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Abstract. In this paper, we introduce general iterative algorithms for finding a fixed point

of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong

convergence of sequences generated by the proposed iterative algorithms to a fixed point of

the mapping, which is the unique solution of a certain variational inequality.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. Let C be a nonempty closed convex subset of H and let T : C → C be
a self-mapping on C. We denote by Fix(T ) the set of fixed points of T .

The class of pseudocontractive mappings is one of the most important
classes of mappings among nonlinear mappings. We recall ([2, 3]) that a
mapping T : C → H is said to be pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,
and T is said to be k-strictly pseudocontractive ([3]) if there exists a constant
k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,
where I is the identity mapping. The class of k-strictly pseudocontractive
mappings includes the class of nonexpansive mappings as a subclass. That is,
T is nonexpansive (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C) if and only if T is

0Received November 23, 2018. Revised March 11, 2019.
02010 Mathematics Subject Classification: 47H06, 47H09, 47H10, 47J25, 49M05, 47J05.
0Keywords: Iterative algorithm, pseudocontractive mapping, fixed points, ρ-Lipschitzian

and η-strongly monotone operator, variational inequality.



390 J. S. Jung

0-strictly pseudocontractive. Clearly, the class of k-strictly pseudocontractive
mappings falls into the one between classes of nonexpansive mappings and
pseudocontractive mappings. Recently, many authors have been devoting the
studies on the problems of finding fixed points for pseudocontractive mappings,
see, for example, [1, 7, 8, 9, 11, 14, 22] and the references therein.

In 2010, by combining Yamada’s method [20] and Marino and Xu’s method
[12], Tian [17] considered the following iterative algorithm for a nonexpansive
mapping S:

xn+1 = αnγV xn + (I − αnµF )Sxn, ∀n ≥ 0,

where F : H → H is a ρ-Lipschitzian and η-strongly monotone mapping with
constants ρ > 0, η > 0, V : H → H is an l-Lipschitzian mapping with a

constant l ≥ 0, 0 < µ < 2η
ρ2

and 0 ≤ γl < τ = µ(η − µρ2

2 ).

In 2011, Ceng et al. [5] also proposed the following iterative algorithm for
the nonexpansive mapping S:

xn+1 = PC [αnγV xn + (I − αnµF )Sxn], ∀n ≥ 0,

where PC is the metric projection of H onto C; F : C → H is a ρ-Lipschitzian
and η-strongly monotone mapping with constants ρ > 0 and η > 0; V : C → H
is an l-Lipschitzian mapping with a constant l ≥ 0; 0 < µ < 2η

ρ2
and 0 ≤ γl <

τ = 1−
√

1− µ(2η − µρ2).
In 2015, Jung [9] devised the following iterative algorithm for a k-strictly

pseudocontractive mapping T for some 0 ≤ k < 1:

xn+1 = αnγV xn + (I − αnµF )Tnxn, ∀n ≥ 0,

where F : H → H is a ρ-Lipschitzian and η-strongly monotone mapping
with constants ρ > 0, η > 0, V : H → H is an l-Lipschitzian mapping
with a constant l ≥ 0, 0 < µ < 2η

ρ2
, 0 ≤ γl < τ = 1 −

√
1− µ(2η − µρ2),

Tn : H → H is a mapping defined by Tnx = λnx+ (1− λn)Tx for all x ∈ H,
with 0 ≤ k ≤ λn ≤ λ < 1 and limn→∞ λn = λ. His results improved results
of Tian [17] and Ceng et al. [5] from the class of the nonexpansive mappings
to the class of strictly pseudocontractive mappings. The following problem
arises:

Question. Can we extend the class of nonexpansive mappings in [5, 17] or the
class of strictly pseudocontractive mappings in [9] to the more general class of
pseudocontractive mappings?

In this paper, in order to give an affirmative answer to the above question,
we introduce implicit and explicit iterative algorithms for a continuous pseudo-
contractive mapping T in a Hilbert space. Under suitable control conditions,
we establish strong convergence of sequences generated by the proposed itera-
tive algorithms to a fixed point of T , which is a solution of a certain variational
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inequality, where the constrained set is Fix(T ). The results in this paper im-
prove and develop the corresponding results in [5, 7, 8, 9, 12, 15, 17, 18] and
references therein.

2. Preliminaries and lemmas

We recall ([2]) that a mapping F of C into H is called

(i) Lipschitzian if there exists a constant κ ≥ 0 such that

‖Fx− Fy‖ ≤ κ‖x− y‖ ∀x, y ∈ C;

(ii) monotone if 〈x− y, Fx− Fy〉 ≥ 0, ∀x, y ∈ C;
(iii) η-strongly monotone if there exists a positive real number η such that

〈x− y, Fx− Fy〉 ≥ η‖x− y‖2, ∀x, y ∈ C.
For every point x ∈ H, there exists a unique nearest point in C, denoted

by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.
PC is called the metric projection of H onto C. It is well known that PC is
nonexpansive and that for x ∈ H,

z = PCx if and only if 〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (2.1)

The lemma can be derived easily from the inner product (see [2]).

