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1. INTRODUCTION

In this paper, we consider the following nonlinear integrodifferential equa-
tion in two variables

u(z,y) = g(z,y) + //Q K(z,y,s,t;u(s,t), Diu(s,t))dsdt, (1.1)

where (z,y) € 2 =[0,1] x [0,1] and g: Q = E, K : Q x Q x E?> - FE are
given functions, E is a Banach space with norm |[|-|| ;. Denote by Diju = g—:,
the partial derivative of a function wu(z,y) defined on 2, with respect to the
first variable.

It is well known that integral and integrodifferential equations have at-
tracted the interest of scientists because of a great deal of application in dif-
ferent branches of sciences and engineering. These equations arise naturally in
a variety of models from mechanics, physics, population dynamics, economics
and other fields of science, for example, see the books writen by Corduneanu
[4], Deimling [5].

Many papers have been devoted to the study of some types of (1.1), in
one variable, two variables, or N variables, and its special versions by using
different methods, in which the fixed point theorems are often applied, see [1]
- [16] and the references given therein.

In case the Banach space E is arbitrary, Bica et al. [3] presented a new
approach for the following neutral Fredholm integro-differential equations in
Banach spaces

b
x(t) = g(t) +/ f(t,s,x(s),2'(s))ds, t € [a,b], (1.2)

where f : [a,b] X [a,b] X E x E — E is continuous, F is a Banach space and
g € C'([a,b]; E). Here, the authors used Perov’s fixed point theorem to obtain
the existence, uniqueness and global approximation of the solution of (1.2).

In the case E = R?, motivated by the results in [3], based on the applications
of the well-known Banach fixed point theorem coupled with Bielecki type
norm and a certain integral inequality with explicit estimate, Pachpatte [13]
proved uniqueness and other properties of solutions of the following Fredholm
type integrodifferential equation

b
x(t) = g(t) +/ f(t, s, z(s),2'(s), - ,x(”*l)(s))ds, t € [a,b],

where z, g, f are real valued functions and n > 2 is an integer. With the
same methods, Pachpatte studied the existence, uniqueness and some basic
properties of solutions of the Fredholm type integral equation in two variables
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as follows, see [14],

a b
w(w,y) = flo.y) + /0 /0 g (2, 5. u(s, 1), Dyu(s, 1), Dau(s, £)) dtds.

M. A. Abdou et al. also considered the existence of integrable solution of non-
linear integral equation, of type Hammerstein—Volterra of the second kind, by
using the technique of measure of weak noncompactness and Schauder fixed
point theorem, see [1]. In [2], A. Aghajani et al. proved some results on the
existence, uniqueness and estimation of the solutions of Fredholm type integro-
differential equations in two variables, by using Perov’s fixed point theorem.
Recently, in [8] - [12], using tools of functional analysis and a fixed point
theorem of Krasnosel’skii type, we have investigated solvability and asymp-
totically stable of nonlinear functional integral equations in one variable or
two variables, or N variables.

Based on the above works, we consider (1.1). This paper is organized as
follows. In section 2, we present some preliminaries. It consists of the definition
of a suitable Banach space and a sufficient condition for relatively compact
subsets. In section 3, by applying the Banach theorem and the Schauder
theorem, we prove two existence theorems. Furthermore, the compactness of
solutions set is proved. In order to illustrate the results obtained here, two
examples are given.

2. PRELIMINARIES

First, we construct an appropriate Banach space for (1.1) as follows. Let
X = C(Q; E) be the space of all continuous functions from €2 into E equipped
with the following norm

lull x = sup |u(z,y)llp, veX. (2.1)
(z,y)EN
Put
Xl:{UEXZD1u€X}. (2.2)

We remark that C'(; E) S X1 & X. Indeed, let e; € E, e1 # 0,
(i) Consider u = u(z,y) = (Jz— |+ |y — 3|) e1, we have u € X, but
u ¢ Xy;
(ii) Consider v = v(z,y) = 2? |y — 3| e1, we have v € X1, but v ¢ C*(; E).
Lemma 2.1. X is a Banach space with the norm defined by
lullx, = llullx + [[Drulx, we Xi. (2.3)
Proof. Let {u,} C X1 be a Cauchy sequence in X, it means that

[Jup — Umel = |lup — um| x + [[D1up — Diupllx — 0, as p,m — oo.
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Then {u,} and {Dju,} are also the Cauchy sequences in X. Since X is
complete, {u,} converges to u and {Dju,} converges to v in X, i.e.,

|up — ull y — 0, || Diup —v[[y — 0, as p — oo. (2.4)
We shall show that Dju = v. We have
up(z,y) — up(0,y) = /0 Diuy(s,y)ds, Y(z,y) € Q. (2.5)
By [Jup — ully — 0, we get
up(z,y) — up(0,y) = u(z,y) — u(0,y) in £ V(z,y) € Q. (2.6)
On the other hand, it follows from ||Dju, — v||, — 0 that
/ Dyuy,(s,y)ds —>/ v(s,y)ds, Y(x,y) € Q, (2.7)
0 0
because of
| Drugtspas = [“otsds| < [ IDuns.) — vl )l ds
0 0 E 0
< [Drup — vl
— 0.
Combining (2.5)-(2.7) leads to
u(z,y) —u(0,y) = / v(s,y)ds in E ¥(z,y) € Q. (2.8)
0
It implies that Diju = v € X. Therefore v € X; and u, — w in X;. This
completes the proof. O

Next, we give a sufficient condition for relatively compact subsets of Xj.

