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1. Introduction

In this paper, we consider the following nonlinear integrodifferential equa-
tion in two variables

u(x, y) = g(x, y) +

∫∫
Ω
K(x, y, s, t;u(s, t), D1u(s, t))dsdt, (1.1)

where (x, y) ∈ Ω = [0, 1] × [0, 1] and g : Ω → E, K : Ω × Ω × E2 → E are
given functions, E is a Banach space with norm ‖·‖E . Denote by D1u = ∂u

∂x ,
the partial derivative of a function u(x, y) defined on Ω, with respect to the
first variable.

It is well known that integral and integrodifferential equations have at-
tracted the interest of scientists because of a great deal of application in dif-
ferent branches of sciences and engineering. These equations arise naturally in
a variety of models from mechanics, physics, population dynamics, economics
and other fields of science, for example, see the books writen by Corduneanu
[4], Deimling [5].

Many papers have been devoted to the study of some types of (1.1), in
one variable, two variables, or N variables, and its special versions by using
different methods, in which the fixed point theorems are often applied, see [1]
- [16] and the references given therein.

In case the Banach space E is arbitrary, Bica et al. [3] presented a new
approach for the following neutral Fredholm integro-differential equations in
Banach spaces

x(t) = g(t) +

∫ b

a
f(t, s, x(s), x′(s))ds, t ∈ [a, b], (1.2)

where f : [a, b] × [a, b] × E × E → E is continuous, E is a Banach space and
g ∈ C1([a, b];E). Here, the authors used Perov’s fixed point theorem to obtain
the existence, uniqueness and global approximation of the solution of (1.2).

In the case E = Rd, motivated by the results in [3], based on the applications
of the well-known Banach fixed point theorem coupled with Bielecki type
norm and a certain integral inequality with explicit estimate, Pachpatte [13]
proved uniqueness and other properties of solutions of the following Fredholm
type integrodifferential equation

x(t) = g(t) +

∫ b

a
f(t, s, x(s), x′(s), · · · , x(n−1)(s))ds, t ∈ [a, b],

where x, g, f are real valued functions and n ≥ 2 is an integer. With the
same methods, Pachpatte studied the existence, uniqueness and some basic
properties of solutions of the Fredholm type integral equation in two variables
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as follows, see [14],

u(x, y) = f(x, y) +

∫ a

0

∫ b

0
g (x, y, s, t;u(s, t), D1u(s, t), D2u(s, t)) dtds.

M. A. Abdou et al. also considered the existence of integrable solution of non-
linear integral equation, of type Hammerstein–Volterra of the second kind, by
using the technique of measure of weak noncompactness and Schauder fixed
point theorem, see [1]. In [2], A. Aghajani et al. proved some results on the
existence, uniqueness and estimation of the solutions of Fredholm type integro-
differential equations in two variables, by using Perov’s fixed point theorem.
Recently, in [8] - [12], using tools of functional analysis and a fixed point
theorem of Krasnosel’skii type, we have investigated solvability and asymp-
totically stable of nonlinear functional integral equations in one variable or
two variables, or N variables.

Based on the above works, we consider (1.1). This paper is organized as
follows. In section 2, we present some preliminaries. It consists of the definition
of a suitable Banach space and a sufficient condition for relatively compact
subsets. In section 3, by applying the Banach theorem and the Schauder
theorem, we prove two existence theorems. Furthermore, the compactness of
solutions set is proved. In order to illustrate the results obtained here, two
examples are given.

2. Preliminaries

First, we construct an appropriate Banach space for (1.1) as follows. Let
X = C(Ω;E) be the space of all continuous functions from Ω into E equipped
with the following norm

‖u‖X = sup
(x,y)∈Ω

‖u(x, y)‖E , u ∈ X. (2.1)

Put

X1 = {u ∈ X : D1u ∈ X}. (2.2)

We remark that C1(Ω;E) $ X1 $ X. Indeed, let e1 ∈ E, e1 6= 0,
(i) Consider u = u(x, y) =

(∣∣x− 1
2

∣∣+
∣∣y − 1

3

∣∣) e1, we have u ∈ X, but
u /∈ X1;

(ii) Consider v = v(x, y) = x2
∣∣y − 1

3

∣∣ e1, we have v ∈ X1, but v /∈ C1(Ω;E).

Lemma 2.1. X1 is a Banach space with the norm defined by

‖u‖X1
= ‖u‖X + ‖D1u‖X , u ∈ X1. (2.3)

Proof. Let {up} ⊂ X1 be a Cauchy sequence in X1, it means that

‖up − um‖X1
= ‖up − um‖X + ‖D1up −D1um‖X → 0, as p,m→∞.



342 H. T. H. Dung, L. T. P. Ngoc and N. T. Long

Then {up} and {D1up} are also the Cauchy sequences in X. Since X is
complete, {up} converges to u and {D1up} converges to v in X, i.e.,

‖up − u‖X → 0, ‖D1up − v‖X → 0, as p→∞. (2.4)

We shall show that D1u = v. We have

up(x, y)− up(0, y) =

∫ x

0
D1up(s, y)ds, ∀(x, y) ∈ Ω. (2.5)

By ‖up − u‖X → 0, we get

up(x, y)− up(0, y)→ u(x, y)− u(0, y) in E ∀(x, y) ∈ Ω. (2.6)

On the other hand, it follows from ‖D1up − v‖X → 0 that∫ x

0
D1up(s, y)ds→

∫ x

0
v(s, y)ds, ∀(x, y) ∈ Ω, (2.7)

because of∥∥∥∥∫ x

0
D1up(s, y)ds−

∫ x

0
v(s, y)ds

∥∥∥∥
E

≤
∫ x

0
‖D1up(s, y)− v(s, y)‖E ds

≤ ‖D1up − v‖X
→ 0.

Combining (2.5)-(2.7) leads to

u(x, y)− u(0, y) =

∫ x

0
v(s, y)ds in E ∀(x, y) ∈ Ω. (2.8)

It implies that D1u = v ∈ X. Therefore u ∈ X1 and up → u in X1. This
completes the proof. �

Next, we give a sufficient condition for relatively compact subsets of X1.

