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Abstract. The existence and uniqueness of common fixed point for two pairs of mappings

satisfying contractive inequalities of integral type in metric spaces are proved. Two examples

are included to illustrate that the results presented in this paper generalize indeed or differ

from some known results in the literature.

1. Introduction and preliminaries

Throughout this paper, we assume that R+ = [0,+∞), N denotes the set
of all positive integers, N0 = N ∪ {0}, (X, d) is a metric space and

Φ1 =
{
ϕ : ϕ : R+ → R+ is Lebesgue integrable, summable on each compact

subset of R+ and
∫ ε
0 ϕ(t)dt > 0 for each ε > 0

}
,
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Φ2 = {ϕ : ϕ : R+ → R+ satisfies that lim infn→∞ ϕ(an) > 0⇔ lim infn→∞ an
> 0 for each {an}n∈N ⊂ R+},

Φ3 = {ϕ : ϕ : R+ → R+ is continuous},

Φ4 = {ϕ : ϕ : R+ → R+ is lower semi-continuous with ϕ(t) = 0 if and only
if t = 0},

Φ5 = {ϕ : ϕ : R+ → R+ is nondecreasing and continuous and ϕ(t) = 0 ⇔
t = 0}.

Dutta and Choudhuty [4] and Branciari [3] extended the Banach fixed point
theorem and proved the following results for (ψ,ϕ)-weakly contractive map-
pings and contractive mapping of integral type, respectively.

Theorem 1.1. ([4]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)), ∀x, y ∈ X, (1.1)

where ψ,ϕ ∈ Φ5. Then T has a unique fixed point a ∈ X such that limn→∞ T
nx

= a for each x ∈ X.

Theorem 1.2. ([3]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(Tx,Ty)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.2)

where c ∈ (0, 1) is a constant and ϕ ∈ Φ1. Then T has a unique fixed point
a ∈ X such that limn→∞ T

nx = a.

Recently, the researchers [1, 2, 5, 6, 8–17] proved a lot of fixed and common
fixed point theorems for various (ψ,ϕ)-weakly contractive mappings and con-
tractive mappings of integral type. In particular, Liu et al. [9] and Hosseini
[6] extended the results of Branciari [3] and Dutta and Choudhuty [4] and got
the following theorems.

Theorem 1.3. ([9]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying for all x, y ∈ X,

ψ

(∫ d(Tx,Ty)

0
ϕ(t)dt

)
≤ ψ

(∫ d(x,y)

0
ϕ(t)dt

)
− ϕ

(∫ d(x,y)

0
ϕ(t)dt)

)
, (1.3)

where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ5. Then T has a unique fixed point a ∈ X such
that limn→∞ T

nx = a.
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Theorem 1.4. ([6]) Let T and S be two mappings from a complete metric
space (X, d) into itself satisfying for all x, y ∈ X,

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
≤ ψ

(∫ M(x,y)

0
ϕ(t)dt

)
− ϕ

(∫ M(x,y)

0
ϕ(t)dt)

)
, (1.4)

where (ϕ, φ, ψ) ∈ Φ1 × Φ4 × Φ5 and for all x, y ∈ X

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

1

2
[d(y, Tx) + d(x, Sy)]

}
.

Then T and S have a unique common fixed point a ∈ X.

The purpose of this article is to study the existence and uniqueness of com-
mon fixed point for certain four mappings satisfying contractive inequalities
of integral type in metric spaces. Our results extend Theorems 1.1 and 1.2,
and are different from Theorems 1.3 and 1.4. Two examples are included.

Definition 1.5. ([7]) A pair of self mappings f and g in a metric space (X, d)
are said to be weakly compatible if for all t ∈ X the equality ft = gt implies
fgt = gft.

Lemma 1.6. ([10]) Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with
limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

Lemma 1.7. ([9]) Let ϕ ∈ Φ2. Then ϕ(t) > 0 if and only if t > 0.

2. Common fixed point theorems

Our main results are as follows.

Theorem 2.1. Let A,B, S and T be mappings from a metric space (X, d)
into itself satisfying

{A, T} and {B,S} are weakly compatible; (2.1)

T (X) ⊆ B(X) and S(X) ⊆ A(X); (2.2)

one of A(X), B(X), S(X) and T (X) is complete; (2.3)

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
≤ ψ

(∫ M1(x,y)

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
(2.4)

for all x, y ∈ X, where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and for all x, y ∈ X,
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M1(x, y) =

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + 2d(Ax, Sy)

2(1 + d(Ax,By))
d(Tx,By),

1 + 2d(Tx,By)

2(1 + d(Ax,By))
d(Ax, Sy),

1 + d(Ax, Sy)

1 + 2d(Ax,By)
d(Ax, Tx),

1 + d(Tx,By)

1 + 2d(Ax,By)
d(By, Sy)

}
.

(2.5)
Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. (2.2) ensures that there exist two
sequences {yn}n∈N and {xn}n∈N0 in X such that

y2n+1 = Bx2n+1 = Tx2n, y2n+2 = Ax2n+2 = Sx2n+1, ∀n ∈ N0. (2.6)

Put dn = d(yn, yn+1) for all n ∈ N. Suppose that d2n < d2n+1 for some n ∈ N.
It is clear that

d2n+1 −
d(y2n, y2n+2)

2(1 + d2n)
≥ d2n+1 −

d2n + d2n+1

2(1 + d2n)

=
d2n+1 + 2d2n+1d2n − d2n

2(1 + d2n)
> 0

(2.7)

and

d2n+1 −
1 + d2n + d2n+1

1 + 2d2n
d2n =

d2n+1 + d2nd2n+1 − d2n − d22n
1 + 2d2n

> 0.