Lemma 2.2. Let F C Xy. Then F 1is relatively compact in X1 if and only if
the following conditions are satisfied:

(i) For all (z,y) € Q, F(z,y) = {u(z,y) : v € F} and D1F(z,y) =
{Diu(z,y) : w € F} are relatively compact subsets of E;
(ii) If for all € > 0, there exists 6 > 0, for all (z,y), (Z,7) € Q,
“’L‘—;f’+|y—g| <5a
then

sup(u(z,y) — u(z,9)|r <,
ueF

where
[w(z,y) —w(@, §)le = lu(z,y) —u(z,9)llg
+ | Diu(z,y) — D1u(@, §)| 5 -
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Proof. (a) Let F be relatively compact in X7 .

First, we show that (i) is true.

To prove that F(z,y) is relatively compact in E, let {u,(x,y)} be a se-
quence in F(z,y), we show that {u,(x,y)} contains a convergent subsequence

in E. Because F compact in X1, we have {u,} C F contains a convergent
subsequence {up, } in X;i. So there exists u € X; such that

Up, — U — 0, as k — .
Pk X1

By [lup (2, y) —uw(@, y)lp < lup, —ulx < flup, —ulx, = 0, up(2,y) =
u(z,y) in E. Thus F(x,y) is relatively compact in E.
Similarly, by
[D1upy (2,y) = Dru(@,y)|l g < [[Drug, — Diully < lup, — ully, =0,

we have D1F(z,y) is also relatively compact in E.

Next, we show that (ii) is also true.
For every € > 0, considering a collection of open balls in X7, with center at
u € F and radius §, as follows:

5 €

It is clear that 7 C |J B(u, 7). Because F compact in X1, the open cover
ueF

{B(u, %)}ue]E of F contains a finite subcover, so there are uy, - - ,u, € F such

that -

— q

FcC szl B(uj, 7)-
By the functions u;, Dyuj, j = 1,--- ,q are uniformly continuous on {2, there
exists 0 > 0 such that for all (z,y), (Z,y) € Q,

— _ o I3 .
|z — 2|+ |y —y| < 0 = [uj(z,y) —u;(Z,9)|p < 3 Vi=1,---,q.

For all u € F, u € B(ujy, 7) for some jo = 1,---,q. Thus, for all (z,y),
(z,9) € Q, if [x — Z| + |y — y| < J then we obtain
[u(z,y) —w(@.§)e < [ul@,y) —wj(z,y)le + [wj(z,y) —usp(Z,9)]e

< 2 ||’LL - ujOHXl + [U]O(CC,y) - u]o(jvg)]E
J%c

4 2
= £&.

It implies that (ii) is true.
(b) Conversely, let the conditions (i) and (ii) be correct.
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To prove that F is relatively compact in X7, let {u,} be a sequence in F,
we show that {u,} contains a convergent subsequence.

Put 71 = {u, : p € N}. By (i), Fi(z,y) = {up(z,y) : p € N} is relatively
compact subset of F, for all (z,y) € € and F; is equicontinuous in X. Applying
the Ascoli-Arzela theorem to Fi, it is relatively compact in X, so there exists
a subsequence {uy, } of {u,} and u € X such that

|tp,, — ull y — 0, as k — oo.

Similarly, 72 = {Diuy, : k € N} is also relatively compact in X. We obtain
the existence of a subsequence of {Djuy, }, denoted by the same symbol, and
w € X, such that

| D1up, — wlly — 0, as k — oo.
Because of

Upk(l“,y) - Upk(O,y) = /0 Dlupk(suy)dsv V(x,y) € Q’

furthermore by |u,, —ul/y — 0 and ||Dyuy,, —w|| — 0, we obtain

u(z,y) —u(0,y) = /Oxw(s,y)ds in E,V(z,y) € Q.

