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Abstract. We prove the generalized Hyers-Ulam stability of the diffusion equation, ut(x, t)−
kuxx(x, t) = 0, on the half-line for a class of radially symmetric scalar functions u : (0,∞)×
(0,∞)→ R which are twice continuously differentiable.

1. Introduction

The stability problems for the functional equations and (ordinary or partial)
differential equations originate from the question of Ulam [22]:

Under what conditions does there exist an additive function near an approx-
imately additive function?

In 1941, Hyers [8] answered the question of Ulam in the affirmative for
the Banach space cases. Indeed, Hyers’ theorem states that the following
statement is true for all ε ≥ 0: if a function f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for all x, then there exists an exact additive function F such that ‖f(x) −
F (x)‖ ≤ ε for all x. In that case, the Cauchy additive functional equation,
f(x+ y) = f(x) + f(y), is said to have (satisfy) the Hyers-Ulam stability.
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Given a normed space X and an open interval I of R, assume that the
following statement is true for all ε ≥ 0: for any function y : I → X satisfying
the differential inequality∥∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) + h(x)

∥∥ ≤ ε
for all x ∈ I, there exists a function y0 : I → X satisfying the differential
equation

an(x)y
(n)
0 (x) + an−1(x)y

(n−1)
0 (x) + · · ·+ a1(x)y′0(x) + a0(x)y0(x) + h(x) = 0

and ‖y(x)− y0(x)‖ ≤ K(ε) for any x ∈ I, where K(ε) is dependent on ε only.
Then the differential equation is said to have the Hyers-Ulam stability.

When the above statement is true even if we replace ε and K(ε) by ϕ(x)
and Φ(x), where ϕ, Φ : I → [0,∞) are functions not depending on y and y0
explicitly, the corresponding differential equation is said to have the gener-
alized Hyers-Ulam stability. (This type of stability is sometimes called the
Hyers-Ulam-Rassias stability.)

These terminologies will also be applied for other differential equations and
partial differential equations. For more detailed definitions of these terminolo-
gies, refer to [1, 2, 3, 4, 8, 9, 11, 15, 20, 22].

To the best of our knowledge, Ob loza was the first author who investigated
the Hyers-Ulam stability of differential equations (see [16, 17]): Assume that

g, r : (a, b) → R are continuous functions with
∫ b
a |g(x)|dx < ∞. Suppose ε is

an arbitrary positive real number. Ob loza proved that there exists a constant
δ > 0 such that |y(x) − y0(x)| ≤ δ for all x ∈ (a, b) whenever a differentiable
function y : (a, b) → R satisfies |y′(x) + g(x)y(x)− r(x)| ≤ ε for all x ∈ (a, b)
and a function y0 : (a, b)→ R satisfies y′0(x)+g(x)y0(x) = r(x) for all x ∈ (a, b)
and y(τ) = y0(τ) for some τ ∈ (a, b). Since then, a number of mathematicians
have dealt with this subject (see [1, 14, 21]).

Prástaro and Rassias seem to be the first authors who investigated the
Hyers-Ulam stability of partial differential equations (see [19]). Thereafter,
Jung and Lee [13] proved the Hyers-Ulam stability of the first-order linear
partial differential equation of the form

aux(x, y) + buy(x, y) + cu(x, y) + d = 0,

where a, b ∈ R and c, d ∈ C are constants with <(c) 6= 0.
As a further step, Hegyi and Jung [6] investigated the generalized Hyers-

Ulam stability of the Laplace’s equation for spherically symmetric scalar func-
tions. Moreover, they also proved the generalized Hyers-Ulam stability of the
diffusion equation on the restricted domain or with an initial condition (see
[7, 12]).
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In this paper, applying an idea from [6, 7], we investigate the generalized
Hyers-Ulam stability of the diffusion equation

ut(x, t)− kuxx(x, t) = 0 (1.1)

for radially symmetric scalar functions, where k > 0 is a constant, x > 0, and
t > 0.