(2.8)

In view of (2.4)-(2.8), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma 1.7, we know that

M1(x2n, x2n+1)

= max

{
d(Ax2n, Bx2n+1), d(Ax2n, Tx2n), d(Bx2n+1, Sx2n+1),

1

2
[d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)],

1 + 2d(Ax2n, Sx2n+1)

2(1 + d(Ax2n, Bx2n+1))
d(Tx2n, Bx2n+1),

1 + 2d(Tx2n, Bx2n+1)

2(1 + d(Ax2n, Bx2n+1))
d(Ax2n, Sx2n+1),

1 + d(Ax2n, Sx2n+1)

1 + 2d(Ax2n, Bx2n+1)
d(Ax2n, Tx2n),

1 + d(Tx2n, Bx2n+1)

1 + 2d(Ax2n, Bx2n+1)
d(Bx2n+1, Sx2n+1)

}
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= max

{
d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),

1

2
[d(y2n, y2n+2) + d(y2n+1, y2n+1)],

1 + 2d(y2n, y2n+2)

2(1 + d(y2n, y2n+1))
d(y2n+1, y2n+1),

1 + 2d(y2n+1, y2n+1)

2(1 + d(y2n, y2n+1))
d(y2n, y2n+2),

1 + d(y2n, y2n+2)

1 + 2d(y2n, y2n+1)
d(y2n, y2n+1),

1 + d(y2n+1, y2n+1)

1 + 2d(y2n, y2n+1)
d(y2n+1, y2n+2)

}
= max

{
d2n, d2n, d2n+1,

1

2
d(y2n, y2n+2), 0,

d(y2n, y2n+2)

2(1 + d2n)
,

1 + d(y2n, y2n+2)

1 + 2d2n
d2n,

d2n+1

1 + 2d2n

}
= max{d2n, d2n+1}
= d2n+1

and

ψ

(∫ d2n+1

0
ϕ(t)dt

)
= ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
≤ ψ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)
= ψ

(∫ d2n+1

0
ϕ(t)dt

)
− φ

(∫ d2n+1

0
ϕ(t)dt

)
< ψ

(∫ d2n+1

0
ϕ(t)dt

)
,

which is a contradiction. Hence

d2n+1 ≤ d2n = M1(x2n, x2n+1), ∀n ∈ N.

Similarly,

d2n ≤ d2n−1 = M1(x2n, x2n−1), ∀n ∈ N.
That is,

dn+1 ≤ dn, d2n = M1(x2n, x2n+1), d2n−1 = M1(x2n, x2n−1), ∀n ∈ N, (2.9)

which means that {dn}n∈N is nonincreasing and bounded. Obviously, there
exists c ∈ R+ such that limn→∞ dn = c. Suppose that c > 0. By (2.4), (2.9),
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(ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.6, we obtain that

ψ

(∫ c

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d2n+1

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
≤ lim sup

n→∞

[
ψ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)]
= lim sup

n→∞

[
ψ

(∫ d2n

0
ϕ(t)dt

)
− φ

(∫ d2n

0
ϕ(t)dt

)]
≤ lim sup

n→∞
ψ

(∫ d2n

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ d2n

0
ϕ(t)dt

)
< ψ

(∫ c

0
ϕ(t)dt

)
,

which is absurd. Hence c = 0, which yields that

lim
n→∞

dn = 0. (2.10)

Next we show that {yn}n∈N is a Cauchy sequence. According to (2.10), we
have to prove that {y2n}n∈N is a Cauchy sequence. Suppose that {y2n}n∈N is
not a Cauchy sequence. It follows that there exists ε > 0 such that for each
k ∈ N there exist positive integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k
satisfying

d(y2n(k), y2m(k)) ≥ ε, (2.11)

where 2m(k) is the least integer exceeding 2n(k) satisfying (2.11). It follows
that

d(y2n(k), y2m(k)−2) < ε, ∀k ∈ N. (2.12)

In view of (2.11), (2.12) and the triangle inequality, we know that

ε ≤ d(y2n(k), y2m(k))

≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

< ε+ d2m(k)−2 + d2m(k)−1, ∀k ∈ N
(2.13)

and

|d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))| ≤ d2m(k)−1, ∀k ∈ N;

|d(y2n(k)+1, y2m(k))− d(y2n(k), y2m(k))| ≤ d2n(k), ∀k ∈ N;

|d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k)−1)| ≤ d2n(k), ∀k ∈ N.
(2.14)
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Clearly, (2.10), (2.13) and (2.14) guarantee that

lim
k→∞

d(y2n(k), y2m(k)) = lim
k→∞

d(y2n(k), y2m(k)−1)

= lim
k→∞

d(y2n(k)+1, y2m(k))

= lim
k→∞

d(y2n(k)+1, y2m(k)−1)

= ε.

(2.15)

In light of (2.4), (2.5), (2.15), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.6, we
infer that

M1(x2n(k), x2m(k)−1)

= max

{
d(Ax2n(k), Bx2m(k)−1), d(Ax2n(k), Tx2n(k)),

d(Bx2m(k)−1, Sx2m(k)−1),

1

2
[d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)],

1 + 2d(Ax2n(k), Sx2m(k)−1)

2(1 + d(Ax2n(k), Bx2m(k)−1))
d(Tx2n(k), Bx2m(k)−1),

1 + 2d(Tx2n(k), Bx2m(k)−1)

2(1 + d(Ax2n(k), Bx2m(k)−1))
d(Ax2n(k), Sx2m(k)−1),

1 + d(Ax2n(k), Sx2m(k)−1)

1 + 2d(Ax2n(k), Bx2m(k)−1)
d(Ax2n(k), Tx2n(k)),

1 + d(Tx2n(k), Bx2m(k)−1)