Lemma 2.2. Let F ⊂ X1. Then F is relatively compact in X1 if and only if
the following conditions are satisfied:

(i) For all (x, y) ∈ Ω,F(x, y) = {u(x, y) : u ∈ F} and D1F(x, y) =
{D1u(x, y) : u ∈ F} are relatively compact subsets of E;

(ii) If for all ε > 0, there exists δ > 0, for all (x, y), (x̄, ȳ) ∈ Ω,

|x− x̄|+ |y − ȳ| < δ,

then
sup
u∈F

[u(x, y)− u(x̄, ȳ)]E < ε,

where

[u(x, y)− u(x̄, ȳ)]E = ‖u(x, y)− u(x̄, ȳ)‖E
+ ‖D1u(x, y)−D1u(x̄, ȳ)‖E .
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Proof. (a) Let F be relatively compact in X1.
First, we show that (i) is true.
To prove that F(x, y) is relatively compact in E, let {up(x, y)} be a se-

quence in F(x, y), we show that {up(x, y)} contains a convergent subsequence

in E. Because F compact in X1, we have {up} ⊂ F contains a convergent
subsequence {upk} in X1. So there exists u ∈ X1 such that

‖upk − u‖X1
→ 0, as k →∞.

By ‖upk(x, y)− u(x, y)‖E ≤ ‖upk − u‖X ≤ ‖upk − u‖X1
→ 0, upk(x, y) →

u(x, y) in E. Thus F(x, y) is relatively compact in E.
Similarly, by

‖D1upk(x, y)−D1u(x, y)‖E ≤ ‖D1upk −D1u‖X ≤ ‖upk − u‖X1
→ 0,

we have D1F(x, y) is also relatively compact in E.

Next, we show that (ii) is also true.
For every ε > 0, considering a collection of open balls in X1, with center at

u ∈ F and radius ε
4 , as follows:

B(u,
ε

4
) = {ū ∈ X1 : ‖u− ū‖X1

<
ε

4
}, u ∈ F .

It is clear that F ⊂
⋃
u∈F

B(u, ε4). Because F compact in X1, the open cover{
B(u, ε4)

}
u∈F of F contains a finite subcover, so there are u1, · · · , uq ∈ F such

that

F ⊂
⋃q

j=1
B(uj ,

ε

4
).

By the functions uj , D1uj , j = 1, · · · , q are uniformly continuous on Ω, there
exists δ > 0 such that for all (x, y), (x̄, ȳ) ∈ Ω,

|x− x̄|+ |y − ȳ| < δ =⇒ [uj(x, y)− uj(x̄, ȳ)]E <
ε

2
, ∀j = 1, · · · , q.

For all u ∈ F , u ∈ B(uj0 ,
ε
4) for some j0 = 1, · · · , q. Thus, for all (x, y),

(x̄, ȳ) ∈ Ω, if |x− x̄|+ |y − ȳ| < δ then we obtain

[u(x, y)− u(x̄, ȳ)]E ≤ [u(x, y)− uj0(x, y)]E + [uj0(x, y)− uj0(x̄, ȳ)]E

+[uj0(x̄, ȳ)− u(x̄, ȳ)]E

≤ 2 ‖u− uj0‖X1
+ [uj0(x, y)− uj0(x̄, ȳ)]E

<
2ε

4
+
ε

2
= ε.

It implies that (ii) is true.

(b) Conversely, let the conditions (i) and (ii) be correct.
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To prove that F is relatively compact in X1, let {up} be a sequence in F ,
we show that {up} contains a convergent subsequence.

Put F1 = {up : p ∈ N}. By (i), F1(x, y) = {up(x, y) : p ∈ N} is relatively
compact subset of E, for all (x, y) ∈ Ω and F1 is equicontinuous in X. Applying
the Ascoli-Arzela theorem to F1, it is relatively compact in X, so there exists
a subsequence {upk} of {up} and u ∈ X such that

‖upk − u‖X → 0, as k →∞.
Similarly, F2 = {D1upk : k ∈ N} is also relatively compact in X. We obtain

the existence of a subsequence of {D1upk}, denoted by the same symbol, and
w ∈ X, such that

‖D1upk − w‖X → 0, as k →∞.
Because of

upk(x, y)− upk(0, y) =

∫ x

0
D1upk(s, y)ds, ∀(x, y) ∈ Ω,

furthermore by ‖upk − u‖X → 0 and ‖D1upk − w‖X → 0, we obtain

u(x, y)− u(0, y) =

∫ x

0
w(s, y)ds in E,∀(x, y) ∈ Ω.

As w ∈ X we see that the right hand side is continuously differentiable with
respect to x and this leads to D1u = w ∈ X. Therefore u ∈ X1 and upk → u
in X1. This completes the proof. �

3. The existence theorems

We make the following assumptions.

(H1) g ∈ X1;

(H2) K ∈ C(Ω× Ω× E2;E) such that D1K ∈ C(Ω× Ω× E2;E),

and there exist nonnegative functions k0, k1 : Ω× Ω→ R satisfying

(i) β = sup
(x,y)∈Ω

∫∫
Ω k0(x, y, s, t)dsdt+ sup

(x,y)∈Ω

∫∫
Ω k1(x, y, s, t)dsdt < 1,

(ii) ‖K(x, y, s, t;u, v)−K(x, y, s, t; ū, v̄)‖E
≤ k0(x, y, s, t) (‖u− ū‖E + ‖v − v̄‖E) ,

(iii) ‖D1K(x, y, s, t;u, v)−D1K(x, y, s, t; ū, v̄)‖E
≤ k1(x, y, s, t) (‖u− ū‖E + ‖v − v̄‖E) , for all l(x, y, s, t) ∈ Ω×Ω, ∀(u, v),

(ū, v̄) ∈ E2.

Theorem 3.1. Let the functions g, K in (1.1) satisfy the assumptions (H1),
(H2). Then the equation (1.1) has a unique solution in X1.
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Proof. For every u ∈ X1, we put

(Au)(x, y) = g(x, y) +

∫∫
Ω
K(x, y, s, t;u(s, t), D1u(s, t))dsdt, (x, y) ∈ Ω.

(3.1)
It is obviously that Au ∈ X1, ∀u ∈ X1. We shall show that A : X1 → X1 is

a contraction map, by proving

‖Au−Aū‖X1
≤ β ‖u− ū‖X1

, ∀u, ū ∈ X1. (3.2)

For every u, ū ∈ X1, for all (x, y) ∈ Ω, by (H2, ii), (3.1) leads to

‖(Au)(x, y)− (Aū)(x, y)‖E

≤
∫∫

Ω
‖K(x, y, s, t;u(s, t), D1u(s, t))−K(x, y, s, t; ū(s, t), D1ū(s, t))‖E dsdt

≤
∫∫

Ω
k0(x, y, s, t) [‖u(s, t)− ū(s, t)‖E + ‖D1u(s, t)−D1ū(s, t)‖E ] dsdt

≤

(
sup

(x,y)∈Ω

∫∫
Ω
k0(x, y, s, t)dsdt

)
‖u− ū‖X1

.