The diffusion equation is sometimes called a heat equation or a continuity
equation and it plays an important role in a number of fields of science. For
example, the diffusion equation is strongly related to the Brownian motion in
probability theory and it is also connected with chemical diffusion.

The main advantage of this present paper over the previous ones [7, 12] is
that this paper can describe the behavior of relevant functions in the vicinity
of origin while the existing works can only deal with domains not including
the vicinity of origin.

2. Preliminaries

Before starting with our main theorem in the next section, we will modify
the theorem ([10, Theorem 1]) to be suitable for its application to the proof
of our main theorem (cf. [18, Theorem 2.2]). Indeed, the hypotheses and
conditions of the original theorem [10, Theorem 1] were formulated with a
instead of a0 which impose a constraint on its usability. It is sufficient for us
to follow the lines of the proof of [10, Theorem 1] for the proof of Theorem
2.1 below. Hence, we omit the proof.

Theorem 2.1. ([10, Theorem 1, Remark 3]) Assume that X is a real Banach
space and I = (a, b) is an open interval for arbitrary constants a, b ∈ R∪{±∞}
with a < b. Let p : I → R and q : I → X be continuous functions such that
there exists a constant a0 ∈ [a, b) with the properties:

(i)
∫ t
a0
p(s)ds exists for each t ∈ I;

(ii)
∫ t
a0
q(y) exp

{ ∫ y
a0
p(s)ds

}
dy exists for any t ∈ I.

Moreover, assume that ϕ : I → [0,∞) is a function such that

(iii)
∫ b
a0
ϕ(y) exp

{ ∫ y
a0
p(s)ds

}
dy exists.

If a continuously differentiable function v : I → X satisfies the differential
inequality

‖v′(t) + p(t)v(t) + q(t)‖ ≤ ϕ(t)

for all t ∈ I, then there exists a unique continuously differentiable function
v0 : I → X such that v′0(t) + p(t)v0(t) + q(t) = 0 for all t ∈ I and

‖v(t)− v0(t)‖ ≤ exp

{
−
∫ t

a0

p(s)ds

}∫ b

t
ϕ(y) exp

{∫ y

a0

p(s)ds

}
dy
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for all t ∈ I.

3. Main results

If u(x, t) is a solution to the diffusion equation (1.1) and a is a positive
constant, then the dilated function w(x, t) := u(

√
a x, at) is also a solution

to the diffusion equation (1.1). This property is called the invariance under
dilation. Hence, it would be a nice idea to search for approximate solutions to
(1.1), which are scalar functions of the form

u(x, t) = g

(
x√
4kt

)
,

where g is a twice continuously differentiable function. That is, u(x, t) de-

pends on x and t primarily through the term x/
√

4kt. We note that the

purpose of inclusion of the factor 1/
√

4k in the above formula is to simplify
our formulations later.

Based on this argument, we define

U :=

{
u : (0,∞)× (0,∞)→ R | there exists a twice continuously

differentiable function g : (0,∞)→ R with u(x, t) = g

(
x√
4kt

)
for all x > 0 and t > 0

}
.

Theorem 3.1. Assume that ϕ,ψ : (0,∞) → [0,∞) are functions satisfying
the conditions ∫ ∞

0
e−y

2

∫ ∞
y

ϕ(z)ez
2
dzdy <∞ (3.1)

and

c := inf
t>0

4tψ(t) > 0. (3.2)

For any twice continuously differentiable function u ∈ U satisfying the inequal-
ity ∣∣ut(x, t)− kuxx(x, t)

∣∣ ≤ ϕ( x√
4kt

)
ψ(t) (3.3)

for all x > 0 and t > 0, there exists a solution u0 : (0,∞)× (0,∞)→ R of the
diffusion equation (1.1) such that u0 ∈ U and

|u(x, t)− u0(x, t)| ≤ c
∫ ∞
x/
√
4kt

e−y
2

∫ ∞
y

ϕ(z)ez
2
dzdy (3.4)
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for all x > 0 and t > 0.