1 + 2d(Ax2n(k), Bx2m(k)−1)
d(Bx2m(k)−1, Sx2m(k)−1)

}
= max

{
d(y2n(k), y2m(k)−1), d(y2n(k), y2n(k)+1), d(y2m(k)−1, y2m(k)),

1

2
[d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)],

1 + 2d(y2n(k), y2m(k))

2(1 + d(y2n(k), y2m(k)−1))
d(y2n(k)+1, y2m(k)−1),

1 + 2d(y2n(k)+1, y2m(k)−1)

2(1 + d(y2n(k), y2m(k)−1))
d(y2n(k), y2m(k)),

1 + d(y2n(k), y2m(k))

1 + 2d(y2n(k), y2m(k)−1)
d(y2n(k), y2n(k)+1),

1 + d(y2n(k)+1, y2m(k)−1)

1 + 2d(y2n(k), y2m(k)−1)
d(y2m(k)−1, y2m(k))

}



368 Z. Liu, M. He and C. Y. Jung

→ max

{
ε, 0, 0,

1

2
(ε+ ε),

1 + 2ε

2(1 + ε)
ε,

1 + 2ε

2(1 + ε)
ε, 0, 0

}
= ε as k →∞

and

ψ

(∫ ε

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(Tx2n(k),Sx2m(k)−1)

0
ϕ(t)dt

)
≤ lim sup

k→∞

[
ψ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)]
≤ lim sup

k→∞
ψ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− lim inf

k→∞
φ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
< ψ

(∫ ε

0
ϕ(t)dt

)
,

which is impossible. Hence {yn}n∈N is a Cauchy sequence.

Now we show that A,B, S and T have a unique common fixed point. Assume
that A(X) is complete. It is clear that {y2n}n∈N is a Cauchy sequence in A(X).
Therefore, there exists (z, w) ∈ A(X)×X such that

lim
n→∞

y2n = z = Aw.

Obviously

z = lim
n→∞

yn

= lim
n→∞

Tx2n

= lim
n→∞

Bx2n+1

= lim
n→∞

Sx2n−1

= lim
n→∞

Ax2n.

(2.16)
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Suppose that Tw 6= z. Notice that (2.4), (2.5), (2.16), (ϕ, φ, ψ) ∈ Φ1×Φ2×
Φ3 and Lemma 1.6 yield that

M1(w, x2n+1)

= max

{
d(Aw,Bx2n+1), d(Aw, Tw), d(Bx2n+1, Sx2n+1),

1

2
[d(Aw,Sx2n+1) + d(Tw,Bx2n+1)],

1 + 2d(Aw,Sx2n+1)

2(1 + d(Aw,Bx2n+1))
d(Tw,Bx2n+1),

1 + 2d(Tw,Bx2n+1)

2(1 + d(Aw,Bx2n+1))
d(Aw,Sx2n+1),

1 + d(Aw,Sx2n+1)

1 + 2d(Aw,Bx2n+1)
d(Aw, Tw),

1 + d(Tw,Bx2n+1)

1 + 2d(Aw,Bx2n+1)
d(Bx2n+1, Sx2n+1)

}
→ max

{
d(Aw, z), d(Aw, Tw), d(z, z),

1

2
[d(Aw, z) + d(Tw, z)],

1 + 2d(Aw, z)

2(1 + d(Aw, z))
d(Tw, z),

1 + 2d(Tw, z)

2(1 + d(Aw, z))
d(Aw, z),

1 + d(Aw, z)

1 + 2d(Aw, z)
d(Aw, Tw),

1 + d(Tw, z)

1 + 2d(Aw, z)
d(z, z)

}
= max

{
0, d(z, Tw), 0,

1

2
d(Tw, z),

1

2
d(Tw, z), 0, d(z, Tw), 0

}
= d(Tw, z) as n→∞

and

ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tw,Sx2n+1)

0
ϕ(t)dt

)
≤ lim sup

n→∞

[
ψ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)]
≤ lim sup

n→∞
ψ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)
< ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
,
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which is absurd. Thus, Tw = z. It follows from (2.2) that there exists a point
u ∈ X with z = Bu = Tw.

Suppose that Su 6= z. Making use of (2.4), (2.5), (2.16), (ϕ, φ, ψ) ∈ Φ1 ×
Φ2 × Φ3 and Lemma 1.6, we conclude that

M1(x2n, u)

= max

{
d(Ax2n, Bu), d(Ax2n, Tx2n), d(Bu, Su),

1

2
[d(Ax2n, Su) + d(Tx2n, Bu)],

1 + 2d(Ax2n, Su)

2(1 + d(Ax2n, Bu))
d(Tx2n, Bu),

1 + 2d(Tx2n, Bu)

2(1 + d(Ax2n, Bu))
d(Ax2n, Su),

1 + d(Ax2n, Su)

1 + 2d(Ax2n, Bu)
d(Ax2n, Tx2n),

1 + d(Tx2n, Bu)

1 + 2d(Ax2n, Bu)
d(Bu, Su)

}
→ max

{
d(z,Bu), d(z, z), d(Bu, Su),

1

2
[d(z, Su) + d(z,Bu)],

1 + 2d(z, Su)

2(1 + d(z,Bu))
d(z,Bu),

1 + 2d(z,Bu)

2(1 + d(z,Bu))
d(z, Su),

1 + d(z, Su)

1 + 2d(z,Bu)
d(z, z),

1 + d(z,Bu)

1 + 2d(z,Bu)
d(Bu, Su)

}
= max

{
0, 0, d(z, Su),

1

2
d(z, Su), 0,

1

2
d(z, Su), 0, d(z, Su)

}
= d(z, Su) as n→∞

and

ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Su)