As w € X we see that the right hand side is continuously differentiable with
respect to x and this leads to Diju = w € X. Therefore u € X7 and u,, — u
in X7. This completes the proof. O

3. THE EXISTENCE THEOREMS

We make the following assumptions.
(H1) g€ Xy;

(Hy) K € C(QxQx E?%*FE)such that D1K € C(2 x Q x E% E),

and there exist nonnegative functions ko, k1 : Q2 x 2 — R satisfying

(i) B= sup [[qko(z,y,s,t)dsdt + sup [[,ki(z,y,s,t)dsdt <1,
(z,y)€Q (z,y)EN

(ii) |K(z,y, s t;u,v) = K(z,y,s,t;4,0)| g
< ko(z,y,s,t) ([lu—1llp + lv—"2lg),

(iii) | D1K(x,y,s,t;u,v) — D1 K(z,y,s,t;4,0)|
<ki(z,y,s,t)(JJu—1a|g+|v—20|g), forall(z,y,s,t) € QxQ, Y(u,v),
(u,v) € B2

Theorem 3.1. Let the functions g, K in (1.1) satisfy the assumptions (Hy),
(H2). Then the equation (1.1) has a unique solution in X;.
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Proof. For every u € X1, we put

(Au)(z,y) = g(z,y) + / ; K(x,y,s,t;u(s,t), Diu(s,t))dsdt, (z,y) € Q.

(3.1)
It is obviously that Au € X1, Vu € X;. We shall show that A : X7 — X7 is
a contraction map, by proving

|Au — Aully, < Bllu—aly,, Yu,u € X;. (3.2)
For every u, u € X, for all (z,y) € Q, by (Ha,ii), (3.1) leads to
[(Au)(z,y) — (Aw)(z,y)||g

§/ | K (z,y,s,t;u(s,t), Diu(s,t)) — K(z,y, s, t;u(s, t), Diu(s,t))|| p dsdt
Q

S//%@wwﬁwwaﬂ—M&mw+H&M&ﬂ—Dﬂ@wMMMt

sup // ko(z,y,s,t)dsdt | [Ju— 1l y, -
z,y)eQ

Hence

|Au — Aal|y < ( sup // ko(x,y, s, t) dsdt) lu—aly, - (3.3)

z,y)EN

Similarly, by for all (z,y) € Q,
Dy (A’LL)(:Z}, y) = Dlg(xa y) + / DlK(CC, Y, 8, U(S, t)v D1U(S, t))det)
Q
and (Hs)-(ii) we obtain
|1D1(Au) (2, y) — Di(Au)(z,y)| g

< [[ 1D ey sstsu(s. ). Druts. )
Q
— D1 K(x,y,s,t;u(s,t), Diu(s,t))||gdsdt

S//h@wﬁﬁmM&ﬂ—M&mm+HMM&Q—Dw@ﬂbMMt

sup // k1(z,y,s,t)dsdt | [|u—ull x, ,
(z,y)€Q

it implies that

101 (Au) — Dy (A < ( sup // e dsdt) lu—aly . (34

z,y)EN
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From (3.3) and (3.4), we have (3.2). Applying the Banach fixed point theorem,
Theorem 3.1 is proved. O

We also obtain the existence of solutions of (1.1) in X; via the Schauder
fixed point theorem, by making the following assumptions.

(Hy) K € C(QxQx E?%E) such that D1K € C(2 x Q x E% E),

and there exist nonnegative functions ko, k1 : © x Q — R satisfying
(i) B= sup fo ko(x,y,s,t)dsdt + sup fo ki(x,y,s,t)dsdt < 1,

(z,y)eQ (z,y)eQ

(i) (1K (z,y,s,tu,0)|5 < ko(z,y,8,8) (L + [lull g + [vllg) ,
and

(iii) [[D1K (2,y, .t u,0) || p < ki@, y,8,8) (L+ [ullg + vlg)
for all (z,y,s,t) € Q x Q, V(u,v) € E?

(H3) K,D1K :QxQx E* - E, are completely continuous suchthat for
any bounded subset J of E?2, for all € > 0, there exists § > 0, such that

V(z,y,s,t), (,9,5,t) € AXxQ |z —Z|+|y—y|<d

= ||K(z,y, s, t;u,v) — K(Z,7, s, t;u,v)| g

+||D1K(z,y,s,t;u,v) — D1 K(Z,9, s, t;u,0)|| g <&, V(u,v) € J.

Theorem 3.2. Let the functions g, K in (1.1) satisfy the assumptions (Hy),

(Hs), (H3). Then the equation (1.1) has a solution in Xi. Furthermore, the
set of solutions is compact.