Lemma 2.1. In a real Hilbert space H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.2. ([21]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → H be a continuous pseudocontractive mapping. Then,
for r > 0 and x ∈ H, there exists z ∈ C such that

〈Tz, y − z〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : 〈Tz, y − z〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C.
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We also need the following lemmas for the proof of our main results. The
following Lemma 2.3 is essentially Lemma 2 in [10].

Lemma 2.3. ([10, 19]). Let {sn} be a sequence of non-negative real numbers
satisfying

sn+1 ≤ (1− βn)sn + βnδn + γn, ∀n ≥ 0,

where {βn}, {δn} and {γn} satisfy the following conditions:

(i) {βn} ⊂ [0, 1] and
∑∞

n=0 βn =∞,
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 βn|δn| <∞,

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn <∞.

Then limn→∞ sn = 0.

Lemma 2.4. ([16]). Let {xn} and {ln} be bounded sequences in a Banach
space E and let {βn} be a sequence in [0,1] which satisfies the following con-
dition:

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = βnxn + (1− βn)ln, n ≥ 0, and

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖ln − xn‖ = 0.

The following lemmas can be easily proven, and therefore, we omit the
proofs (see [20]).

Lemma 2.5. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let V : C → H be an l-Lipschitzian mapping with a constant l ≥ 0,
and F : C → H be a ρ-Lipschitzian and η-strongly monotone mapping with
constants ρ > 0 and η > 0. Then for 0 ≤ γl < µη,

〈(µF − γV )x− (µF − γV )y, x− y〉 ≥ (µη − γl)‖x− y‖2, ∀x, y ∈ C.

That is, µF − γV is strongly monotone with a constant µη − γl.

Lemma 2.6. Let C be a closed convex subset of a real Hilbert space H. Let F :
C → H be a ρ-Lipschitzian and η-strongly monotone mapping with constants
ρ > 0 and η > 0. Let 0 < µ < 2η

ρ2
and 0 < t < ς ≤ 1. Then S :=

ςI − tµF : C → H is a contractive mapping with a constant ς − tτ , where
τ = 1−

√
1− µ(2η − µρ2).

The following lemma is a variant of a Minty lemma (see [13]).
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Lemma 2.7. Let C be a nonempty closed convex subset of a real Hilbert
space H. Assume that the mapping G : C → H is monotone and weakly
continuous along segments, that is, G(x+ ty)→ G(x) weakly as t→ 0. Then
the variational inequality

x̃ ∈ C, 〈Gx̃, p− x̃〉 ≥ 0, ∀p ∈ C,

is equivalent to the dual variational inequality

x̃ ∈ C, 〈Gp, p− x̃〉 ≥ 0, ∀p ∈ C.

In the following, we write xn ⇀ x to indicate that the sequence {xn} con-
verges weakly to x. xn → x means that {xn} converges strongly to x.

3. Iterative algorithms

Throughout the rest of this paper, we always assume the following:

• H is a real Hilbert space;
• C is a nonempty closed convex subset of H;
• T : C → C is a continuous pseudocontractive mapping with Fix(T ) 6=
∅;
• Trt : H → C is a mapping defined by

Trtx =

{
z ∈ C : 〈y − z, Tz〉 − 1

rt
〈y − z, (1 + rt)z − x〉 ≤ 0, ∀y ∈ C

}
for rt ∈ (0,∞), t ∈ (0, 1), and lim inft→0 rt > 0;
• Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : 〈y− z, Tz〉 − 1

rn
〈y− z, (1 + rn)z − x〉 ≤ 0, ∀y ∈ C

}
for rn ∈ (0,∞) and lim infn→∞ rn > 0;
• V : C → C is an l-Lipschitzian mapping with constant l ∈ [0,∞);
• F : C → C is a ρ-Lipschitzian and η-strongly monotone mapping with

constants ρ > 0 and η > 0;
• Constants µ, l, τ , and γ satisfy 0 < µ < 2η

ρ2
and 0 ≤ γl < τ , where

τ = 1−
√

1− µ(2η − µρ2);
• Fix(T ) 6= ∅;
• PC is the metric projection of H onto C.

By Lemma 2.2, Trt and Trn are nonexpansive and Fix(T ) = Fix(Trt) =
Fix(Trn).