Hence

‖Au−Aū‖X ≤

(
sup

(x,y)∈Ω

∫∫
Ω
k0(x, y, s, t)dsdt

)
‖u− ū‖X1

. (3.3)

Similarly, by for all (x, y) ∈ Ω,

D1(Au)(x, y) = D1g(x, y) +

∫∫
Ω
D1K(x, y, s, t;u(s, t), D1u(s, t))dsdt,

and (H2)-(ii) we obtain

‖D1(Au)(x, y)−D1(Aū)(x, y)‖E

≤
∫∫

Ω
||D1K(x, y, s, t;u(s, t), D1u(s, t))

−D1K(x, y, s, t; ū(s, t), D1ū(s, t))||Edsdt

≤
∫∫

Ω
k1(x, y, s, t) [‖u(s, t)− ū(s, t)‖E + ‖D1u(s, t)−D1ū(s, t)‖E ] dsdt

≤

(
sup

(x,y)∈Ω

∫∫
Ω
k1(x, y, s, t)dsdt

)
‖u− ū‖X1

,

it implies that

‖D1(Au)−D1(Aū)‖X ≤

(
sup

(x,y)∈Ω

∫∫
Ω
k1(x, y, s, t)dsdt

)
‖u− ū‖X1

. (3.4)
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From (3.3) and (3.4), we have (3.2). Applying the Banach fixed point theorem,
Theorem 3.1 is proved. �

We also obtain the existence of solutions of (1.1) in X1 via the Schauder
fixed point theorem, by making the following assumptions.

(H̄2) K ∈ C(Ω× Ω× E2;E) such that D1K ∈ C(Ω× Ω× E2;E),

and there exist nonnegative functions k̄0, k̄1 : Ω× Ω→ R satisfying

(i) β̄ = sup
(x,y)∈Ω

∫∫
Ω k̄0(x, y, s, t)dsdt+ sup

(x,y)∈Ω

∫∫
Ω k̄1(x, y, s, t)dsdt < 1,

(ii) ‖K(x, y, s, t;u, v)‖E ≤ k̄0(x, y, s, t) (1 + ‖u‖E + ‖v‖E) ,

and

(iii) ‖D1K(x, y, s, t;u, v)‖E ≤ k̄1(x, y, s, t) (1 + ‖u‖E + ‖v‖E) ,

for all (x, y, s, t) ∈ Ω× Ω, ∀(u, v) ∈ E2;

(H̄3) K,D1K : Ω× Ω× E2 → E, are completely continuous suchthat for

any bounded subset J of E2, for all ε > 0, there exists δ > 0, such that

∀(x, y, s, t), (x̄, ȳ, s, t) ∈ Ω× Ω, |x− x̄|+ |y − ȳ| < δ

=⇒ ‖K(x, y, s, t;u, v)−K(x̄, ȳ, s, t;u, v)‖E
+ ‖D1K(x, y, s, t;u, v)−D1K(x̄, ȳ, s, t;u, v)‖E < ε, ∀(u, v) ∈ J.

Theorem 3.2. Let the functions g, K in (1.1) satisfy the assumptions (H1),
(H̄2), (H̄3). Then the equation (1.1) has a solution in X1. Furthermore, the
set of solutions is compact.

Proof. With the operator A as in (3.1), it is clear that A : X1 → X1. For
ρ > 0, we define a closed ball in X1 as follows

Bρ = {u ∈ X1 : ‖u‖X1
≤ ρ}.

We shall show that there exists ρ > 0 such that A : Bρ → Bρ. For every
u ∈ Bρ, for all (x, y) ∈ Ω, we have

‖(Au)(x, y)‖E ≤ ‖g(x, y)‖E +

∫∫
Ω
‖K(x, y, s, t;u(s, t), D1u(s, t))‖E dsdt

≤ ‖g‖X +

∫∫
Ω
k̄0(x, y, s, t) (1 + ‖u(s, t)‖E + ‖D1u(s, t)‖E) dsdt

≤ ‖g‖X +

∫∫
Ω
k̄0(x, y, s, t)

(
1 + ‖u‖X1

)
dy

≤ ‖g‖X + (1 + ρ)

(
sup

(x,y)∈Ω

∫∫
Ω
k̄0(x, y, s, t)dsdt

)
,
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it gives

‖Au‖X ≤ ‖g‖X + (1 + ρ)

(
sup

(x,y)∈Ω

∫∫
Ω
k̄0(x, y, s, t)dsdt

)
. (3.5)

Similarly, we have

‖D1(Au)(x, y)‖E ≤ ‖D1g(x, y)‖E

+

∫∫
Ω
‖D1K(x, y, s, t;u(s, t), D1u(s, t))‖E dsdt

≤ ‖D1g‖X + (1 + ρ)

(
sup

(x,y)∈Ω

∫∫
Ω
k̄1(x, y, s, t)dsdt

)
,

so

‖D1(Au)‖X ≤ ‖D1g‖X + (1 + ρ)

(
sup

(x,y)∈Ω

∫∫
Ω
k̄1(x, y, s, t)dsdt

)
. (3.6)

This gives

‖Au‖X1
≤ ‖g‖X1

+ (1 + ρ) β̄. (3.7)

Choosing ρ ≥ ‖g‖X1
+ (1 + ρ) β̄, i.e. ρ ≥

‖g‖X1
+β̄

1−β̄ . Thefore, A : Bρ → Bρ.

Now we show that two conditions as below are satisfied.

(a) A : Bρ → Bρ is continuous.
(b) F = A(Bρ) is relatively compact in X1.

To prove (a), let {up} ⊂ Bρ, ‖up − u0‖X1
→ 0, as p→∞, we need to show

that

||Aup −Au0||X → 0 and ‖D1(Aup)−D1(Au0)‖X → 0, as p→∞. (3.8)

Note that

||(Aup)(x, y)− (Au0)(x, y)||E

≤
∫∫

Ω
||K(x, y, s, t;up(s, t), D1up(s, t))

−K(x, y, s, t;u0(s, t), D1u0(s, t))||Edsdt.