Proof. With the operator A as in (3.1), it is clear that A : X; — X;. For
p > 0, we define a closed ball in X; as follows

B,={ue X : ulx, <o}

We shall show that there exists p > 0 such that A : B, — B,. For every
u € B, for all (z,y) € 2, we have

1 (Au) (@ 9) < o 9)l g + / /Q |K (2,9, 5.t u(s, £), Dyu(s, 1)  ddt
<llgllx + / /Q Fo(e, . 5.1) (1+ [[u(s, )llp + [ Druls, )] ) dsde

< llglly + / /Q Fo(z.y5,1) (1 + [[ull . ) dy

<llgllx + (1 +p) ( sup / / fcou,y,s,t)dsdt),
(z,y)eN Q
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it gives

(z,y)EN

lAullx < llglx + (1 + p) ( up [ / Fol, y,stdsdt> (3.5)

Similarly, we have
[1D1(Au) (2, )| g < |1D19(z,9)l

+ / | D1 K (z,y,s,t;u(s,t), Diu(s, t))| p dsdt
Q

<||Digllx + (1 +p) ( sup // klxy,stdsdt>
(z,y)EN

SO
|D1(Au) I < 1Daglly + (1 + p) ( sup [ B dsdt> (3.6)
(z,y)EN
This gives
| Aully, < liglly, + (1 +p) B (3.7)
lgll, +5

Choosing p > gl x, + (1 + p) B,ie p> 5 Thefore, A: B, — B,.
Now we show that two conditions as below are satisfied.

(a) A: B, — B, is continuous.
(b) F = A(B,) is relatively compact in Xj.

To prove (a), let {uy} C By, [lup — uol|x, = 0, as p = oo, we need to show
that

|| Au, — Augl|x — 0 and || D1(Au,) — Di(Aug)||y — 0, asp = oco.  (3.8)

Note that
1(Aup) (2, y) — (Auo)(z, y)l|
<[] 1K st (s, 0), D s,1) (3.9)
- I?(m, Y, 8, t;ug(s,t), Diug(s,t))||pdsdt.
Put
S1 = {up(s,t):(s,t) €Q, peZy}, (3.10)
Sy = {Diuy(s,t): (s,t) € Q, peZy},

then we have Sy, Sz are compact in F, since [up, — uo| 5, — 0.

i) S1 is compact in E.
(i) p
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Indeed, let {up,(s;,t;)};, be a sequence in S1. We can assume that
jlirglo(sj,tj) = (so0,tp) and jgr& l|up, — uonl = 0. We have

[utp, (555 t5) — Uo(Soato)HE
< Hupj (SJ'?tj) - UO(Sj’tj)HE + HUO(Sjvtj) - UO(SOvtO)”E
< Jlup; —woll , + lluo(sj, t5) = uo(so, to)

— 0, as 7 — o0,

(3.11)

which shows that lim u,,(s;,t;) = uo(so,tp) in E. This means that S is
— 00

compact in F.

(ii) Similarly S5 is also compact in E.

Give € > 0. Since K is uniformly continuous on 2 x {2 x S x Sa, there exists
0 > 0 such that for all (u,v), (u,v) € S1 X Sy,

||U - aHE + HU - EHE <= HK(JZ‘,y,S,t;U,’U) - K(x7y757t;a)6)”E <eg,
for all (z,y,s,t) € Q x Q.

Because of |lu, — uo| y — 0 and ||Dyu, — Dyugl| — 0, there is pg € N such
that

VpeN, p=po=lup —uollx + || Drup — Diug| x < 0.

It implies that for all p € N, p > po,

| K (x,y,s,t;up(s,t), Diuy(s,t)) — K(x,y,s,t;uo(s, t), Diuo(s,t))| p <e,
for all (z,y,s,t) € Q x Q, consequently

1(Aup) (2, y) = (Auo)(z,y)llp <&, V(z,y) € Q Vp > po,
it means that
| Aup — Augl| < e, ¥p > po, (3.12)
that is, ||Au, — Augl|y — 0, as p — oo,
By the same argument, we obtain that || Dq(Au,) — D1(Auo)|ly — 0, as
p — oo. The continuity of A is proved.
To prove (b), we use Lemma 2.2.
First, we prove the condition (i) in Lemma 2.2: A(B,)(x,y) = {Au(z,y) :
u € B,} and D1A(B,)(x,y) = {D1(Au)(x,y) : u € B,} are relatively compact
in E.
Put
Ri = {u(s,t):(s,t) €Q, ue B,}, (3.13)
Ry = {Diu(s,t):(s,t) €Q, ue B,}.

Then R, Rg are bounded in E. Since K is completely continuous,
K (2 x Q x Ry X Ry) is relatively compact in E, it implies that
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K (2 x Q x Ry X Ry) is compact in E, and so is conv (K (2 x Q x R} x Rg)),
where conv (K (Q x © x Ry X Ry)) is the closure of convex hull of K (€ x 2
XR1 X Rg)

For every (z,y) € Q, for all u € B, it follows from

K(x,y,s,t;u(s,t), Diu(s,t)) € K (2 x Q x Ry X Ry),¥(s,t) € Q, (3.14)
that
A(B))(x,y) C g(x,y)+ |Q|cono (K (2 x Q x Ry x Ry))  (3.15)
= g(z,y) + conv (K (2 x 2 x Ry X Rg)).
Hence, the set A(B,)(x,y) is relatively compact in F.