In this section, first, we consider the following iterative algorithm that gen-
erates a net {xt}t∈(0,1) in an implicit way:

xt = PC [tγV xt + (I − tµF )Trtxt], t ∈ (0, 1). (3.1)
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Indeed, for t ∈ (0, 1), consider a mapping Qt : C → C defined by

Qtx = PC [tγV x+ (I − tµF )Trtx], ∀x ∈ C.

It is easy to see that Qt is a contractive mapping with constant 1− t(τ − γl).
Indeed, by Lemma 2.6, we have

‖Qtx−Qty‖ ≤ tγ‖V x− V y‖+ ‖(I − tµF )Trtx− (I − tµF )Trty‖
≤ tγl‖x− y‖+ (1− tτ)‖x− y‖
= (1− t(τ − γl))‖x− y‖.

Hence Qt has a unique fixed point, denoted xt, which uniquely solves the fixed
point equation (3.1).

Now, we establish the strong convergence of the net {xt} as t → 0, which
guarantees the existence of solutions of the variational inequality:

〈(µF − γV )x̃, x̃− p〉 ≤ 0, ∀p ∈ Fix(T ). (3.2)

Theorem 3.1. The net {xt} defined by (3.1) converges strongly to a fixed point
x̃ of T as t → 0, which solves the variational inequality (3.2). Equivalently,
we have PFix(T )(I − µF + γV )x̃) = x̃.

Proof. We first show the uniqueness of a solution of the variational inequality
(3.2), which is indeed a consequence of the strong monotonicity of µF − γV .
In fact, noting that 0 ≤ γl < τ and µη ≥ τ if and only if ρ ≥ η, it follows from
Lemma 2.5 that

〈(µF − γV )x− (µF − γV )y, x− y〉 ≥ (µη − γl)‖x− y‖2.

That is, µF − γV is strongly monotone for 0 ≤ γl < τ ≤ µη. Suppose that
x̃ ∈ Fix(T ) and x̂ ∈ Fix(T ) both are solutions to (3.2). Then we have

〈(µF − γV )x̃, x̃− x̂〉 ≤ 0 (3.3)

and

〈(µF − γV )x̂, x̂− x̃〉 ≤ 0. (3.4)

Adding up (3.3) and (3.4) yields

〈(µF − γV )x̃− (µF − γV )x̂, x̃− x̂〉 ≤ 0.

The strong monotonicity of µF − γV implies that x̃ = x̂ and the uniqueness
is proved.

Next, we prove that xt → x̃ as t→ 0. To this end, we divide its proof into
four steps.
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Step 1. We show that {xt} is bounded, and so {V xt}, {Txt}, {Trtxt}, {Fxt}
and {FTrtxt} are bounded. Observing Fix(T ) = Fix(Trt) by Lemma 2.2,
from (3.1), we derive that

‖xt − p‖ ≤ ‖tγV xt + (I − tµF )Trtxt − p‖
= ‖t(γV xt − µFp) + (I − tµF )Trtxt − (I − tµF )p‖
≤ (1− tτ)‖xt − p‖+ t‖γV xt − µFp‖,

and hence

‖xt − p‖ ≤
1

τ
‖γV xt − µFp‖

≤ 1

τ
[‖γV xt − γV p‖+ ‖γV p− µFp‖]

≤ 1

τ
[γl‖xt − p‖+ ‖γV p− µFp‖].

This implies that

‖xt − p‖ ≤
1

τ − γl
‖γV p− µFp‖.

Hence {xt}, {V xt}, {Txt}, {Trtxt}, {Fxt} and {FTrtxt} are bounded.

Step 2. We show that limt→0 ‖xt − wt‖ = 0, where wt = Trtxt. In fact, it
follows that

lim
t→0
‖xt − wt‖ = lim

t→0
‖PC [tγV xt + (I − tµF )Trtxt]− PC(Trtxt)‖

≤ lim
t→0
‖tγV xt + (I − tµF )Trtxt − Trtxt‖

= lim
t→0

t‖γV xt − µFTrtxt‖

= 0.

(3.5)

Step 3. We show that {xt} is relatively norm compact as t→ 0. To this end,
let {tn} ⊂ (0, 1) be a sequence such that tn → 0 as n → ∞. Put xn := xtn ,
wn = wtn and rn := rtn . Since {xn} is bounded, without loss of generality,
we may assume that {xn} converges weakly to a point q ∈ C. First, we prove
that q ∈ Fix(T ). In fact, from the definition of wn = Trnxn, we have

〈y − wn, Twn〉 −
1

rn
〈y − wn, (1 + rn)wn − xn〉 ≤ 0, ∀y ∈ C. (3.6)

Put vτ = τv + (1 − τ)q for all τ ∈ (0, 1] and v ∈ C. Then vτ ∈ C, and from
(3.6) and pseudocontractivity of T , it follows that

〈wn − vτ , T vτ 〉

≥ 〈wn − vτ , T vτ 〉+ 〈vτ − wn, Twn〉 −
1

rn
〈vτ − wn, (1 + rn)wn − xn〉
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= − 〈vτ − wn, T vτ − Twn〉 −
1

rn
〈vτ − wn, wn − xn〉 − 〈vτ − wn, wn〉

≥ − ‖vτ − wn‖2 −
1

rn
〈vτ − wn, wn − xn〉 − 〈vτ − wn, wn〉

= − 〈vτ − wn, vτ 〉 − 〈vτ − wn,
wn − xn
rn

〉.