(3.9)

Put

S1 = {up(s, t) : (s, t) ∈ Ω, p ∈ Z+}, (3.10)

S2 = {D1up(s, t) : (s, t) ∈ Ω, p ∈ Z+},

then we have S1, S2 are compact in E, since ‖up − u0‖X1
→ 0.

(i) S1 is compact in E.
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Indeed, let {upj (sj , tj)}j , be a sequence in S1. We can assume that

lim
j→∞

(sj , tj) = (s0, t0) and lim
j→∞

∥∥upj − u0

∥∥
X1

= 0. We have∥∥upj (sj , tj)− u0(s0, t0)
∥∥
E

≤
∥∥upj (sj , tj)− u0(sj , tj)

∥∥
E

+ ‖u0(sj , tj)− u0(s0, t0)‖E
≤
∥∥upj − u0

∥∥
X1

+ ‖u0(sj , tj)− u0(s0, t0)‖E
→ 0, as j →∞,

(3.11)

which shows that lim
j→∞

upj (sj , tj) = u0(s0, t0) in E. This means that S1 is

compact in E.

(ii) Similarly S2 is also compact in E.

Give ε > 0. Since K is uniformly continuous on Ω×Ω×S1×S2, there exists
δ > 0 such that for all (u, v), (ū, v̄) ∈ S1 × S2,

‖u− ū‖E + ‖v − v̄‖E < δ =⇒ ‖K(x, y, s, t;u, v)−K(x, y, s, t; ū, v̄)‖E < ε,

for all (x, y, s, t) ∈ Ω× Ω.
Because of ‖up − u0‖X → 0 and ‖D1up −D1u0‖X → 0, there is p0 ∈ N such

that
∀p ∈ N, p ≥ p0 =⇒ ‖up − u0‖X + ‖D1up −D1u0‖X < δ.

It implies that for all p ∈ N, p ≥ p0,

‖K(x, y, s, t;up(s, t), D1up(s, t))−K(x, y, s, t;u0(s, t), D1u0(s, t))‖E < ε,

for all (x, y, s, t) ∈ Ω× Ω, consequently

‖(Aup)(x, y)− (Au0)(x, y)‖E < ε, ∀(x, y) ∈ Ω, ∀p ≥ p0,

it means that
‖Aup −Au0‖X < ε, ∀p ≥ p0, (3.12)

that is, ‖Aup −Au0‖X → 0, as p→∞.
By the same argument, we obtain that ‖D1(Aup)−D1(Au0)‖X → 0, as

p→∞. The continuity of A is proved.

To prove (b), we use Lemma 2.2.
First, we prove the condition (i) in Lemma 2.2: A(Bρ)(x, y) = {Au(x, y) :

u ∈ Bρ} and D1A(Bρ)(x, y) = {D1(Au)(x, y) : u ∈ Bρ} are relatively compact
in E.

Put

R1 = {u(s, t) : (s, t) ∈ Ω, u ∈ Bρ}, (3.13)

R2 = {D1u(s, t) : (s, t) ∈ Ω, u ∈ Bρ}.
Then R1, R2 are bounded in E. Since K is completely continuous,
K (Ω× Ω×R1 ×R2) is relatively compact in E, it implies that
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K (Ω× Ω×R1 ×R2) is compact in E, and so is conv (K (Ω× Ω×R1 ×R2)) ,
where conv (K (Ω× Ω×R1 ×R2)) is the closure of convex hull of K(Ω× Ω
×R1 ×R2).

For every (x, y) ∈ Ω, for all u ∈ Bρ, it follows from

K(x, y, s, t;u(s, t), D1u(s, t)) ∈ K (Ω× Ω×R1 ×R2) , ∀(s, t) ∈ Ω, (3.14)

that

A(Bρ)(x, y) ⊂ g(x, y) + |Ω| conv (K (Ω× Ω×R1 ×R2)) (3.15)

= g(x, y) + conv (K (Ω× Ω×R1 ×R2)) .

Hence, the set A(Bρ)(x, y) is relatively compact in E.

Similarly, D1A(Bρ)(x, y) ⊂ D1g(x, y)+conv (D1K (Ω× Ω×R1 ×R2)) , so,
the set D1A(Bρ)(x, y) is relatively compact in E.

Next, we prove the condition (ii) in Lemma 2.2:
Give ε > 0. By (H̄3), there exists δ1 > 0 such that ∀(x, y), (x̄, ȳ) ∈ Ω,

|x− x̄|+ |y − ȳ| < δ1 =⇒

[K(x, y, s, t;u, v)−K(x̄, ȳ, s, t;u, v)]E

= ‖K(x, y, s, t;u, v)−K(x̄, ȳ, s, t;u, v)‖E
+ ‖D1K(x, y, s, t;u, v)−D1K(x̄, ȳ, s, t;u, v)‖E

<
ε

2
, ∀(s, t) ∈ Ω, ∀(u, v) ∈ R1 ×R2.

Since g, D1g are uniformly continuous on Ω, there is δ2 > 0 such that

∀(x, y), (x̄, ȳ) ∈ Ω, |x− x̄|+ |y − ȳ| < δ2 =⇒ [g(x, y)− g(x̄, ȳ)]E <
ε

2
.

Choose δ = min{δ1, δ2}, it gives, ∀(x, y), (x̄, ȳ) ∈ Ω, |x− x̄|+ |y − ȳ| < δ,

[(Au)(x, y)− (Au)(x̄, ȳ)]E ≤ [g(x, y)− g(x̄, ȳ)]E

+

∫∫
Ω

[K(x, y, s, t;u(s, t), D1u(s, t))

−K(x̄, ȳ, s, t;u(s, t), D1u(s, t))]Edsdt

<
ε

2
+
ε

2
= ε, ∀u ∈ Bρ.

(3.16)

Using Lemma 2.2, F = A(Bρ) is relatively compact in X1. And applying the
Schauder fixed point theorem, the existence of a solution is proved.