0
ϕ(t)dt

)
≤ lim sup

n→∞

[
ψ

(∫ M1(x2n,u)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n,u)

0
ϕ(t)dt

)]
≤ lim sup

n→∞
ψ

(∫ M1(x2n,u)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M1(x2n,u)

0
ϕ(t)dt

)
< ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
,

which is impossible. That is, Su = z. It follows from (2.1) that Az = ATw =
TAw = Tz and Bz = BSu = SBu = Sz.
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Suppose that Tz 6= Sz. In light of (2.4), (2.5), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and
Lemma 1.7, we know that

M1(z, z) = max

{
d(Az,Bz), d(Az, Tz), d(Bz, Sz),

1

2
[d(Az, Sz) + d(Tz,Bz)],

1 + 2d(Az, Sz)

2(1 + d(Az,Bz))
d(Tz,Bz),

1 + 2d(Tz,Bz)

2(1 + d(Az,Bz))
d(Az, Sz),

1 + d(Az, Sz)

1 + 2d(Az,Bz)
d(Az, Tz),

1 + d(Tz,Bz)

1 + 2d(Az,Bz)
d(Bz, Sz)

}
= max

{
d(Tz, Sz), 0, 0,

1

2
[d(Tz, Sz) + d(Tz, Sz)],

1 + 2d(Tz, Sz)

2(1 + d(Tz, Sz))
d(Tz, Sz),

1 + 2d(Tz, Sz)

2(1 + d(Tz, Sz))
d(Tz, Sz), 0, 0

}
= d(Tz, Sz)

and

ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
≤ ψ

(∫ M1(z,z)

0
ϕ(t)dt

)
− φ

(∫ M1(z,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
,

which is absurd. Thus, Tz = Sz.
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Suppose that Tz 6= z. According to (2.4), (2.5), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3

and Lemma 1.7, we have

M1(z, u)

= max

{
d(Az,Bu), d(Az, Tz), d(Bu, Su),

1

2
[d(Az, Su) + d(Tz,Bu)],

1 + 2d(Az, Su)

2(1 + d(Az,Bu))
d(Tz,Bu),

1 + 2d(Tz,Bu)

2(1 + d(Az,Bu))
d(Az, Su),

1 + d(Az, Su)

1 + 2d(Az,Bu)
d(Az, Tz),

1 + d(Tz,Bu)

1 + 2d(Az,Bu)
d(Bu, Su)

}
= max

{
d(Tz, z), 0, 0,

1

2
[d(Tz, z) + d(Tz, z)],

1 + 2d(Tz, z)

2(1 + d(Tz, z))
d(Tz, z),

1 + 2d(Tz, z)

2(1 + d(Tz, z))
d(Tz, z), 0, 0

}
= d(Tz, z)

and

ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Su)

0
ϕ(t)dt

)
≤ ψ

(∫ M1(z,u)

0
ϕ(t)dt

)
− φ

(∫ M1(z,u)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,z)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
,

which is ridiculous. Therefore, Tz = z, that is, z is a common fixed point of
A,B, S and T .

Suppose that A,B, S and T have a common fixed point b ∈ X \{z}. Taking
account of (2.4), (2.5), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.7, we attain
that
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M1(b, z)

= max

{
d(Ab,Bz), d(Ab, Tb), d(Bz, Sz),

1

2
[d(Ab, Sz) + d(Tb,Bz)],

1 + 2d(Ab, Sz)

2(1 + d(Ab,Bz))
d(Tb,Bz),

1 + 2d(Tb,Bz)

2(1 + d(Ab,Bz))
d(Ab, Sz),

1 + d(Ab, Sz)

1 + 2d(Ab,Bz)
d(Ab, Tb),

1 + d(Tb,Bz)

1 + 2d(Ab,Bz)
d(Bz, Sz)

}
= max

{
d(b, z), 0, 0,

1

2
[d(b, z) + d(b, z)],

1 + 2d(b, z)

2(1 + d(b, z))
d(b, z),

1 + 2d(b, z)

2(1 + d(b, z))
d(b, z), 0, 0

}
= d(b, z)

and

ψ

(∫ d(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tb,Sz)

0
ϕ(t)dt

)
≤ ψ

(∫ M1(b,z)

0
ϕ(t)dt

)
− φ

(∫ M1(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(b,z)

0
ϕ(t)dt

)
− φ

(∫ d(b,z)

0
ϕ(t)dt

)
< ψ

(∫ d(b,z)

0
ϕ(t)dt

)
,

which is a contradiction. Hence A,B, S and T have a unique common fixed
point in X.

Similarly we infer that A,B, S and T have a unique common fixed point in
X if one of B(X), S(X) and T (X) is complete. This completes the proof. �

Theorem 2.2. Let A,B, S and T be mappings from a metric space (X, d)
into itself satisfying (2.1)-(2.3) and for all x, y ∈ X,

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
≤ ψ

(∫ M2(x,y)

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
, (2.17)

where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and
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M2(x, y)

=

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(By, Sy)

1 + d(Ax, Tx)
d(Ax,By),

1 + d(Ax, Tx)

1 + d(By, Sy)
d(Ax,By),

d2(Ax,By)

1 + d(Tx, Sy)
,
d(Ax, Sy)d(Tx,By)

1 + d(Tx, Sy)

}
, ∀x, y ∈ X.

(2.18)

Then A,B, S and T have a unique common fixed point in X.