(3.7)

By Step 2, we get wn−xn
rn

→ 0 as n→∞. Moreover, since xn ⇀ q, by Step 2,

we have wn ⇀ q as n→∞. Therefore, from (3.7), as n→∞, it follows that

〈q − vτ , T vτ 〉 ≥ 〈q − vτ , vτ 〉,
and hence

−〈v − q, Tvτ 〉 ≥ −〈v − q, vτ 〉, ∀v ∈ C.
Letting τ → 0 and using the fact that T is continuous, we get

−〈v − q, T q〉 ≥ −〈v − q, q〉, ∀v ∈ C.
Putting v = Tq attains q = Tq, that is, q ∈ Fix(T ).

Now, from (3.1), we write for p ∈ Fix(T )

xt − p = xt − yt + yt − p
= xt − yt + (tγV xt + (I − tµF )Trtxt − p)
= xt − yt + t(γV xt − µFp) + (I − tµF )Trtxt − (I − tµF )p,

where yt = tγV xt + (I − tµF )Trtxt. From (2.1), we derive

‖xt − p‖2 = 〈xt − yt, xt − p〉+ t〈γV xt − µFp, xt − p〉
+ 〈(I − tµF )Trtxt − (I − tµF )p, xt − p〉

≤ (1− tτ)‖xt − p‖2 + tγl‖xt − p‖2 + t〈γV p− µFp, xt − p〉,
and henc

‖xt − p‖2 ≤
1

τ − γl
〈γV p− µFp, xt − p〉. (3.8)

We substitute q for p in (3.8) to obtain

‖xn − q‖2 ≤
1

τ − γl
〈γV q − µFq, xn − q〉. (3.9)

Note that xn ⇀ q. This fact and the inequality (3.9) imply that xn → q
strongly. This has proved the relative norm compactness of the net {xt} as
t→ 0.

Step 4. We show that that q is a solution of the variational inequality (3.2).
Indeed, putting xtn in place of xt in (3.8) and taking the limit as tn → 0, we
obtain

‖q − p‖2 ≤ 1

τ − γl
〈γV p− µFp, q − p〉, ∀p ∈ Fix(T ).
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In particular, q solves the following variational inequality

q ∈ Fix(T ), 〈γV p− µFp, q − p〉 ≥ 0, ∀p ∈ Fix(T ).

or the equivalent dual variational inequality (see Lemma 2.7)

q ∈ Fix(T ), 〈γV q − µFq, q − p〉 ≥ 0, ∀p ∈ Fix(T ).

That is, q ∈ Fix(T ) is a solution of the variational inequality (3.2), hence
q = x̃ by uniqueness. In a summary, we have shown that each cluster point of
{xt} (at t→ 0) equals x̃. Therefore, xt → x̃ as t→ 0.

The variational inequality (3.2) can be rewritten as

〈(I − µF + γV )x̃− x̃, x̃− p〉 ≥ 0, ∀p ∈ Fix(T ).

By (2.1), this is equivalent to the fixed point equation

PFix(T )(I − µF + γV )x̃) = x̃.

This completes the proof. �

Now, we consider the following iterative algorithm which generates a se-
quence in an explicit way:

xn+1 = PC [αnγV xn + (I − αnµF )Trnxn], ∀n ≥ 0, (3.11)

where {αn} ⊂ (0, 1), {rn} ⊂ (0,∞) and x0 ∈ C is an arbitrary initial guess
Using Theorem 3.1, we establish strong convergence of the sequence gen-

erated by the explicit algorithm (3.11) to a fixed point x̃ of T , which is the
unique solution of the variational inequality (3.2).

Theorem 3.2. Let {xn} be the sequence generated by the iterative algorithm
(3.11), where {αn} and {rn} satisfy the following conditions:

(C1) {αn} ⊂ (0, 1) and limn→∞ αn = 0.
(C2)

∑∞
n=0 αn =∞.

(C3) |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed control
condition).

(C4)
∑∞

n=0 |rn+1 − rn| <∞ and rn > b > 0 for n ≥ 1.

Then {xn} converges strongly to x̃ ∈ Fix(T ), which is the unique solution of
the variational inequality (3.2).