Similarly, D1A(B,)(x,y) C Dig(x,y)+conv (D1 K (2 x Q x Ry X Ry)), so
the set D1 A(B,)(z,y) is relatively compact in E.

Next, we prove the condition (ii) in Lemma 2.2:
Give € > 0. By (H3), there exists 6; > 0 such that V(z,y), (z,y) € Q,
z—Z[+ ]y -yl <o =
[K(x,y,s,t;u,v) — K(Z,9,s,t;u,v)|g
= [ K(z,y, s t;u,0) = K(Z,7, 5, t;u,0)| g
+ |D1 K (z,y, s, t;u,v) — D1 K(Z, 7, s, t;u,v)| g

< %, V(s,t) € Q, V(u,v) € Ry X Ro.

Since g, D1g are uniformly continuous on €2, there is 9 > 0 such that

W(e,y), (29) €Q Jo— a3l +ly -7l < 82 = lo(a.y) 9@ D]z < 5.
Choose § = min{dy,da}, it gives, V(x,y), (Z,9) € Q, |z —Z|+ |y —g| <9,
[(Au)(z,y) — (Au)(Z,9)]E < [ —9(7,9)]e

// (2,1, 5, t:u(s,1), Dru(s, ) -

- K($, Y, s, t; U(S, t)> D1U(8, t))]Edet

e €
<§+§:€, VUEBP.
Using Lemma 2.2, F = A(B,) is relatively compact in X;. And applying the
Schauder fixed point theorem, the existence of a solution is proved.

Next, we show that the set of solutions, S = {u € B, : u = Au}, is compact
in X;. By the compactness of the operator A : B, — B, and S = A(S),
we only prove that S is closed. Let {u,} C S, [[up — ul[ 5, — 0. The continuity
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of A leads to
Ju—Aullx, < flu—upllx, + [lup — Aullx,
= [Ju—uplx, + [ Aup — Aully,

— 0,

so u = Au € S. Theorem 3.2 is proved. O

4. EXAMPLES

For the end, we illustrate the results obtained here by two examples.
Let E = C([0,1];R) be the Banach space of all continuous functions v :
[0,1] — R with the norm

|vllg = sup |v(n)|, v e E. (4.1)
0<n<1

Let X = C(Q; E) be the space of all continuous functions from (2 into E
equipped with the following norm

ullx = sup |u(z,y)llg, veX. (4.2)
(z,y)EN
Put
Xlz{UGXZDl’uGX}. (43)

Then, for all v € X; and (z,y) € 2, u(x,y) is an element of E' and we denote
u(z,y)(n) = u(z,y;n), 0 <n <1, (4.4)

We also have the following lemma, it is clear, so we omit its proof.

Lemma 4.1. Let positive constants «, o, v1 satisfy0 <a <1, 0< 1 <1<
v1. Then
2 |y — o™ < max{a™, (1 — )2},

<
< 277y — o <max{a??, (1 - a)?}, Vz, y € [0,1].

Example 4.2. We consider (1.1), with the functions g: Q@ — E, K : Q x Q X
E? — E as follows:

(i) Function K : Q x Q x E? — E,

K (,y,5,t:u,0)(n) = k(z, y;m)[(st) sin(5200) 4 (st)1 cos(pomd )],

(4.5)
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for 0 <n <1, (x,9,s t;u,v) € Qx Qx E?, with

k, wo : Q— E,
k(z,yin) = o527 |y — &), (4.6)
wo(e,y3m) = 7 [ + 27 [y —a[?], 0 < < 1, (2,y) € Q.

(ii) Function g : Q@ — E,
1 1
5 T 2
1+ Ozo) (1 + Ckl)

for 0 <n <1, (z,y) € Q, where «, 71, Y2, &, 1, Y2, Qp, 1 are positive
constants satisfying

g@%@ZM@%m—h Ry, (47)

0<a<l,0<a<],0<1<1<,0<%n <1<, 48)
(1 +%) {(14—}10)2 + (1+i1)2} max{a’, (1 -a)”} < 1. '
Then we have
1
wo(w,yin) = 7 e [e” + 2™ |y — af ],
1
Drwo(z,y;n) = 7 g [e® +ma"y—al?], 0<n <1, (2,y) €,

and so wo, Diwy € X and wo(z,y;n) > 5, Diwg(z,y;n) > 3.