Proof. Let x be an arbitrary point in X. It follows from (2.2) that there
exist two sequences {yn}n∈N and {xn}n∈N0 in X satisfying (2.6). Put dn =
d(yn, yn+1) for all n ∈ N. Suppose that d2n < d2n+1 for some n ∈ N. It is easy
to see that

d2n+1 −
d22n

1 + d2n+1
=
d2n+1 + d22n+1 − d22n

1 + d2n+1
> 0, (2.19)

d2n+1 −
1 + d2n+1

1 + d2n
d2n =

d2n+1 − d2n
1 + d2n

> 0. (2.20)

By (2.6), (2.17)-(2.20), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma 1.7, we infer that

M2(x2n, x2n+1)

= max

{
d(Ax2n, Bx2n+1), d(Ax2n, Tx2n), d(Bx2n+1, Sx2n+1),

1

2
[d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)]

1 + d(Bx2n+1, Sx2n+1)

1 + d(Ax2n, Tx2n)
d(Ax2n, Bx2n+1),

1 + d(Ax2n, Tx2n)

1 + d(Bx2n+1, Sx2n+1)
d(Ax2n, Bx2n+1),

d2(Ax2n, Bx2n+1)

1 + d(Tx2n, Sx2n+1)
,
d(Ax2n, Sx2n+1)d(Tx2n, Bx2n+1)

1 + d(Tx2n, Sx2n+1)

}
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= max

{
d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),

1

2
[d(y2n, y2n+2) + d(y2n+1, y2n+1)],

1 + d(y2n+1, y2n+2)

1 + d(y2n, y2n+1)
d(y2n, y2n+1),

1 + d(y2n, y2n+1)

1 + d(y2n+1, y2n+2)
d(y2n, y2n+1),

d2(y2n, y2n+1)

1 + d(y2n+1, y2n+2)
,
d(y2n, y2n+2)d(y2n+1, y2n+1)

1 + d(y2n+1, y2n+2)

}
= max

{
d2n, d2n, d2n+1,

1

2
d(y2n, y2n+2),

1 + d2n+1

1 + d2n
d2n,

1 + d2n
1 + d2n+1

d2n,
d22n

1 + d2n+1
, 0

}
= max{d2n, d2n+1} = d2n+1

and

ψ

(∫ d2n+1

0
ϕ(t)dt

)
= ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
≤ ψ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)
= ψ

(∫ d2n+1

0
ϕ(t)dt

)
− φ

(∫ d2n+1

0
ϕ(t)dt

)
< ψ

(∫ d2n+1

0
ϕ(t)dt

)
,

which is a contradiction. Hence

d2n+1 ≤ d2n = M2(x2n, x2n+1), ∀n ∈ N.
In a similar way, we get that

d2n ≤ d2n−1 = M2(x2n, x2n−1), ∀n ∈ N.
That is,

dn+1 ≤ dn, d2n = M2(x2n, x2n+1),

d2n−1 = M2(x2n, x2n−1), ∀n ∈ N,
(2.21)

which implies that {dn}n∈N is nonincreasing and bounded. Clearly, there exists
c ∈ R+ such that limn→∞ dn = c. Suppose that c > 0. It follows from (2.17),
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(2.21), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.6 that

ψ

(∫ c

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d2n+1

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
≤ lim sup

n→∞

[
ψ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)]
= lim sup

n→∞

[
ψ

(∫ d2n

0
ϕ(t)dt

)
− φ

(∫ d2n

0
ϕ(t)dt

)]
≤ lim sup

n→∞
ψ

(∫ d2n

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ d2n

0
ϕ(t)dt

)
< ψ

(∫ c

0
ϕ(t)dt

)
,

which is a contradiction. Hence c = 0, that is, (2.10) holds.

Next we show that {yn}n∈N is a Cauchy sequence. By virtue of (2.10), we
only have to prove that {y2n}n∈N is a Cauchy sequence. Suppose that {y2n}n∈N
is not a Cauchy sequence. It follows that there exists ε > 0 such that for each
k ∈ N there exist positive integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k
satisfying (2.11)-(2.15). By means of (2.15), (2.17), (2.18), (ϕ, φ, ψ) ∈ Φ1 ×
Φ2 × Φ3 and Lemma 1.6, we conclude that

M2(x2n(k), x2m(k)−1)

= max

{
d(Ax2n(k), Bx2m(k)−1), d(Ax2n(k), Tx2n(k)), d(Bx2m(k)−1, Sx2m(k)−1),

1

2
[d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)],

1 + d(Bx2m(k)−1, Sx2m(k)−1)

1 + d(Ax2n(k), Tx2n(k))
d(Ax2n(k), Bx2m(k)−1),

1 + d(Ax2n(k), Tx2n(k))

1 + d(Bx2m(k)−1, Sx2m(k)−1)
d(Ax2n(k), Bx2m(k)−1),

d2(Ax2n(k), Bx2m(k)−1)

1 + d(Tx2n(k), Sx2m(k)−1)
,

d(Ax2n(k), Sx2m(k)−1)d(Tx2n(k), Bx2m(k)−1)

1 + d(Tx2n(k), Sx2m(k)−1)

}
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= max

{
d(y2n(k), y2m(k)−1), d(y2n(k), y2n(k)+1), d(y2m(k)−1, y2m(k)),

1

2
[d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)],

1 + d(y2m(k)−1, y2m(k))

1 + d(y2n(k), y2n(k)+1)
d(y2n(k), y2m(k)−1),

1 + d(y2n(k), y2n(k)+1)

1 + d(y2m(k)−1, y2m(k))
d(y2n(k), y2m(k)−1),

d2(y2n(k), y2m(k)−1)

1 + d(y2n(k)+1, y2m(k))
,
d(y2n(k), y2m(k))d(y2n(k)+1, y2m(k)−1)

1 + d(y2n(k)+1, y2m(k))

}
→ max

{
ε, 0, 0,

1

2
(ε+ ε), ε, ε,

ε2

1 + ε
,
ε2

1 + ε

}
= ε as k →∞

and

ψ

(∫ ε

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(Tx2n(k),Sx2m(k)−1)