Proof. First, note that from the condition (C1), without loss of generality, we

assume that αnτ < 1 and 2αn(τ−γl)
1−αnγl

< 1 for all n ≥ 0.

Let xt be defined by (3.1), that is, xt = PC [tγV xt + (I − tµF )Trtxt] for
0 < t < 1, and let limt→0 xt := x̃ ∈ Fix(T ) (by Theorem 3.1). Then x̃ is the
unique solution of the variational inequality (3.2).

We divide the proof into several steps:
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Step 1. We show that ‖xn − p‖ ≤ max

{
‖x0 − p‖, ‖γV p−µFp‖τ−γl

}
for all n ≥ 0

and all p ∈ Fix(T ). Indeed, let p ∈ Fix(T ). Noticing p = Trnp, we have

‖xn+1 − p‖ ≤ ‖αn(γV xn − µFp) + (I − αnµF )Trnxn − (I − αnµF )Trnp‖
≤ (1− αnτ)‖xn − p‖+ αn‖γV xn − µFp‖
≤ (1− αnτ)‖xn − p‖+ αn(‖γV xn − γV p‖+ ‖γV p− µFp‖)

≤ [1− (τ − γl)αn]‖xn − p‖+ (τ − γl)αn
‖γV p− µFp‖

τ − γl

≤ max

{
‖xn − p‖,

‖γV p− µFp‖
τ − γl

}
.

Using an induction, we have ‖xn − p‖ ≤ max{‖x0 − p‖, ‖γV p−µFp‖τ−γl }. Hence

{xn} is bounded, and so are {V xn}, {Txn} {Trnxn}, {FTrnxn}, and {Fxn}.

Step 2. We show that ‖wn − wn−1‖ ≤ ‖xn − xn−1‖+ 1
b |rn − rn−1|K1, where

wn := Trnxn and K1 = sup{‖wn − xn‖ : n ≥ 1}. Indeed, let wn = Trnxn and
wn−1 = Trn−1xn−1. Then we get

〈y − wn−1, Twn−1〉 −
1

rn−1
〈y − wn−1, (1 + rn−1)wn−1 − xn−1〉 ≤ 0, ∀y ∈ C,

(3.12)
and

〈y − wn, Twn〉 −
1

rn
〈y − wn, (1 + rn)wn − xn〉 ≤ 0, ∀y ∈ C. (3.13)

Putting y = wn in (3.12) and y = wn−1 in (3.13), we obtain

〈wn − wn−1, Twn−1〉 −
1

rn−1
〈wn − wn−1, (1 + rn−1)wn−1 − xn−1〉 ≤ 0, (3.14)

and

〈wn−1 − wn, Twn〉 −
1

rn
〈wn−1 − wn, (1 + rn)wn − xn〉 ≤ 0. (3.15)

Adding up (3.14) and (3.15), we have

〈wn−wn−1, Twn−1 − Twn〉

− 〈wn − wn−1,
(1 + rn−1)wn−1 − xn−1

rn−1
− (1 + rn)wn − xn

rn
〉 ≤ 0,

which implies that

〈wn − wn−1, (wn − Twn)− (wn−1 − Twn−1)〉

− 〈wn − wn−1,
wn−1 − xn−1

rn−1
− wn − xn

rn
〉 ≤ 0.
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Now, using the fact that T is pseudocontractive, we deduce

〈wn − wn−1,
wn−1 − xn−1

rn−1
− wn − xn

rn
〉 ≥ 0,

and hence

〈wn − wn−1, wn−1 − wn + wn − xn−1 −
rn−1
rn

(wn − xn)〉 ≥ 0. (3.16)

Since rn > b > 0 for n ≥ 1, by (3.16), we have

‖wn − wn−1‖2 ≤ 〈wn − wn−1, xn − xn−1 +

(
1− rn−1

rn

)
(wn − xn)〉

≤ ‖wn − wn−1‖
[
‖xn − xn−1‖+

1

rn
|rn − rn−1|‖wn − xn‖

]
,

which implies

‖wn − wn−1‖ ≤ ‖xn − xn−1‖+
1

b
|rn − rn−1|K1, (3.17)

where K1 = sup{‖wn − xn‖ : n ≥ 1}.
Step 3. We show that limn→∞ ‖xn+1 − xn‖ = 0. In fact, by Step 1, there
exists a constant K2 > 0 such that for all n ≥ 0,

µ‖FTrnxn‖+ γ‖V xn‖ ≤ K2.