We now prove that (Hi), (H2) hold. It is obvious that (H;) holds, by wo,
ke X;.
Assumption (Hsz) holds, by the fact that:

First, we show that K € C(Q x Q x E%; E).
For all (z,v,s,t;u,v), (Z,7,5,t;u,0) € Q x Q x E2, for all n € [0,1],
K(z,y,s, tyu,v)(n) — K(2,9,5,%3,0)(n)
= [k(z,y;n) — k(Z, 7;n)]

x [(st)ao sin (M) + (st)* cos <lm>}

-%mmmWWKW@Wm«mﬂﬂzﬂ

+h(2,g5m) [(st)** — (51)™] cos (%)

+k(z, 55 ) (51)% [Sin <M(n))> s (7”7‘(77)”
)

2wo(s, t;n

o 2mv(n) > ( 27
+k(z,7;m)(50)* |cos | =———— | —cos | =—~L—
@ g [ <D1w0(5,t; n)
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Then

|K (2, y, s, t;u,0)(n) — K(2,9, 5, t;4,0)(n)|
k(z,

< 2k 9) — k@5 + @5 | (5% — (5D
Gl 605 = (601 + 29 e — - T
- 2mo(n) 27v(n)
MG | Gy~ Dot
Note that
TR
2w0(57t;77) (gf )
s o ) 6]+ (5 o) — (o))

2 wo(s, t;m)wo (5, 1)
< 27 [[lwo(S, Dl llu — @ll g + lwo(s, €) — wols, )| [l g]

and

‘ 2mv(n) 2mo(n)

Dlw0(57t;n) Dlw()(ga tj 77)

< 8 [[|[D1wo(5, )| g lv — 0l g + | Diwo(8, 1) — Diwo(s, t)| g [|9] ] -
Hence

1K (2,y, 5, t;u,0) — K(2,9, 5,4 0,0)| g
< 2|[k(z,y) — k(Z,9)l g
k@ Pl ()™ = ()] + |k, §)ll g [(st)™ — (51)™']
+27 |k(2, 9)|| g [lwo (8, )l g l|lw =l g + lwo(S,8) — wols, )| g l|ull g]
87 [|k(Z, 9) || g [ Drwo (s, ) g [lv — ol
+||Drwo(5, 1) — Dywo(s, 1) 5] ]
— 0,

as & — 7| + [y — gl + |5 — 51 + [t — 7 + Ju— @l + [[v — 5l — 0. Thus K
CAxQx E%E).

Similarly D1 K € C(Q x Q x E% E).
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Next, the assumptions (Hz)-(i) and (ii) hold, by the fact that
| K(z,y,s,t;u,0)(n) — K(2,y,s,t;4,0)(n)]

_ a T () — u(n)| o 27 [v(n) — o(n)]
k(x7y’ 77) <(St) QIU()(S,t; 77) * (St) D1w0(37t777) )
mk(z,y;m) (1) [u(n) —a(n)| + 4(st)** [v(n) — v(n)])
mh(x, y;n) [(s)* +4(st)! ] [lu — ull g + llv = Oll ] -

IN

IN A

Hence
”K(xay78>t; u,v) —K(x,y,s,t;ﬂ,ﬁ)HE (49)
< wllk(z, y)llg [(s0)* +4(st)™ ] [[lu — al[ g + [[v — V]| g]
= ko(z,y,s,t)[lu =l g+ [lv—"2[g],
in which
Fo(@,y, 5,8) = ma™ [y — &1 [(st) + 4(st)™] (4.10)
Similarly, with
DIK(xayaS7t; Ua”)(n)

= Dik(z,y:n) [(st)o‘o sin <7m(77))> + (st)** cos <27rv(n)>] ’

2wo(s, ;1 Dywo(s, t;n)
we have
|\D1K(x,y,s, t;u,v) — D1 K(x,y,s,t;4,0)| 5 (4.11)
< ki@, y,st) [lu —allp + v —ollg],
with

ki(x,y,s,0) = 7 |y — a2 [(st) + 4(st)™]. (4.12)

Using Lemma 4.2, we get

// ko(z,y, s, t)dsdt = wal |y —a|”? // [(st)* + 4(st)*] dsdt
Q Q
1

= mx) |y — o?|% {

4
(ta0?  (+ a1>2]

1 4 ~ Y2 —a Y2
s [(1 + ap)? * (1 +a1)2} max{d, (1 -4}

/ ki(z,y, s, t)dsdt = 72" |y — al™ // [(st)*° + 4(st)™!] dsdt
Q Q

1 4
< 77 +
= ”1[<1+ao>2 (1+a1)?

} max{a’2, (1 — &)”}.
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Therefore
8 = sup //kga:y,stdsdt+ sup //k‘lxy,stdsdt
(z,y)EQ (z,y)EQ
4 3 -
< 1 A2 (1—a)” 4.13
>~ ( +71) |:(1+a0) + (1+Oé1)2:| maX{a 7( a) } ( )
< 1.

Hence, the assumption (H2)-(i) holds. Then, Theorem 3.1 is fulfilled. Morever,
wp € X1 is also a unique solution of (1.1).