0
ϕ(t)dt

)
≤ lim sup

k→∞

[
ψ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)]
≤ lim sup

k→∞
ψ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− lim inf

k→∞
φ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
< ψ

(∫ ε

0
ϕ(t)dt

)
,

which is absurd. Therefore, {yn}n∈N is a Cauchy sequence.
Now we show that A,B, S and T have a unique common fixed point. Assume

that A(X) is complete. It is clear that {y2n}n∈N is a Cauchy sequence in A(X).
Therefore, there exists (z, w) ∈ A(X) ×X with limn→∞ y2n = z = Aw. It is
obvious that (2.16) holds. Suppose that Tw 6= z. It follows from (2.16)-(2.18),
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(ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.6 that

M2(w, x2n+1)

= max

{
d(Aw,Bx2n+1), d(Aw, Tw), d(Bx2n+1, Sx2n+1),

1

2
[d(Aw,Sx2n+1) + d(Tw,Bx2n+1)],

1 + d(Bx2n+1, Sx2n+1)

1 + d(Aw, Tw)
d(Aw,Bx2n+1),

1 + d(Aw, Tw)

1 + d(Bx2n+1, Sx2n+1)
d(Aw,Bx2n+1),

d2(Aw,Bx2n+1)

1 + d(Tw, Sx2n+1)
,
d(Aw,Sx2n+1)d(Tw,Bx2n+1)

1 + d(Tw, Sx2n+1)

}
→ max

{
d(Aw, z), d(Aw, Tw), d(z, z),

1

2
[d(Aw, z) + d(Tw, z)],

1 + d(z, z)

1 + d(Aw, Tw)
d(Aw, z),

1 + d(Aw, Tw)

1 + d(z, z)
d(Aw, z),

d2(Aw, z)

1 + d(Tw, z)
,
d(Aw, z)d(Tw, z)

1 + d(Tw, z)

}
= max

{
0, d(z, Tw), 0,

1

2
d(Tw, z), 0, 0, 0, 0

}
= d(Tw, z) as n→∞

and

ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tw,Sx2n+1)

0
ϕ(t)dt

)
≤ lim sup

n→∞

[
ψ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)]
≤ lim sup

n→∞
ψ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)
< ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
,
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which is impossible. Thus, Tw = z. It follows from (2.2) that there exists a
point u ∈ X with z = Bu = Tw. Suppose that Su 6= z. Taking account of
(2.16)-(2.18), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.6, we derive that

M2(x2n, u)

= max

{
d(Ax2n, Bu), d(Ax2n, Tx2n), d(Bu, Su),

1

2
[d(Ax2n, Su) + d(Tx2n, Bu)],

1 + d(Bu, Su)

1 + d(Ax2n, Tx2n)
d(Ax2n, Bu),

1 + d(Ax2n, Tx2n)

1 + d(Bu, Su)
d(Ax2n, Bu),

d2(Ax2n, Bu)

1 + d(Tx2n, Su)
,

d(Ax2n, Su)d(Tx2n, Bu)

1 + d(Tx2n, Su)

}
→ max

{
d(z,Bu), d(z, z), d(Bu, Su),

1

2
[d(z, Su) + d(z,Bu)],

1 + d(Bu, Su)

1 + d(z, z)
d(z,Bu),

1 + d(z, z)

1 + d(Bu, Su)
d(z,Bu),

d2(z,Bu)

1 + d(z, Su)
,
d(z, Su)d(z,Bu)

1 + d(z, Su)

}
= max

{
0, 0, d(z, Su),

1

2
d(z, Su), 0, 0, 0, 0

}
= d(z, Su) as n→∞

and

ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Su)

0
ϕ(t)dt

)
≤ lim sup

n→∞

[
ψ

(∫ M2(x2n,u)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n,u)

0
ϕ(t)dt

)]
≤ lim sup

n→∞
ψ

(∫ M2(x2n,u)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M2(x2n,u)

0
ϕ(t)dt

)
< ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
,

which is a contradiction. Hence Su = z. It follows from (2.1) that Az =
ATw = TAw = Tz and Bz = BSu = SBu = Sz. Suppose that Tz 6= Sz. In
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light of (2.17), (2.18), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma 1.7, we know that

M2(z, z) = max

{
d(Az,Bz), d(Az, Tz), d(Bz, Sz),

1

2
[d(Az, Sz) + d(Tz,Bz)],

1 + d(Bz, Sz)

1 + d(Az, Tz)
d(Az,Bz),

1 + d(Az, Tz)

1 + d(Bz, Sz)
d(Az,Bz),

d2(Az,Bz)

1 + d(Tz,Bz)
,
d(Az, Sz)d(Tz,Bz)

1 + d(Tz,Bz)

}
= max

{
d(Tz, Sz), 0, 0,

1

2
[d(Tz, Sz) + d(Tz, Sz)], d(Tz, Sz),

d(Tz, Sz),
d2(Tz, Sz)

1 + d(Tz, Sz)
,
d2(Tz, Sz)

1 + d(Tz, Sz)

}
= d(Tz, Sz)

and

ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
≤ ψ

(∫ M2(z,z)

0
ϕ(t)dt

)
− φ

(∫ M2(z,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
,

which is absurd. Hence Tz = Sz.
Suppose that Tz 6= z. Taking account of (2.17), (2.18), (ϕ, φ, ψ) ∈ Φ1 ×

Φ2 × Φ3 and Lemma 1.7, we have

M2(z, u) = max

{
d(Az,Bu), d(Az, Tz), d(Bu, Su),

1

2
[d(Az, Su) + d(Tz,Bu)],

1 + d(Bu, Su)

1 + d(Az, Tz)
d(Az,Bu),

1 + d(Az, Tz)

1 + d(Bu, Su)
d(Az,Bu),

d2(Az,Bu)

1 + d(Tz, Su)
,
d(Az, Su)d(Tz,Bu)

1 + d(Tz, Su)

}
= max

{
d(Tz, z), 0, 0,

1

2
[d(Tz, z) + d(Tz, z)], d(Tz, z),

d(Tz, z),
d2(Tz, z)

1 + d(Tz, z)
,
d2(Tz, z)

1 + d(Tz, z)

}
= d(Tz, z)
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and

ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Su)

0
ϕ(t)dt

)
≤ ψ

(∫ M2(z,u)

0
ϕ(t)dt

)
− φ

(∫ M2(z,u)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,z)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
,

which is a contradiction. Therefore, Tz = z, that is, z is a common fixed point
of A,B, S and T .