Then, by Step 2, we have

‖xn+1 − xn‖ ≤ ‖(I − αnµF )Trnxn − (I − αnµF )Trn−1xn−1

+ µ(αn − αn−1)FTrn−1xn−1

+ γ[αn(V xn − V xn−1) + V xn−1(αn − αn−1)]‖
≤ (1− αnτ)‖Trnxn − Trn−1xn−1‖

+ µ|αn − αn−1|‖FTrn−1xn−1‖
+ γ[αn[l‖xn − xn−1‖+ ‖V xn−1‖|αn − αn−1|]

≤ (1− αn(τ − γl))‖xn − xn−1‖+
1

b
|rn − rn−1|K1

+ |αn − αn−1|K2

≤ (1− αn(τ − γl))‖xn − xn−1‖+
1

b
|rn − rn−1|K1

+ (o(αn) + σn−1)K2.

(3.18)

By taking sn+1 = ‖xn+1 − xn‖, βn = αn(τ − γl), βnδn = o(αn)K2 and γn =
σn−1K2 + 1

b |rn − rn−1|K1, from (3.18), we derive

sn+1 ≤ (1− βn)sn + βnδn + γn.



400 J. S. Jung

Hence, by (C2), (C3), (C4) and Lemma 2.3, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 4. We show that limn→∞ ‖xn − wn‖ = 0, where wn := Trnxn. Indeed,
from the condition (C1) and Step 3, it follows that

‖xn − wn‖ = ‖xn − Trnxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Trnxn‖
≤ ‖xn − xn+1‖+ ‖αnγV xn + (I − αnµF )Trnxn − Trnxn‖
= ‖xn − xn+1‖+ αn‖γV xn − µFTrnxn‖
≤ ‖xn − xn+1‖+ αnK3 → 0 (as n→∞),

where K3 = sup{‖γV xn − µFTrnxn‖ : n ≥ 0}.
Step 5. We show that lim supn→∞〈γV x̃ − µF x̃, xn − x̃〉 ≤ 0, where x̃ is a
solution of the variational inequality (3.2). First we prove that

lim sup
n→∞

〈(γV − µF )x̃, wn − x̃〉 = lim sup
n→∞

〈(γV − µF )x̃, Trnxn − x̃〉 ≤ 0.

Since {xn} is bounded, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈(γV − µF )x̃, wn − x̃〉 = lim
i→∞
〈(γV − µF )x̃, wni − x̃〉. (3.19)

Without loss of generality, we may assume that {xni} converges weakly to
q ∈ C. From ‖wn − xn‖ → 0 by Step 4, it follows that wni ⇀ q. Thus,
by the same argument as in Step 3 of the proof of Theorem 3.1, we obtain
q ∈ Fix(T ). So, from (3.19), we obtain

lim sup
n→∞

〈(γV − µF )x̃, wn − x̃〉 = lim
i→∞
〈(γV − µF )x̃, wni − x̃〉

= 〈(γV − µF )x̃, q − x̃〉 ≤ 0.
(3.20)

Since limn→∞ ‖xn − wn‖ = 0 by Step 4, from (3.20), we conclude that

lim sup
n→∞

〈(γV − µF )x̃, xn − x̃〉

≤ lim sup
n→∞

〈(γV − µF )x̃, xn − wn〉+ lim sup
n→∞

〈(γV − µF )x̃, wn − x̃〉

≤ lim sup
n→∞

‖(γV − µF )x̃‖‖xn − wn‖+ lim sup
n→∞

〈(γV − µF )x̃, wn − x̃〉

≤ 0.

Step 6. We show that limn→∞ ‖xn − x̃‖ = 0, where x̃ is a solution of the
variational inequality (3.2). To this end, let yn = αnγV xn+(I−αnµF )Trnxn.
Then, we obtain

yn − x̃ = αn(γV xn − µF x̃) + (I − αnµF )Trnxn − (I − αnµF )x̃
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and

xn+1 − x̃
= xn+1 − yn + yn − x̃
= xn+1 − yn + αn(γV xn − µF x̃) + (I − αnµF )Trnxn − (I − αnµF )x̃.

Applying (2.1), Lemma 2.1 and Lemma 2.6, we derive

‖xn+1 − x̃‖2

= ‖xn+1 − yn + (I − αnµF )Trnxn − (I − αnµF )x̃

+ αn(γV xn − µF x̃)‖2

≤ ‖(I − αnµF )Trnxn − (I − αnµF )Trn x̃‖2

+ 2〈xn+1 − yn, xn+1 − x̃〉+ 2αn〈γV xn − µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖xn − x̃‖2 + 2αn〈γV xn − γV x̃, xn+1 − x̃〉

+ 2αn〈γV x̃− µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖xn − x̃‖2 + αnγl(‖xn − x̃‖2 + ‖xn+1 − x̃‖2)

+ 2αn〈γV x̃− µF x̃, xn+1 − x̃〉.