Proof. Our assumption implies that there exists a twice continuously differen-
tiable function g : (0,∞)→ R such that

u(x, t) = g(r)

for any x > 0 and t > 0, where r = x/
√

4kt. Using this notation, we compute

∂r

∂t
= − r

2t
and

∂r

∂x
=

1√
4kt

and we further apply chain rule to evaluate ut and uxx as follows:

ut(x, t) =
∂

∂r
g(r)

∂r

∂t
= − r

2t
g′(r),

ux(x, t) =
∂

∂r
g(r)

∂r

∂x
=

1√
4kt

g′(r),

uxx(x, t) =
1√
4kt

∂

∂r
g′(r)

∂r

∂x
=

1

4kt
g′′(r).

So we have

ut(x, t)− kuxx(x, t) = − 1

4t

(
g′′(r) + 2rg′(r)

)
(3.5)

for any x > 0, t > 0, and hence for all r > 0.
Moreover, it follows from the last equality and (3.3) that

|ut(x, t)− kuxx(x, t)| = 1

4t

∣∣g′′(r) + 2rg′(r)
∣∣ ≤ ϕ(r)ψ(t)

or ∣∣g′′(r) + 2rg′(r)
∣∣ ≤ ϕ(r){4tψ(t)}

for all r > 0 and t > 0. In view of (3.2), we have a differential inequality∣∣g′′(r) + 2rg′(r)
∣∣ ≤ cϕ(r)

for any r > 0. If we set h(r) := g′(r) in the last inequality, then we have∣∣h′(r) + 2rh(r)
∣∣ ≤ cϕ(r) (3.6)

for any r > 0.
We can now apply Theorem 2.1 to our inequality (3.6) by considering the

substitutions as we see in the following table.

Theorem 2.1 X t a b a0 v(t) p(t) q(t) ϕ(t)

(3.6) R r 0 ∞ 0 h(r) 2r 0 cϕ(r)
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By considering the table above, we evaluate∫ r

0
2sds = r2

which implies that the condition (i) of Theorem 2.1 is satisfied. Trivially, the
condition (ii) of Theorem 2.1 is fulfilled. Furthermore, it follows from (3.1)
that ∫ ∞

0
cϕ(y) exp

{∫ y

0
2sds

}
dy =

∫ ∞
0

cϕ(y)ey
2
dy <∞

which means that the condition (iii) of Theorem 2.1 is satisfied.
Due to Theorem 2.1 and inequality (3.6), there exists a unique continuously

differentiable function h0 : (0,∞)→ R such that

h′0(r) + 2rh0(r) = 0 (3.7)

for any r > 0 and∣∣h(r)− h0(r)
∣∣ ≤ exp

{
−
∫ r

0
2sds

}∫ ∞
r

cϕ(y) exp

{∫ y

0
2sds

}
dy

= ce−r
2

∫ ∞
r

ϕ(y)ey
2
dy

or equivalently ∣∣g′(r)− h0(r)∣∣ ≤ ce−r2 ∫ ∞
r

ϕ(y)ey
2
dy (3.8)

for all r > 0. In view of (3.7), there exists a real constant α with h0(r) = αe−r
2
.

We again apply Theorem 2.1 to our inequality (3.8) by considering the
substitutions as we see in the following table.

Theorem 2.1 X t a b a0 v(t) p(t) q(t) ϕ(t)

(3.8) R r 0 ∞ 0 g(r) 0 −h0(r) ce−r
2 ∫∞

r ϕ(z)ez
2
dz

By considering the table above, we note that the condition (i) of Theorem
2.1 is trivially satisfied. Since∣∣∣∣ ∫ r

0
h0(y)dy

∣∣∣∣ ≤ |α| ∫ ∞
0

e−y
2
dy <∞,

the condition (ii) of Theorem 2.1 is fulfilled. Moreover, in view of (3.1), we
easily see that (iii) of Theorem 2.1 is also fulfilled.