Next, we show that the set of solutions, S = {u ∈ Bρ : u = Au}, is compact
in X1. By the compactness of the operator A : Bρ → Bρ and S = A(S),
we only prove that S is closed. Let {up} ⊂ S, ‖up − u‖X1

→ 0. The continuity
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of A leads to

‖u−Au‖X1
≤ ‖u− up‖X1

+ ‖up −Au‖X1

= ‖u− up‖X1
+ ‖Aup −Au‖X1

→ 0,

so u = Au ∈ S. Theorem 3.2 is proved. �

4. Examples

For the end, we illustrate the results obtained here by two examples.
Let E = C([0, 1];R) be the Banach space of all continuous functions v :

[0, 1]→ R with the norm

‖v‖E = sup
0≤η≤1

|v(η)| , v ∈ E. (4.1)

Let X = C(Ω;E) be the space of all continuous functions from Ω into E
equipped with the following norm

‖u‖X = sup
(x,y)∈Ω

‖u(x, y)‖E , u ∈ X. (4.2)

Put

X1 = {u ∈ X : D1u ∈ X}. (4.3)

Then, for all u ∈ X1 and (x, y) ∈ Ω, u(x, y) is an element of E and we denote

u(x, y)(η) = u(x, y; η), 0 ≤ η ≤ 1. (4.4)

We also have the following lemma, it is clear, so we omit its proof.

Lemma 4.1. Let positive constants α, γ2, γ1 satisfy 0 < α < 1, 0 < γ2 ≤ 1 <
γ1. Then

0 ≤ xγ1 |y − α|γ2 ≤ max{αγ2 , (1− α)γ2},
0 ≤ xγ1−1 |y − α|γ2 ≤ max{αγ2 , (1− α)γ2}, ∀x, y ∈ [0, 1].

Example 4.2. We consider (1.1), with the functions g : Ω→ E, K : Ω×Ω×
E2 → E as follows:

(i) Function K : Ω× Ω× E2 → E,

K(x, y, s, t;u, v)(η) = k(x, y; η)[(st)α0 sin( πu(η)
2w0(s,t;η)) + (st)α1 cos( 2πv(η)

D1w0(s,t;η))],

(4.5)
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for 0 ≤ η ≤ 1, (x, y, s, t;u, v) ∈ Ω× Ω× E2, with
k, w0 : Ω→ E,

k(x, y; η) = 1
1+ηx

γ̃1 |y − α̃|γ̃2 ,
w0(x, y; η) = 1

1+η [ex + xγ1 |y − α|γ2 ] , 0 ≤ η ≤ 1, (x, y) ∈ Ω.

(4.6)

(ii) Function g : Ω→ E,

g(x, y; η) = w0(x, y; η)−
[

1

(1 + α0)2
+

1

(1 + α1)2

]
k(x, y; η), (4.7)

for 0 ≤ η ≤ 1, (x, y) ∈ Ω, where α, γ1, γ2, α̃, γ̃1, γ̃2, α0, α1 are positive
constants satisfying{

0 < α < 1, 0 < α̃ < 1, 0 < γ2 ≤ 1 < γ1, 0 < γ̃2 ≤ 1 < γ̃1,

π(1 + γ̃1)
[

1
(1+α0)2

+ 4
(1+α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2} < 1.

(4.8)

Then we have

w0(x, y; η) =
1

1 + η
[ex + xγ1 |y − α|γ2 ] ,

D1w0(x, y; η) =
1

1 + η

[
ex + γ1x

γ1−1 |y − α|γ2
]
, 0 ≤ η ≤ 1, (x, y) ∈ Ω,

and so w0, D1w0 ∈ X and w0(x, y; η) ≥ 1
2 , D

i
1w0(x, y; η) ≥ 1

2 .

We now prove that (H1), (H2) hold. It is obvious that (H1) holds, by w0,
k ∈ X1.

Assumption (H2) holds, by the fact that:

First, we show that K ∈ C(Ω× Ω× E2;E).
For all (x, y, s, t;u, v), (x̄, ȳ, s̄, t̄; ū, v̄) ∈ Ω× Ω× E2, for all η ∈ [0, 1],

K(x, y, s, t;u, v)(η)−K(x̄, ȳ, s̄, t̄; ū, v̄)(η)

= [k(x, y; η)− k(x̄, ȳ; η)]

×
[
(st)α0 sin

(
πu(η)

2w0(s, t; η)

)
+ (st)α1 cos

(
2πv(η)

D1w0(s, t; η)

)]
+k(x̄, ȳ; η) [(st)α0 − (s̄t̄)α0 ] sin

(
πu(η)

2w0(s, t; η)

)
+k(x̄, ȳ; η) [(st)α1 − (s̄t̄)α1 ] cos

(
2πv(η)

D1w0(s, t; η)

)
+k(x̄, ȳ; η)(s̄t̄)α0

[
sin

(
πu(η)

2w0(s, t; η)

)
− sin

(
πū(η)

2w0(s̄, t̄; η)

)]
+k(x̄, ȳ; η)(s̄t̄)α1

[
cos

(
2πv(η)

D1w0(s, t; η)

)
− cos

(
2πv̄(η)

D1w0(s̄, t̄; η)

)]
.
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Then

|K(x, y, s, t;u, v)(η)−K(x̄, ȳ, s̄, t̄; ū, v̄)(η)|
≤ 2 ‖k(x, y)− k(x̄, ȳ)‖E + ‖k(x̄, ȳ)‖E |(st)

α0 − (s̄t̄)α0 |

+ ‖k(x̄, ȳ)‖E |(st)
α1 − (s̄t̄)α1 |+ ‖k(x̄, ȳ)‖E

∣∣∣∣ πu(η)

2w0(s, t; η)
− πū(η)

2w0(s̄, t̄; η)

∣∣∣∣
+ ‖k(x̄, ȳ)‖E

∣∣∣∣ 2πv(η)

D1w0(s, t; η)
− 2πv̄(η)

D1w0(s̄, t̄; η)

∣∣∣∣ .
Note that∣∣∣∣ πu(η)

2w0(s, t; η)
− πū(η)

2w0(s̄, t̄; η)

∣∣∣∣
=

π

2

∣∣∣∣w0(s̄, t̄; η) [u(η)− ū(η)] + [w0(s̄, t̄; η)− w0(s, t; η)] ū(η)

w0(s, t; η)w0(s̄, t̄; η)

∣∣∣∣
≤ 2π [‖w0(s̄, t̄)‖E ‖u− ū‖E + ‖w0(s̄, t̄)− w0(s, t)‖E ‖ū‖E ]

and

∣∣∣∣ 2πv(η)

D1w0(s, t; η)
− 2πv̄(η)

D1w0(s̄, t̄; η)

∣∣∣∣
≤ 8π [‖D1w0(s̄, t̄)‖E ‖v − v̄‖E + ‖D1w0(s̄, t̄)−D1w0(s, t)‖E ‖v̄‖E ] .