(3.21)

Then, it follows from (3.21) that

‖xn+1 − x̃‖2

≤ (1− αnτ)2 + αnγl

1− αnγl
‖xn − x̃‖2 +

2αn
1− αnγl

〈γV x̃− µF x̃, xn+1 − x̃〉

≤
(

1− 2αn(τ − γl)
1− αnγl

)
‖xn − x̃‖2

+
2αn(τ − γl)

1− αnγl

(
1

τ − γl
〈γV x̃− µF x̃, xn+1 − x̃〉+

αnτ
2

2(τ − γl)
K4

)
,

(3.22)

where K4 = sup{‖xn − x̃‖2 : n ≥ 0}. Put

βn =
2αn(τ − γl)

1− αnγl
and

δn =
1

τ − γl
〈µF x̃− γV x̃, x̃− xn+1〉+

αnτ
2

2(τ − γl)
K3.

From (C1), (C2) and Step 5, it follows that βn → 0,
∑∞

n=0 βn = ∞ and
lim supn→∞ δn ≤ 0. Since (3.22) reduces to

‖xn+1 − x̃‖2 ≤ (1− βn)‖xn − x̃‖2 + βnδn,

from Lemma 2.3 with γn = 0, we conclude that limn→∞ ‖xn − x̃‖ = 0. This
completes the proof. �
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In case that C = H, we can dispense with the condition (C3) |αn+1−αn| ≤
o(αn+1) + σn,

∑∞
n=0 σn < ∞ (perturbed control condition) in Theorem 3.2.

For this purpose, we propose the following iterative algorithm which generates
a sequence in an explicit way:

xn+1 = αnγV xn + βnxn + ((1− βn)I − αnµF )Trnxn, ∀n ≥ 0, (3.23)

where {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞) and x0 ∈ C is an arbitrary initial
guess.

Using Theorem 3.1, we also prove strong convergence of the sequence gen-
erated by the explicit algorithm (3.23).

Theorem 3.3. Suppose that C = H. Let Let {xn} be the sequence gener-
ated by the iterative algorithm (3.23), where {αn}, {βn} and {rn} satisfy the
following conditions:

(C1) {αn} ⊂ (0, 1) and limn→∞ αn = 0.
(C2)

∑∞
n=0 αn =∞.

(C3)′ 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1; and
(C4)′ limn→∞ |rn+1 − rn| = 0 and rn > b > 0 for n ≥ 1.

Then {xn} converges strongly to x̃ ∈ Fix(T ), which is the unique solution of
the variational inequality (3.2).

Proof. We only include the difference from the proof of Theorem 3.2. We also
divide the proof into several steps:

Step 1. We show that ‖xn − p‖ ≤ max

{
‖x0 − p‖, ‖γV p−µFp‖τ−γl

}
for all n ≥ 0

and all p ∈ Fix(T ). Indeed, let p ∈ Fix(T ). Noticing p = Trnp, we have

‖xn+1 − p‖ = ‖αn(γV xn − µFp) + βn(xn − p)
+ ((1− βn)I − αnµF )Trnxn − ((1− βn)I − αnµF )Trnp‖

≤(1− βn − αnτ)‖xn − p‖+ βn‖xn − p‖+ αn‖γV xn − µFp‖
≤(1− αnτ)‖xn − p‖+ αn(‖γV xn − γV p‖+ ‖γV p− µFp‖)
≤(1− αnτ)‖xn − p‖+ αn(γl‖xn − p‖+ ‖γV p− µFp‖)

≤[1− (τ − γl)αn]‖xn − p‖+ (τ − γl)αn
‖γV p− µFp‖

τ − γl

≤max

{
‖xn − p‖,

‖γV p− µFp‖
τ − γl

}
.

Using an induction, we have ‖xn − p‖ ≤ max{‖x0 − p‖, ‖γV p−µFp‖τ−γl }. Hence

{xn} is bounded, and so are {V xn}, {Txn} {Trnxn}, {FTrnxn}, and {Fxn}.
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Step 2. From Step 2 in the proof of Theorem 3.2, we know that

‖wn+1 − wn‖ ≤ ‖xn+1 − xn‖+
1

b
|rn+1 − rn|K1,

where wn := Trnxn and K1 = sup{‖wn − xn‖ : n ≥ 1}.
Step 3. We show that limn→∞ ‖xn+1 − xn‖ = 0. To this end, define

xn+1 = βnxn + (1− βn)ln, ∀n ≥ 0.

Then, we deduce

ln+1 − ln

=
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1γV xn+1 + ((1− βn+1)I − αn+1µF )Trn+1xn+1

1− βn+1

− αnγV xn + ((1− βn)I − αnµF )Trnxn
1− βn

= Trn+1xn+1 − Trnxn

+
αn+1

1− βn+1
(γV xn+1 − µFTrn+1xn+1) +

αn
1− βn

(µFTrnxn − γV xn).

