi(x̂) =
φi(x̂). If x̂ ∈Wi, then

x̂i ∈ φi(x̂) = (Ai ∩ Pi)(x̂) ⊆ Pi(x̂)

which contradicts the assumption (3). Therefore, when i ∈ Io, we have
x̂ /∈ Wi so that x̂i ∈ ψi(x̂) = φi(x̂) = Ai(x̂) and (Ai ∩ Pi)(x̂) = ∅. In case of
i /∈ Io, we have Wi = ∅ so that (Ai ∩ Pi)(x̂) = ∅, and x̂i ∈ ψi(x̂) = Ai(x̂).
This completes the proof. �

We now give a simple example of a non-convex 2-person game which is
suitable for Theorem 3.5, but the previous equilibrium existence theorems
in Border [1], Colao et al.[3], Yang-Pu [12], and Yannelis-Prabhakar [13] for
compact games can not be applied:

Example 3.6. Let G = (Xi;Ai, Pi)i∈I be a non-convex generalized game such
that the pure strategic space Xi for each player i is defined by

X1 := {(x1, x2) ∈ R2 | 0 ≤ x1, x2 ≤ 1};

X2 := {(
√

2 cos t,
√

2 sin t) ∈ R2 | π
4
≤ t ≤ 3π

4
}.

Then, X1 is a compact (geodesic) convex subset of R2 in the usual sense, and
X2 is compact but not a convex subset of R2 in the usual sense. However, as
remarked in [7], if we consider the Poincaré upper-plane model (H2, gH), then
the set X2 is geodesic convex with respect to the metric gH being the image
of a geodesic segment from (H2, gH).

For each player i = 1, 2, let the constraint correspondence Ai : X = X1 ×
X2 → 2Xi and the preference correspondence Pi : X → 2Xi are defined as
follows:
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For each
(
(x1, x2), (y1, y2)

)
∈ X = X1 ×X2,

A1

(
(x1, x2), (y1, y2)

)
:=

{{
(x̄1, x̄2) ∈ X1 | x̄1 < x1

}
, if x1 6= 0;

X1, if x1 = 0;

A2

(
(x1, x2), (y1, y2)

)
:=

{{
(ȳ1, ȳ2) ∈ X2 | ȳ1 < y1

}
, if y1 6= −1;

X2, if y1 = −1;

P1

(
(x1, x2), (y1, y2)

)
:=

{{
(x̄1, x̄2) ∈ X1 | x̄1 > x1

}
, if x1 6= 0;

∅, if x1 = 0;

P2

(
(x1, x2), (y1, y2)

)
:=

{{
(ȳ1, ȳ2) ∈ X2 | ȳ1 > y1

}
, if y1 6= −1;

∅, if y1 = −1.

Then, it is clear that for each i = 1, 2, Ai
(
(x1, x2), (y1, y2)

)
is nonempty geo-

desic convex subset of Xi, and (x1, x2) /∈ P1

(
(x1, x2), (y1, y2)

)
and (y1, y2) /∈

P2

(
(x1, x2), (y1, y2)

)
. And we have

A−11 (x̄1, x̄2) =

{{(
(x1, x2), (y1, y2)

)
∈ X | x̄1 < x1

}
, if x1 6= 0;

X1 ×X2, if x̄1 = 0;

A−12 (ȳ1, ȳ2) =

{{(
(x1, x2), (y1, y2)

)
∈ X | ȳ1 < y1

}
, if ȳ1 6= −1;

X1 ×X2, if ȳ1 = −1;

so that A−11 (x1, x2) and A−12 (y1, y2) are both open in X, and also

P−11 (x̄1, x̄2) =

{{(
(x1, x2), (y1, y2)

)
∈ X | x̄1 > x1

}
, if x̄1 6= 0;

∅, if x̄1 = 0;

P−12 (ȳ1, ȳ2) =

{{(
(x1, x2), (y1, y2)

)
∈ X | ȳ1 > y1

}
, if ȳ1 6= −1;

∅, if ȳ1 = −1;

so that P−11 (x1, x2) and P−12 (y1, y2) are both open in X. Therefore, the as-
sumptions (2)-(4) are satisfied. Applying Theorem 3.5, it remains to show the
assumption (5) of Theorem 3.5. Indeed, the set W1 = {x ∈ X | (A1 ∩
P1)(x) 6= ∅} is empty so that X \ W1 is open, and the set W2 = {x ∈
X | (A2 ∩ P2)(x) 6= ∅} is also empty so that X \ W2 is open in X; thus
the assumption (5) of Theorem 3.5 is satisfied. Therefore, all the assump-
tions of Theorem 3.5 for the generalized game G = (Xi;Ai, Pi)i∈I are satisfied.
Hence, we can obtain an equilibrium point

(
(0, 1), (−1, 1)

)
∈ X = X1 × X2

for G such that for each i = 1, 2,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.
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That is,

(0, 1) ∈ A1

(
(0, 1), (−1, 1)

)
and (A1 ∩ P1)

(
(0, 1), (−1, 1)

)
= ∅;

(−1, 1) ∈ A2

(
(0, 1), (−1, 1)

)
and (A2 ∩ P2)

(
(0, 1), (−1, 1)

)
= ∅.

Finally, we provide a noncompact intersection theorem which is essential
in proving the equilibrium existence theorem in noncompact Hadamard man-
ifolds settings:

Theorem 3.7. For each i ∈ I = {1, . . . , n}, let Xi be a nonempty geodesic
convex subset of a Hadamard manifold M , and let X := Πi∈IXi = Xi ×X−i.
Let A1, · · · , An, and B1, · · · , Bn be nonempty 2n subsets of X, and let

Ai(xi) := {x−i ∈ X−i | (xi, x−i) ∈ Ai};Ai(x−i) := {xi ∈ Xi | (xi, x−i) ∈ Ai};

Bi(xi) := {x−i ∈ X−i | (xi, x−i) ∈ Bi};Bi(x−i) := {xi ∈ Xi | (xi, x−i) ∈ Bi}.
Suppose that

(1) for each i ∈ I, and any x−i ∈ X−i, there exists an yi ∈ Xi such that
x−i ∈ intAi(yi);

(2) for each i ∈ I, and any x−i ∈ X−i, GcoAi(x−i) ⊆ Bi(x−i);
(3) there exists an x̄ ∈ X such that X \ int

(
Πi∈I A

−1
i (x̄−i)

)
is compact.

Then we have
⋂n
i=1Bi 6= ∅.

Proof. We first introduce two multimaps T, S : X → 2Xi by for each x =
(xi, x−i) ∈ X,

T (x) := Πn
i=1Ai(x−i); S(x) := Πn

i=1Bi(x−i).

Then, by the assumption (1), for each x ∈ X, there exists an y ∈ X such
that x ∈ int T (y), and by the assumption (2) and Lemma 2.2, we have
GcoT (x) ⊆ S(x) for all x ∈ X. Here we note that since Ai(xi) = {x−i ∈
X−i | (xi, x−i) ∈ Ai} for each xi ∈ Xi, we obtain that the inverse set
A−1i (x−i) = {xi ∈ Xi | (xi, x−i) ∈ Ai} for each x−i ∈ X−i. Since T−1(x) =

Πn
i=1A

−1
i (x−i) for each x ∈ X, by the assumption (3), we have that there exists

an xo ∈ X such that X \ int T−1(xo) is compact. Then all the assumptions
of Lemma 2.3 are satisfied so that there exists a fixed point x̄ ∈ X such that
x̄ ∈ S(x̄), i.e., x̄ ∈

⋂n
i=1Bi 6= ∅. This completes the proof. �
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