Hence

‖K(x, y, s, t;u, v)−K(x̄, ȳ, s̄, t̄; ū, v̄)‖E
≤ 2 ‖k(x, y)− k(x̄, ȳ)‖E

+ ‖k(x̄, ȳ)‖E |(st)
α0 − (s̄t̄)α0 |+ ‖k(x̄, ȳ)‖E |(st)

α1 − (s̄t̄)α1 |
+2π ‖k(x̄, ȳ)‖E [‖w0(s̄, t̄)‖E ‖u− ū‖E + ‖w0(s̄, t̄)− w0(s, t)‖E ‖ū‖E ]

+8π ‖k(x̄, ȳ)‖E [‖D1w0(s̄, t̄)‖E ‖v − v̄‖E
+||D1w0(s̄, t̄)−D1w0(s, t)||E ||v̄||E ]

→ 0,

as |x− x̄| + |y − ȳ| + |s− s̄| + |t− t̄| + ‖u− ū‖E + ‖v − v̄‖E → 0. Thus K ∈
C(Ω× Ω× E2;E).

Similarly D1K ∈ C(Ω× Ω× E2;E).
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Next, the assumptions (H2)-(i) and (ii) hold, by the fact that

| K(x, y, s, t;u, v)(η)−K(x, y, s, t; ū, v̄)(η)|

≤ k(x, y; η)

(
(st)α0

π |u(η)− ū(η)|
2w0(s, t; η)

+ (st)α1
2π |v(η)− v̄(η)|
D1w0(s, t; η)

)
≤ πk(x, y; η) ((st)α0 |u(η)− ū(η)|+ 4(st)α1 |v(η)− v̄(η)|)
≤ πk(x, y; η) [(st)α0 + 4(st)α1 ] [‖u− ū‖E + ‖v − v̄‖E ] .

Hence

‖K(x, y, s, t;u, v)−K(x, y, s, t; ū, v̄)‖E (4.9)

≤ π ‖k(x, y)‖E [(st)α0 + 4(st)α1 ] [‖u− ū‖E + ‖v − v̄‖E ]

= k0(x, y, s, t) [‖u− ū‖E + ‖v − v̄‖E ] ,

in which

k0(x, y, s, t) = πxγ̃1 |y − α̃|γ̃2 [(st)α0 + 4(st)α1 ] . (4.10)

Similarly, with

D1K(x, y, s, t;u, v)(η)

= D1k(x, y; η)

[
(st)α0 sin

(
πu(η)

2w0(s, t; η)

)
+ (st)α1 cos

(
2πv(η)

D1w0(s, t; η)

)]
,

we have

‖D1K(x, y, s, t;u, v)−D1K(x, y, s, t; ū, v̄)‖E (4.11)

≤ k1(x, y, s, t) [‖u− ū‖E + ‖v − v̄‖E ] ,

with

k1(x, y, s, t) = πγ̃1x
γ̃1−1 |y − α̃|γ̃2 [(st)α0 + 4(st)α1 ] . (4.12)

Using Lemma 4.2, we get∫∫
Ω
k0(x, y, s, t)dsdt = πxγ̃1 |y − α̃|γ̃2

∫∫
Ω

[(st)α0 + 4(st)α1 ] dsdt

= πxγ̃1 |y − α̃|γ̃2
[

1

(1 + α0)2
+

4

(1 + α1)2

]
≤ π

[
1

(1 + α0)2
+

4

(1 + α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2};∫∫

Ω
k1(x, y, s, t)dsdt = πγ̃1x

γ̃1−1 |y − α̃|γ̃2
∫∫

Ω
[(st)α0 + 4(st)α1 ] dsdt

≤ πγ̃1

[
1

(1 + α0)2
+

4

(1 + α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2}.
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Therefore

β = sup
(x,y)∈Ω

∫∫
Ω
k0(x, y, s, t)dsdt+ sup

(x,y)∈Ω

∫∫
Ω
k1(x, y, s, t)dsdt

≤ π(1 + γ̃1)

[
1

(1 + α0)2
+

4

(1 + α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2} (4.13)

< 1.

Hence, the assumption (H2)-(i) holds. Then, Theorem 3.1 is fulfilled. Morever,
w0 ∈ X1 is also a unique solution of (1.1).

Example 4.3. We consider (1.1), with the functions g : Ω→ E, K : Ω×Ω×
E2 → E defined by

(i) Function K : Ω× Ω× E2 → E,

K(x, y, s, t;u, v)(η)

= k(x, y; η)

[
(st)α0

∫ 1

0

∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 dζ + (st)α1

∫ 1

0

(
v(ζ)

D1w0(s, t; ζ)

)1/3

dζ

]
,

(4.14)

for 0 ≤ η ≤ 1, (x, y, s, t;u, v) ∈ Ω× Ω× E2, with
k, w0 : Ω→ E

k(x, y; η) = 1
1+ηx

γ̃1 |y − α̃|γ̃2 ,
w0(x, y; η) = 1

1+η [ex + xγ1 |y − α|γ2 ] , 0 ≤ η ≤ 1, (x, y) ∈ Ω.

(4.15)

(ii) Function g : Ω→ E,

g(x, y; η) = w0(x, y; η)−
[

1

(1 + α0)2
+

1

(1 + α1)2

]
k(x, y; η), (4.16)

for 0 ≤ η ≤ 1, (x, y) ∈ Ω, where α, γ1, γ2, α̃, γ̃1, γ̃2, α0, α1 are positive
constants satisfying{

0 < α < 1, 0 < α̃ < 1, 0 < γ2 ≤ 1 < γ1, 0 < γ̃2 ≤ 1 < γ̃1,

4(1 + γ̃1)
[

1
(1+α0)2

+ 1
(1+α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2} < 1.

(4.17)

We can prove that (H1), (H̄2), (H̄3) hold, by the following:
By k, w0 ∈ X1, we have (H1) holds.
Assumption (H̄2) holds, by the fact that:
First, we show that K ∈ C(Ω× Ω× E2;E).
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For all (x, y, s, t;u, v), (x̄, ȳ, s̄, t̄; ū, v̄) ∈ Ω× Ω× E2, for all η ∈ [0, 1],

K(x, y, s, t;u, v)(η)−K(x̄, ȳ, s̄, t̄; ū, v̄)(η)

= [k(x, y; η)− k(x̄, ȳ; η)]

[
(st)α0

∫ 1

0

∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 dζ
+(st)α1

∫ 1

0

(
v(ζ)

D1w0(s, t; ζ)

)1/3

dζ

]

+k(x̄, ȳ; η) [(st)α0 − (s̄t̄)α0 ]

∫ 1

0

∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 dζ
+k(x̄, ȳ; η) [(st)α1 − (s̄t̄)α1 ]

∫ 1

0

(
v(ζ)

D1w0(s, t; ζ)

)1/3

dζ

+k(x̄, ȳ; η)(s̄t̄)α0

[∫ 1

0

(∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 − ∣∣∣∣ ū(ζ)

w0(s̄, t̄; ζ)

∣∣∣∣1/4
)
dζ

]

+k(x̄, ȳ; η)(s̄t̄)α1

∫ 1

0

[(
v(ζ)

D1w0(s, t; ζ)

)1/3

−
(

v̄(ζ)

D1w0(s̄, t̄; ζ)

)1/3
]
dζ.