On account of Theorem 2.1, there exists a unique continuously differentiable
function g0 : (0,∞)→ R such that
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g′0(r)− h0(r) = 0 (3.9)

and ∣∣g(r)− g0(r)
∣∣ ≤ c∫ ∞

r
e−y

2

∫ ∞
y

ϕ(z)ez
2
dzdy (3.10)

for all r > 0.
Let us define a function u0 : (0,∞) × (0,∞) → R by u0(x, t) := g0(r). As

we did in (3.5), by using (3.7) and (3.9), we compute

∂

∂t
u0(x, t)− k

∂2

∂x2
u0(x, t) = − 1

4t

(
h′0(r) + 2rh0(r)

)
= 0

for any x > 0 and t > 0, i.e., u0 is a solution of the diffusion equation (1.1)
and u0 ∈ U . By a direct calculation, we easily show that u0 is explicitly given
by

u0(x, t) = α1Erf

(
x√
4kt

)
+ α2

for all x > 0 and t > 0, where

Erf (r) =
2√
π

∫ r

0
e−s

2
ds

is called the error function and α1 and α2 are real constants.
Finally, inequality (3.4) is an immediate consequence of (3.10). �

In the following corollary, we introduce an explicit form of control function
ϕ such that ϕ satisfies the condition (3.1).

Corollary 3.2. Assume that ϕ,ψ : (0,∞) → [0,∞) are functions and 0 <
ε < 1 is a constant such that there exist constants c and θ with

ϕ(r) ≤ θr−1−εe−r2 , ∀r > 0 (3.11)

and

c := inf
t>0

4tψ(t) > 0.

For each twice continuously differentiable function u ∈ U satisfying the in-
equality ∣∣ut(x, t)− kuxx(x, t)

∣∣ ≤ ϕ( x√
4kt

)
ψ(t)
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for all x > 0 and t > 0, there exists a solution u0 : (0,∞)× (0,∞)→ R to the
diffusion equation (1.1) such that u0 ∈ U and

|u(x, t)− u0(x, t)| ≤
cθ

ε

∫ ∞
x/
√
4kt

y−εe−y
2
dy (3.12)

for all x > 0 and t > 0.

Proof. It follows from (3.11) that∫ ∞
y

ϕ(z)ez
2
dz ≤

∫ ∞
y

θz−1−εe−z
2
ez

2
dz =

θ

ε
y−ε

for all y > 0. Moreover, it holds that∫ ∞
0

e−y
2

∫ ∞
y

ϕ(z)ez
2
dzdy ≤ θ

ε

∫ ∞
0

y−εe−y
2
dy

≤ θ

ε

∫ 1

0
y−εdy +

θ

ε

∫ ∞
1

e−y
2
dy

<∞.

According to Theorem 3.1, there exists a solution u0 ∈ U of the diffusion
equation (1.1) such that inequality (3.12) holds for all x > 0 and t > 0. �

Remark 3.3. For all x > 0 and t > 0 with 0 < x/
√

4kt < 1, inequality (3.12)
becomes

|u(x, t)− u0(x, t)| ≤
cθ

ε

∫ ∞
x/
√
4kt

y−εe−y
2
dy

≤ cθ

ε

∫ 1

x/
√
4kt

y−εdy +
cθ

ε

∫ ∞
1

e−y
2
dy

=
cθ

ε(1− ε)

(
1−

(
x√
4kt

)1−ε
)

+

√
πcθ

2ε

(
1− Erf (1)

)
.

For all x > 0 and t > 0 with x/
√

4kt ≥ 1, inequality (3.12) becomes

|u(x, t)− u0(x, t)| ≤
cθ

ε

∫ ∞
x/
√
4kt

y−εe−y
2
dy

≤ cθ

ε

∫ ∞
x/
√
4kt

e−y
2
dy

=

√
πcθ

2ε

(
1− Erf

(
x√
4kt

))
.
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