Suppose that A,B, S and T have a common fixed point b ∈ X \ {z}. Using
(2.17), (2.18), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.7, we have

M2(b, z) = max

{
d(Ab,Bz), d(Ab, Tb), d(Bz, Sz),

1

2
[d(Ab, Sz) + d(Tb,Bz)],

1 + d(Bz, Sz)

1 + d(Ab, Tb)
d(Ab,Bz),

1 + d(Ab, Tb)

1 + d(Bz, Sz)
d(Ab,Bz),

d2(Ab,Bz)

1 + d(Tb, Sz)
,
d(Ab, Sz)d(Tb,Bz)

1 + d(Tb, Sz)

}
= max

{
d(b, z), 0, 0,

1

2
[d(b, z) + d(b, z)], d(b, z), d(b, z),

d2(b, z)

1 + d(b, z)
,
d2(b, z)

1 + d(b, z)

}
= d(b, z)

and

ψ

(∫ d(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tb,Sz)

0
ϕ(t)dt

)
≤ ψ

(∫ M2(b,z)

0
ϕ(t)dt

)
− φ

(∫ M2(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(b,z)

0
ϕ(t)dt

)
− φ

(∫ d(b,z)

0
ϕ(t)dt

)
< ψ

(∫ d(b,z)

0
ϕ(t)dt

)
,
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which is a contradiction. Hence z is a unique common fixed point of A,B, S
and T in X.

Similarly we conclude that A,B, S and T have a unique common fixed
point in X if one of B(X), S(X) and T (X) is complete. This completes the
proof. �

3. Remark and examples

Remark 3.1. Theorems 2.1 and 2.2 extend Theorems 1.1 and 1.2, respec-
tively. The follows examples reveal that Theorems 2.1 and 2.2 generalize
proper Theorems 1.1 and 1.2, and differ from Theorems 1.3 and 1.4, respec-
tively.

Example 3.2. Let X = R+ be endowed with the Euclidean metric d = | · |.
Define A,B, S, T : X → X and ϕ, φ, ψ : R+ → R+ by

Ax = 16x, Bx = x, Sx = 0, ∀x ∈ X, Tx =

{
0, ∀x ∈ X \ { 1

32},
1
64 , x = 1

32 ,

ψ(t) =

{
t, ∀t ∈ [0, 1

64 ],

2t− 1
64 , ∀t ∈ ( 1

64 ,+∞),
φ(t) =

{
1
4 t, ∀t ∈ [0, 1

64 ],
1

128 , ∀t ∈ ( 1
64 ,+∞),

ϕ(t) = 1, ∀t ∈ R+.

Clearly, (2.1)-(2.3) hold, (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3, ψ(t) ≥ φ(t) for each t ∈ R+,
ψ is increasing and supφ(R+) ≤ 1

128 . Let x, y ∈ X. In order to prove (2.4),
we need to consider two possible cases as follows:

Case 1. x ∈ X \ { 1
32}. It follows that

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= 0 ≤ ψ

(∫ M1(x,y)

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
;

Case 2. x = 1
32 . Notice that

M1(x, y) ≥ d
(
A

1

32
, T

1

32

)
=

∣∣∣∣12 − 1

64

∣∣∣∣ =
31

64

and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= ψ

(∫ 1
64

0
ϕ(t)dt

)
= ψ

(
1

64

)
=

1

64
<

121

128

=
61

64
− 1

128
= ψ

(∫ 31
64

0
ϕ(t)dt

)
− φ

(∫ 31
64

0
ϕ(t)dt

)
≤ ψ

(∫ M1(x,y)

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
.
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That is, (2.4) holds. It follows from Theorem 2.1 that the mappings A,B, S
and T have a unique common fixed point 0 ∈ X. But Theorems 1.1-1.4 cannot
be used to prove the existence of fixed points of T and common fixed points
of T and S in X.

Suppose that T satisfies the conditions of Theorem 1.1. That is, there exist
φ and ψ ∈ Φ5 satisfying (1.1). It follows from (1.1) that

ψ

(
1

64

)
= ψ

(
d

(
T

1

32
, T

1

64

))
≤ ψ

(
d

(
1

32
,

1

64

))
− φ

(
d

(
1

32
,

1

64

))
= ψ

(
1

64

)
− φ

(
1

64

)
< ψ

(
1

64

)
,

which is absurd.
Suppose that T satisfies the conditions of Theorem 1.2. That is, there exist

c ∈ (0, 1) and ϕ ∈ Φ1 satisfying (1.2). By (1.2), we get that

0 <

∫ 1
64

0
ϕ(t)dt =

∫ d(T 1
32

,T 1
64

)

0
ϕ(t)dt ≤ c

∫ d( 1
32

, 1
64

)

0
ϕ(t)dt <

∫ 1
64

0
ϕ(t)dt,

which is a contradiction.
Suppose that T satisfies the conditions of Theorem 1.3. That is, there exists

(ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ5 satisfying (1.3). Using (1.3), we gain that

ψ

(∫ 1
64

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
32

,T 1
64

)

0
ϕ(t)dt

)
≤ ψ

(∫ d( 1
32

, 1
64

)

0
ϕ(t)dt

)
− φ

(∫ d( 1
32

, 1
64

)

0
ϕ(t)dt

)
= ψ

(∫ 1
64

0
ϕ(t)dt

)
− φ

(∫ 1
64

0
ϕ(t)dt

)
< ψ

(∫ 1
64

0
ϕ(t)dt

)
,

which is impossible.
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Suppose that T and S satisfy the conditions of Theorem 1.4. That is, there
exists (ϕ, φ, ψ) ∈ Φ1 × Φ4 × Φ5 satisfying (1.4). It follows from (1.4) that

ψ

(∫ 1
64

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
32

,S 1
64

)

0
ϕ(t)dt

)
≤ ψ

(∫ M( 1
32

, 1
64

)

0
ϕ(t)dt

)
− φ

(∫ M( 1
32

, 1
64

)

0
ϕ(t)dt

)
= ψ

(∫ 1
64

0
ϕ(t)dt

)
− φ

(∫ 1
64

0
ϕ(t)dt

)
< ψ

(∫ 1
64

0
ϕ(t)dt

)
,

which is absurd.

Example 3.3. Let X = [0, 1] be endowed with the Euclidean metric d = | · |.
Define A,B, S, T : X → X and ϕ, φ, ψ : R+ → R+ by

Ax = 3x− 5

6
, Bx = x, Sx =

5

12
, ∀x ∈ X, Tx =

{
5
12 , ∀x ∈ [0, 12 ],
1
2 , ∀x ∈ (12 , 1],

ψ(t) = 100t, ϕ(t) = 2t, ∀t ∈ R+, φ(t) =

{
t, ∀t ∈ [0, 1

36),

1, ∀t ∈ [ 1
36 ,+∞).

Obviously, (2.1)-(2.3) hold, (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, ψ(t) ≥ φ(t) for each
t ∈ R+, ψ is increasing and supφ(R+) ≤ 1. Let x, y ∈ X. In order to prove
(2.17), we have to consider two possible cases as follows:

Case 1. x ∈ [0, 12 ]. It is clear that

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= 0 ≤ ψ

(∫ M2(x,y)

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
;

Case 2. x ∈ (12 , 1]. Note that

M2(x, y) ≥ d(Ax, Tx) = 3x− 5

6
− 1

2
≥ 1

6
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and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= ψ

(∫ 1
12

0
ϕ(t)dt

)
= ψ

(
1

144

)
=

100

144

<
100

36
− 1 = ψ

(∫ 1
6

0
ϕ(t)dt

)
− φ

(∫ 1
6

0
ϕ(t)dt

)
≤ ψ

(∫ M2(x,y)

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
.

Hence, (2.17) holds. It follows from Theorem 2.2 that the mappings A,B, S
and T have a unique common fixed point 5

12 ∈ X. But Theorems 1.1-1.4 cannot
be used to prove the existence of fixed points of T and common fixed points
of T and S in X.

Suppose that T satisfies the conditions of Theorem 1.1. That is, there exist
φ and ψ ∈ Φ5 satisfying (1.1). It follows from (1.1) that

ψ

(
1

12

)
= ψ

(
d

(
T

7

12
, T

1

2

))
≤ ψ

(
d

(
7

12
,
1

2

))
− φ

(
d

(
7

12
,
1

2

))
= ψ

(
1

12

)
− φ

(
1

12

)
< ψ

(
1

12

)
,

which is absurd.
Suppose that T satisfies the conditions of Theorem 1.2. That is, there exist

c ∈ (0, 1) and ϕ ∈ Φ1 satisfying (1.2). In light of (1.2), we obtain that

0 <

∫ 1
12

0
ϕ(t)dt =

∫ d(T 7
12

,T 1
2
)

0
ϕ(t)dt ≤ c

∫ d( 7
12

, 1
2
)

0
ϕ(t)dt <

∫ 1
12

0
ϕ(t)dt,

which is a contradiction.
Suppose that T satisfies the conditions of Theorem 1.3. That is, there exists

(ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ5 satisfying (1.3). In view of (1.3), we know that

ψ

(∫ 1
12

0
ϕ(t)dt

)
= ψ

(∫ d(T 7
12

,T 1
2
)

0
ϕ(t)dt

)
≤ ψ

(∫ d( 7
12

, 1
2
)

0
ϕ(t)dt

)
− φ

(∫ d( 7
12

, 1
2
)

0
ϕ(t)dt

)
= ψ

(∫ 1
12

0
ϕ(t)dt

)
− φ

(∫ 1
12

0
ϕ(t)dt

)
< ψ

(∫ 1
12

0
ϕ(t)dt

)
,
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which is impossible.
Suppose that T and S satisfy the conditions of Theorem 1.4. That is, there

exists (ϕ, φ, ψ) ∈ Φ1×Φ4×Φ5 satisfying (1.4). Taking advantage of (1.4), we
conclude that

ψ

(∫ 1
12

0
ϕ(t)dt

)
= ψ

(∫ d(T 7
12

,S 1
2
)

0
ϕ(t)dt

)
≤ ψ

(∫ M( 7
12

, 1
2
)

0
ϕ(t)dt

)
− φ

(∫ M( 7
12

, 1
2
)

0
ϕ(t)dt

)
= ψ

(∫ 1
12

0
ϕ(t)dt

)
− φ

(∫ 1
12

0
ϕ(t)dt

)
< ψ

(∫ 1
12

0
ϕ(t)dt

)
,

which is a contradiction.
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