Note that, w0, D1w0 ∈ X and w0(x, y; η) ≥ 1
2 , D1w0(x, y; η) ≥ 1

2 , we obtain

|K(x, y, s, t;u, v)(η)−K(x̄, ȳ, s̄, t̄; ū, v̄)(η)|

≤ 2 ‖k(x, y)− k(x̄, ȳ)‖E
[
‖u‖1/4E + ‖v‖1/3E

]
+2 ‖k(x̄, ȳ)‖E |(st)

α0 − (s̄t̄)α0 | ‖u‖1/4E

+2 ‖k(x̄, ȳ)‖E |(st)
α1 − (s̄t̄)α1 | ‖v‖1/3E

+ ‖k(x̄, ȳ)‖E
∫ 1

0

∣∣∣∣∣
∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 − ∣∣∣∣ ū(ζ)

w0(s̄, t̄; ζ)

∣∣∣∣1/4
∣∣∣∣∣ dζ

+ ‖k(x̄, ȳ)‖E
∫ 1

0

∣∣∣∣∣
(

v(ζ)

D1w0(s, t; ζ)

)1/3

−
(

v̄(ζ)

D1w0(s̄, t̄; ζ)

)1/3
∣∣∣∣∣ dζ.

Applying the following inequalities:

||a|q − |b|q| ≤ |a− b|q , ∀a, b ∈ R, ∀q ∈ (0, 1], (4.18)∣∣∣|a|q−1 a− |b|q−1 b
∣∣∣ ≤ 21−q |a− b|q , ∀a, b ∈ R, ∀q ∈ (0, 1],

(a+ b)q ≤ aq + bq, ∀a, b ≥ 0, ∀q ∈ (0, 1],
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we obtain∣∣∣∣ u(η)

w0(s, t; η)
− ū(η)

w0(s̄, t̄; η)

∣∣∣∣
=

∣∣∣∣w0(s̄, t̄; η) [u(η)− ū(η)] + [w0(s̄, t̄; η)− w0(s, t; η)] ū(η)

w0(s, t; η)w0(s̄, t̄; η)

∣∣∣∣
≤ 4 ‖w0(s̄, t̄)‖E ‖u− ū‖E + 4 ‖w0(s̄, t̄)− w0(s, t)‖E ‖ū‖E ,

∣∣∣∣ v(η)

D1w0(s, t; η)
− v̄(η)

D1w0(s̄, t̄; η)

∣∣∣∣
≤ 4 ‖D1w0(s̄, t̄)‖E ‖v − v̄‖E + 4 ‖D1w0(s̄, t̄)−D1w0(s, t)‖E ‖v̄‖E

and ∣∣∣∣∣
∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 − ∣∣∣∣ ū(ζ)

w0(s̄, t̄; ζ)

∣∣∣∣1/4
∣∣∣∣∣

≤
∣∣∣∣ u(ζ)

w0(s, t; ζ)
− ū(ζ)

w0(s̄, t̄; ζ)

∣∣∣∣1/4
≤ 41/4

[
‖w0(s̄, t̄)‖E ‖u− ū‖E + ‖w0(s̄, t̄)− w0(s, t)‖E ‖ū‖E

]1/4

≤
√

2
[
‖w0(s̄, t̄)‖1/4E ‖u− ū‖

1/4
E + ‖w0(s̄, t̄)− w0(s, t)‖1/4E ‖ū‖

1/4
E

]
.

Similarly, we have

∣∣∣( v(ζ)

D1w0(s, t; ζ)

)1/3
−
( v̄(ζ)

D1w0(s̄, t̄; ζ)

)1/3∣∣∣
=

∣∣∣( v(ζ)

D1w0(s, t; ζ)

)−2/3( v(ζ)

D1w0(s, t; ζ)

)
−
( v̄(ζ)

D1w0(s̄, t̄; ζ)

)−2/3( v̄(ζ)

D1w0(s̄, t̄; ζ)

)∣∣∣
≤ 22/3

∣∣∣∣ v(ζ)

D1w0(s, t; ζ)
− v̄(ζ)

D1w0(s̄, t̄; ζ)

∣∣∣∣1/3
≤ 22/341/3

[
‖D1w0(s̄, t̄)‖E ‖v − v̄‖E + ‖D1w0(s̄, t̄)−D1w0(s, t)‖E ‖v̄‖E

]1/3

≤ 24/3
[
‖D1w0(s̄, t̄)‖1/3E ‖v − v̄‖

1/3
E + ‖D1w0(s̄, t̄)−D1w0(s, t)‖1/3E ‖v̄‖

1/3
E

]
.
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Hence

‖K(x, y, s, t;u, v)−K(x̄, ȳ, s̄, t̄; ū, v̄)‖E
≤ 2 ‖k(x, y)− k(x̄, ȳ)‖E

[
‖u‖1/4E + ‖v‖1/3E

]
+ 2 ‖k(x̄, ȳ)‖E |(st)

α0 − (s̄t̄)α0 | ‖u‖1/4E + 2 ‖k(x̄, ȳ)‖E |(st)
α1 − (s̄t̄)α1 | ‖v‖1/3E

+
√

2 ‖k(x̄, ȳ)‖E
[
‖w0(s̄, t̄)‖1/4E ‖u− ū‖

1/4
E + ‖w0(s̄, t̄)− w0(s, t)‖1/4E ‖ū‖

1/4
E

]
+ 24/3 ‖k(x̄, ȳ)‖E
×
[
‖D1w0(s̄, t̄)‖1/3E ‖v − v̄‖

1/3
E + ‖D1w0(s̄, t̄)−D1w0(s, t)‖1/3E ‖v̄‖

1/3
E

]
→ 0,

as |x− x̄| + |y − ȳ| + |s− s̄| + |t− t̄| + ‖u− ū‖E + ‖v − v̄‖E → 0. Thus K ∈
C(Ω× Ω× E2;E).