Example 4.3. We consider (1.1), with the functions g : Q@ — E, K : Q x Q x
E? — E defined by
(i) Function K : Q x Q x E? — E,

K(x,y,s,t;u,v)(n)

1 U(C) 1/4 1 U(() 1/3
= k(xz,y; stao/ _ d—f—sto‘l/ <> dac| ,
(@ y:7) [( ) o |wo(s,t:¢) ¢ (o) o \Diwo(s,t;Q) ¢
(4.14)
for 0 <n <1, (x,9,s tu,v) € Qx O x E? with
k‘ wo - Q—F
k(z,y;m) = 1+nw“ ly —al™, (4.15)
wo(@,y;1m) = 747 e + a7 Jy —a|™], 0 < < 1, (2,y) € Q.
(ii) Function g : Q@ — F,
(o) = ol ) = | oo + e B (@10
LYs = WolZ, Y; - x,Y,; ) .
9, yin) = wol® 1) ~ | T oss T (T )2 Y1

for 0 < n < 17 ($7y> € Q7 where a, Y1, 72, du ’?17 :)/27 Qp, (x] are positive
constants satisfying

(4.17)

O<a<l,0<a<,0<n<1<y,0<9 <1 <A,
40+ 1) |y + (| max{a™, (1 - @)} < 1.

We can prove that (Hy), (Hs), (H3) hold, by the following:
By k, wo € X1, we have (H;) holds.
Assumption (Hs) holds, by the fact that:
First, we show that K € C(Q x Q x E% E).
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For all (z,v, s, t;u,v), (Z,7,5,;4,0) € Q x Q x E2, for all n € [0,1],

K(z,y,s,t;u,v)(n) — K(Z,7,5,t;a
4
= [k(z,y;m) — k(Z,7;1 [ (() d¢
1/3
<1w08tC> dg]
k(. 5 m) [(st) — (58)°] /0 m e

1
Fh(z, 53 [(s8)™ — <Sf>“]/0 <Dwo<tc> a

+k:(x,y, U)(St [/O (‘WQ(S,tQ C) B ‘wo(g, E; ()

w0 [ [(sz(f)m)/ - <Dw<(<>t0>/] “

Note that, wg, Diwy € X and wo(z,y;n) > Dlwg(x yim) >

2 , we obtain

’K(x7y737t;u7v)(n) - K(‘f Y,s, t_ﬂ 77)(77)’
< 2|lk(z,y) - k@ D)l [lull + o]

)
2|k, 5) | 5 |(st)° — (57)°] [|u £ *
2|k, §)ll |(st) — (50| o]l >

1 1/4
k@l [ || =

el | |(oeg) - (panera)

Applying the following inequalities:

_ul@
t;

[lal? — [b]*] la — b7, Ya,be R, Vg€ (0,1], (4.18)
la]7 Y — |p[a? b) 21=0|q — b7, VYa,b e R, ¥q € (0,1],
(a+0)? < a?4d!, Ya,b>0, Vg€ (0,1],

IN

IA
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we obtain

u(n) u(n)

u(n)] + [wo(5, £ 1) — wo(s, t;m)] u(n)
wo(s, ;M) wo (5, £ 1)
< Alwo(s, 0] g llv —ull g +4llwo(5,8) = wols, D g llullz

‘ v v ’
Dywo(s,t;m)  Diwo(5,t5m)
< 4||Dywo(5, )| g [|lv — 9l g + 4 | D1wo(5, ) — Diwo(s, t)| g [|9]

and
w(¢) (M| a) Y
wo(s, £ C) wo (5, £ C)
w¢) __ag) |
wols, £¢)  wo(5,%C)

IN

1/4
A4 Yo (5,9 g llu =l + (5, B) — wo (s, ) il |

4 _ 4 4
< V2 llwo(s, DI lu = alli* + llwo(s,8) = wols I al "]

N

Similarly, we have

v / v /
‘(Dlwo((gt; g))l - (Dlwo((c?_ g))l 3’
v —2/3 v
- ‘(Dlwo((g ,C)) / <D1w0((s? t; ¢ ))
v(¢) —2/3 v(¢)
(Dlwo( 5,1 )) (Dlwo( 5,1 ()>‘

(S I (S I
D1w0(87t;C) Dle(gvt_;C)

22/341/3 [ [ D1wo(5, )| g lv — 0l 5 + | D1wo(5,t) — Diwo(s, )| g HEHE}

2/3 [ \Drwo (5. D) o = 51 + | Drwo(,8) — Drwo(s, )l 511

92/3

IN

1/3

IN

IN
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Hence
1K (z,y, s, t;u,0) = K(2,9,5,84,0)| 5
_ 1/4 1/3
<2 k(2 5) — K@Dl p el + 1ol ]
= = a v 1/4 - @ _Na 1/3
+2 k(@9 ()% = (5] llull g + 21Ik(@, 9]l 5 | () = (5D o]
_ _ 1/4 _1/4 _ 1/4 -, 1/4
V2 6@, ) o, DI e = all i + llwo(5,7) = wols, DI 1l
+2Y3 |k (2, 9|
_ 1/3 _1/3 _ 1/3 1-11/3
% [ID1wo (5, DL lfo = 5134 + | Dywo(s, B) — Dywo(s, )1 1]
— 0,
as |l —Z| + |y — gyl +|s—5|+ [t —t|+ lu—al g + |[v — 0||p = 0. Thus K €
C(dx Qx E%E).
Similarly D1 K € C(Q x Q x E% E).