Thus, from Step 2, we obtain

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤
(

αn+1

1− βn+1
+

αn
1− βn

)
K2 +

1

b
|rn+1 − rn|K1,

where K2 = sup{µ‖FTrnxn‖+ γ‖V xn‖ : n ≥ 0}. From conditions (C1), (C3)′

and (C4)′, we derive

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, Lemma 2.4, we obtain

lim
n→∞

‖ln − xn‖ = 0.

Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖ln − xn‖ = 0.

Step 4. We show that limn→∞ ‖xn − wn‖ = 0, where wn := Trnxn. Indeed,

by (3.23), we have

‖xn − wn‖ = ‖xn − Trnxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Trnxn‖
≤ ‖xn − xn+1‖+ αn(γ‖V xn‖+ µ‖FTrnxn‖) + βn‖xn − Trnxn‖,
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that is,

‖xn − wn‖ = ‖xn − Trnxn‖ ≤
1

1− βn
‖xn − xn+1‖+

αn
1− βn

K2.

So, by conditions (C1) and (C3)′, and Step 3, we conclude

lim
n→∞

‖xn − wn‖ = lim
n→∞

‖xn − Trnxn‖ = 0.

Step 5. From Step 5 in proof of Theorem 3.2, we see that

lim sup
n→∞

〈γV x̃− µF x̃, xn − x̃〉 ≤ 0,

where x̃ is a solution of the variational inequality (3.2).

Step 6. We show that limn→∞ ‖xn − x̃‖ = 0, where x̃ is a solution of the
variational inequality (3.2). By using (3.23), we have

xn+1 − x̃ = αn(γV xn − µF x̃) + βn(xn − x̃)

+ ((1− βn)I − αnµF )Trnxn − ((1− βn)I − αnµF )x̃.

Applying Lemma 2.1 and Lemma 2.6, we obtain

‖xn+1 − x̃‖2

= ‖((1− βn)I − αnµF )Trnxn − ((1− βn)I − αnµF )x̃

+ βn(xn − x̃) + αn(γV xn − µF x̃)‖2

≤ ‖((1− βn)I − αnµF )Trnxn − ((1− βn)I − αnµF )Trn x̃+ βn(xn − x̃)‖2

+ 2αn〈γV xn − µF x̃, xn+1 − x̃〉
≤ ((1− βn − αnτ)‖xn − x̃‖+ βn‖xn − x̃‖)2 + 2αn〈γV xn − γV x̃, xn+1 − x̃〉

+ 2αn〈γV x̃− µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖xn − x̃‖2 + 2αnγl(‖xn − x̃‖‖xn+1 − x̃‖)

+ 2αn〈γV x̃− µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖xn − x̃‖2 + αnγl(‖xn − x̃‖2 + ‖xn+1 − x̃‖2)

+ 2αn〈γV x̃− µF x̃, xn+1 − x̃〉.
The remainder follows from Step 6 in proof of Theorem 3.2. This completes
the proof. �

Remark 3.4. (1) Theorem 3.1, Theorem 3.2 and Theorem 3.3 improve
and develop the corresponding results in [5, 8, 9, 17] from the class of
the strictly pseudocontractive mappings or the class of the nonexpan-
sive mapping to the class of the pseudocontractive mappings.

(2) Theorem 3.1 includes the corresponding results of Tian [18], Marino
and Xu [12] and Moudafi [15] as some special cases.
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(3) Theorem 3.2 and Theorem 3.3 also generalizes the corresponding re-
sults of Cho et al. [7], Jung [8] and Marino and Xu [12] in following
aspects:
(a) A strongly positive bounded linear operator A in [7, 8, 12] is

extended to the case of a ρ-Lipschitzian and η-strongly monotone
operator F . (In fact, from the definitions, it follows that a strongly
positive bounded linear operator A (i.e., there exists a constant
γ > 0 with the property: 〈Ax, x〉 ≥ γ‖x‖2, x ∈ H) is a ‖A‖-
Lipschitzian and γ-strongly monotone operator).

(b) The contractive mapping f with a constant α ∈ (0, 1) in [7, 8, 12]
is extended to the case of a Lipschizian mapping V with a constant
l ≥ 0.

(c) The nonexpansive mapping S in [7, 12] is extended to the case of
the pseudocontractive mapping T .

(4) For iterative algorithms for systems of generalized equilibria, mixed
equilibria, minimization, split inclusion and fixed point problems, we
can also refer to [4, 6] and the references therein. By combining our
methods in this paper and methods in [4, 6], we will consider new
iterative algorithms for the above-mentioned problems coupled with
fixed point problems of pseudocontractive mappings.
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