Similarly D1K ∈ C(Ω× Ω× E2;E).

Assumptions (H̄2)-(ii) and (iii) also hold, the proof is as follows:
Applying the inequality

a ≤ 1 + aq, ∀a ≥ 0, ∀q ≥ 1, (4.19)

we obtain

|K(x, y, s, t;u, v)(η)|

≤ |k(x, y; η)|
[
(st)α0

(
1 +

2 |u(η)|
w0(s, t; η)

)
+ (st)α1

(
1 +

2 |v(η)|
D1w0(s, t; η)

)]
≤ 4xγ̃1 |y − α̃|γ̃2 [(st)α0 + (st)α1 ] [1 + ‖u‖E + ‖v‖E ] ,

it leads to

‖K(x, y, s, t;u, v)‖E ≤ k̄0(x, y, s, t) [1 + ‖u‖E + ‖v‖E ] , (4.20)

in which
k̄0(x, y, s, t) = 4xγ̃1 |y − α̃|γ̃2 [(st)α0 + (st)α1 ] . (4.21)

Similarly, we have

‖D1K(x, y, s, t;u, v)‖E ≤ k̄1(x, y, s, t) [1 + ‖u‖E + ‖v‖E ] , (4.22)

with
k̄1(x, y, s, t) = 4γ̃1x

γ̃1−1 |y − α̃|γ̃2 [(st)α0 + (st)α1 ] . (4.23)

Next,∫∫
Ω
k̄0(x, y, s, t)dsdt = 4xγ̃1 |y − α̃|γ̃2

∫∫
Ω

[(st)α0 + (st)α1 ] dsdt

≤ 4

[
1

(1 + α0)2
+

1

(1 + α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2};
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Ω
k̄1(x, y, s, t)dsdt = 4γ̃1x

γ̃1−1 |y − α̃|γ̃2
∫∫

Ω
[(st)α0 + (st)α1 ] dsdt

≤ 4γ̃1

[
1

(1 + α0)2
+

1

(1 + α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2}.

Thus

β̄ = sup
(x,y)∈Ω

∫∫
Ω
k̄0(x, y, s, t)dsdt+ sup

(x,y)∈Ω

∫∫
Ω
k̄1(x, y, s, t)dsdt (4.24)

= 4(1 + γ̃1)

[
1

(1 + α0)2
+

1

(1 + α1)2

]
max{α̃γ̃2 , (1− α̃)γ̃2} < 1.

Hence, assumption (H̄2)-(i) holds.

Assumption (H̄3) holds; the proof is as below:

(a) We prove that K : Ω× Ω× E2 → E, is completely continuous.

By K, D1K ∈ C(Ω×Ω×E2;E), we have to prove that K, D1K : Ω×Ω×
E2 → E are compact.

Let B be bounded in Ω× Ω× E2. We have

‖K(x, y, s, t;u, v)‖E ≤ k̄0(x, y, s, t) (1 + ‖u‖E + ‖v‖E) (4.25)

≤ sup
(x,y,s,t;u,v)∈B

k̄0(x, y, s, t) (1 + ‖u‖E + ‖v‖E)

≡ M1,

for all (x, y, s, t;u, v) ∈ B, which implies that K(B) is uniformly bounded in
E.

For all η, η̄ ∈ [0, 1], for all (x, y, s, t;u, v) ∈ B,
|K(x, y, s, t;u, v)(η)−K(x, y, s, t;u, v)(η̄)|
= |k(x, y; η)− k(x, y; η̄)|

×

∣∣∣∣∣(st)α0

∫ 1

0

∣∣∣∣ u(ζ)

w0(s, t; ζ)

∣∣∣∣1/4 dζ + (st)α1

∫ 1

0

(
v(ζ)

D1w0(s, t; ζ)

)1/3

dζ

∣∣∣∣∣
≤ 2 |k(x, y; η)− k(x, y; η̄)|

[
‖u‖1/4E + ‖v‖1/3E

]
.

On the other hand

|k(x, y; η)− k(x, y; η̄)| = |η̄ − η|
(1 + η)(1 + η̄)

xγ̃1 |y − α̃|γ̃2 ≤ |η̄ − η| .

Hence

‖|K(x, y, s, t;u, v)−K(x, y, s, t;u, v)||E ≤ 2 |η̄ − η|
[
‖u‖1/4E + ‖v‖1/3E

]
≤ C |η̄ − η| , (4.26)



On a nonlinear integrodifferential equation in two variables 359

for all (x, y, s, t;u, v) ∈ B, for all η, η̄ ∈ [0, 1]. Consequently, K(B) is equicon-
tinuous.

(b) Similarly, we have also D1K : Ω×Ω×E2 → E, is completely continuous.

(c) Finally, for all bounded subset J of E2, for all ε > 0, there exists δ > 0,
such that for all (x, y, s, t), (x̄, ȳ, s, t) ∈ Ω× Ω, |x− x̄|+ |y − ȳ| < δ =⇒

‖K(x, y, s, t;u, v)−K(x̄, ȳ, s, t;u, v)‖E
+ ‖D1K(x, y, s, t;u, v)−D1K(x̄, ȳ, s, t;u, v)‖E
< ε, ∀(u, v) ∈ J.

Indeed, we get the above property, since

‖K(x, y, s, t;u, v)−K(x̄, ȳ, s, t;u, v)‖E
+ ‖D1K(x, y, s, t;u, v)−D1K(x̄, ȳ, s, t;u, v)‖E
≤ 2 (‖k(x, y)− k(x̄, ȳ)‖E + ‖D1k(x, y)−D1k(x̄, ȳ)‖E)

[
‖u‖1/4E + ‖v‖1/3E

]
≤ C (‖k(x, y)− k(x̄, ȳ)‖E + ‖D1k(x, y)−D1k(x̄, ȳ)‖E) ,

for all (s, t;u, v) ∈ Ω × J, and (x, y), (x̄, ȳ) ∈ Ω, where k, D1k : Ω → E are
uniformly continuous on Ω. Theorem 3.2 is true. Furthermore, w0 ∈ X1 is also
a solution of (1.1) in this case.

Acknowledgments: The authors wish to express their sincere thanks to the
Editor and the referees for the suggestions, remarks and valuable comments.
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