Assumptions (Hs)-(ii) and (iii) also hold, the proof is as follows:
Applying the inequality

a<l+a?, Va>0, Vg>1, (4.19)

we obtain
K (2,9, s,t;u,v)(n)]

< |k(z,y;n)| {(st)"‘0 (1 + 2’“(”)|)> + (st)* <1 + W)}

wo(s,t;n Dywo(s, t;m)
< da™ [y — a| ™ [(st)* + (st)] [L+ |lull g + [[0llg]
it leads to
1K (2, y, 5, t;u,0)|| p < ko2, 5,t) [L+ [[ull g + o]l 5], (4.20)
in which i i
ko(x,y,s,t) = 4™ |y — & [(st)*0 + (st)*]. (4.21)
Similarly, we have
ID1E (2, y, 8, t:u,0)|| p < Ka(z,y,5,1) [L+ [Jull g + vl gl (4.22)
with )
ki(z,y,s,t) = 453127 |y — &) [(st)®0 4 (st)™]. (4.23)
Next,

//Q ko(z,y, s, t)dsdt = 427 |y — & //Q (s1)% + (1)) dsdt
1 1 } max{&%,(l*d)%};

= 4[(1+ao>2 HGETE
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// ki(z,y, s, t)dsdt = 432771 |y — " // [(st)* + (st)**] dsdt
Q Q

1 1
< 4~ +
= “leov (1 +a1)?

] max{a"2, (1 —a)™}.

Thus
B = sup // k:o:z:y,stdsdt—i- sup // ki(z,y,s,t)dsdt (4.24)
1 3 B
= 401 2 (1— @)y < 1.
0 [ s +(1+a1)2]max{a (1-a)7) <

Hence, assumption (Hs)-(i) holds.
Assumption (Hs) holds; the proof is as below:
(a) We prove that K : Q x Q x E2 — E, is completely continuous.

By K, D1K € C(Q x Q x E?; E), we have to prove that K, D1 K : Q x Q x
E? - E are compact.
Let B be bounded in  x Q x E?. We have

1K (z,y, s, t;u,0) |l < ko(z,y,s,8) (1+ [lull g + [[vll ) (4.25)
< sup  ko(z,y,8,t) (1+ [ullg + llvllg)
(z,y,s,t;u,0)EB
= Ml,

for all (z,y,s,t;u,v) € B, which implies that K(B) is uniformly bounded in
E.
For all n, 7 € [0,1], for all (z,y,s,t;u,v) € B,

= |k(x,y;m) — k(z,y; )]
w (M uw@) M o [ v(©) Y
X |(st) /0 d¢ + (st) /0 (Dwm(s,t;()) d¢

U]()(S,t; C)

_ 1/4 1/3
< 2|z, y5m) — Ko,y )] [lulli* + 1ol %]
On the other hand

|77 — 7]

—,x%y—&%ﬁﬁ—w
Trn+m” -alm <=

|k (, y;m) — k(z,y;7)| =

Hence
_ 1/4 1/3
1K (2, ,5,60,0) = Koy, s, two)lle < 200 -l [Jul* + Joli]

Clg—mnl, (4.26)

IN
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for all (z,y,s,t;u,v) € B, for all n, 77 € [0, 1]. Consequently, K (B) is equicon-
tinuous.

(b) Similarly, we have also D1 K : QxQx E? — E, is completely continuous.

(c) Finally, for all bounded subset .J of E?, for all € > 0, there exists J > 0,
such that for all (z,vy,s,t), (Z,7,5,t) € QX Q, [ —Z|+ |y —7| < =

K (z,y, s, t;u,v) — K(Z,7, 5, t;u,0)|| g
+ | D1 K (2, y, s, t;u,v) — D1K(Z,7, s, t;u,0)| g
<eg, Y(u,v) € J.
Indeed, we get the above property, since
K (z,y, s, tu,v) = K(2,9, 5, t;u,0)| g
+||Di1K(x,y, s, t;u,v) — D1K(Z,9,s,t;u,v)| 5

< 2(lk(z,y) — k(@) 5 + | Dik(z, ) = Dik(@, D) ) |lul " + o]
< C([k(2,y) = k(@ 9)l g + [ Dik(z,y) = Dik(2,9)| )

for all (s,t;u,v) € Q x J, and (z,y),(Z,y) € Q, where k, D1k : Q — E are
uniformly continuous on 2. Theorem 3.2 is true. Furthermore, wg € X7 is also
a solution of (1.1) in this case.
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