
Nonlinear Functional Analysis and Applications
Vol. 24, No. 2 (2019), pp. 417-425

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2019 Kyungnam University Press

KUPress

COMMON FIXED POINT THEOREMS FOR TWO
MAPPINGS IN S-METRIC SPACES

Atena Javaheri1, Shaban Sedghi2 and Ho Geun Hyun3

1Department of Mathematics, Qaemshahr Branch
Islamic Azad University, Qaemshahr, Iran

e-mail: Javaheri.a91@gmail.com

2Department of Mathematics, Qaemshahr Branch
Islamic Azad University, Qaemshahr, Iran

e-mail: sedghi gh@yahoo.com

3Department of Mathematics Education, Kyungnam University
Changwon, Gyeongnam 51767, Korea
e-mail: hyunhg8285@kyungnam.ac.kr

Abstract. In this paper, we present some definitions of S-metric spaces and prove a common

fixed point theorem for two mappings under the condition of weakly compatible mappings in

complete S-metric spaces. Also we improved some fixed point theorems in complete S-metric

spaces.

1. Introduction

In 1922, the Polish mathematician, Banach, proved a theorem which en-
sures, under appropriate conditions, the existence and uniqueness of a fixed
point. His result is called Banach’s fixed point theorem or the Banach con-
traction principle. This theorem provides a technique for solving a variety of
applied problems in mathematical science and engineering. Many authors have
extended, generalized and improved Banach’s fixed point theorem in different
ways.
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In [9], Jungck introduced more generalized commuting mappings, called
compatible mappings, which are more general than commuting and weakly
commuting mappings. This concept has been useful for obtaining more com-
prehensive fixed point theorems (see, e.g.,( [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14]).

Dhage [5] introduced the notion of generalized metric or D-metric spaces
and claimed that D-metric defines a Hausdorff topology and that D-metric is
sequentially continuous in all the three variables. Many authors used these
claims for proving some fixed point theorems in D-metric spaces.

Rhoades [9] generalized Dhage’s contractive condition by increasing the
number of factors and proved the existence of unique fixed point of a self-map
in D-metric space. Recently, motivated by the concept of compatibility for
metric space, Singh and Sharma [13] introduced the concept of D-compatibility
of maps in D-metric space and proved some fixed point theorems using a con-
tractive condition. Unfortunately, almost all theorems in D-metric spaces are
not valid (see [15, 16, 17]).

Recently, Sedghi et al [18, 23] introduced D∗-metric which is a modification
of the definition of D-metric introduced by Dhage [5] and prove some basic
properties in D∗-metric spaces. Also, Sedghi et al [21] have introduced the
notion of an S-metric space and proved that this notion is a generalization of
a G-metric space and a D∗-metric space. Also, they have proved properties of
S-metric spaces and some fixed point theorems for a self-map on an S-metric
space [19, 20, 22].

2. Preliminaries

We begin by briefly recalling some basic definitions and results for S-metric
spaces that will be needed in the sequel.

Definition 2.1. ([21]) Let X be a nonempty set. An S-metric on X is a
function S : X ×X ×X → [0,∞) that satisfies the following conditions, for
each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

The pair (X,S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

(1) Let X = Rn and ||.|| a norm on X, then S(x, y, z) = ||y + z − 2x|| +
||y − z|| is an S-metric on X.

(2) Let X = Rn and ||.|| a norm on X, then S(x, y, z) = ||x− z||+ ||y− z||
is an S-metric on X.
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(3) Let X be a nonempty set, d is ordinary metric on X, then S(x, y, z) =
d(x, y) + d(y, z) is an S-metric on X.

Lemma 2.2. ([21]) In an S-metric space, we have S(x, x, y) = S(y, y, x).

Definition 2.3. ([21]) Let (X,S) be an S-metric space. For r > 0 and x ∈ X
we define the open ball BS(x, r) and closed ball BS [x, r] with center x and
radius r as follows, respectively:

Bs(x, r) = {y ∈ X : S(y, y, x) < r},
Bs[x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 2.4. ([21]) Let X = R. Denote S(x, y, z) = |y + z − 2x| + |y − z|
for all x, y, z ∈ R. Thus

Bs(1, 2) = {y ∈ R : S(y, y, 1) < 2}
= {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2}
= (0, 2).

Definition 2.5. ([21]) Let (X,S) be an S-metric space and A ⊂ X.

(1) If for every x ∈ A there exists r > 0 such that BS(x, r) ⊂ A, then the
subset A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists r > 0 such that
S(x, x, y) < r for all x, y ∈ A.

(3) A sequence {xn} in X converges to x if S(xn, xn, x) → 0 as n → ∞.
That is, for each ε > 0 there exists n0 ∈ N such that

∀n ≥ n0 =⇒ S(xn, xn, x) < ε,

and we denote by lim
n→∞

xn = x.

(4) Sequence {xn} in X is called a Cauchy sequence if for each ε > 0,
there exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

(5) The S-metric spaces (X,S) is said to be complete if every Cauchy
sequence is convergent.

(6) Let τ be the set of all A ⊂ X with x ∈ A if there exists r > 0 such that
BS(x, r) ⊂ A. Then τ is a topology on X(induced by the S-metric S).

Definition 2.6. ([22]) Let (X,S) and (X ′, S ′) be two S-metric spaces, and
let f : (X,S) → (X ′, S ′) be a function. Then f is said to be continuous
at a point a ∈ X if for every sequence {xn} in X, S(xn, xn, a) → 0 implies
S ′(f(xn), f(xn), f(a))→ 0. A function f is continuous on X if it is continuous
at all a ∈ X.
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3. Main results

Theorem 3.1. Let f and g be self-mappings of a complete S-metric space
(X,S) satisfying the following conditions:

(i) g(X) ⊆ f(X), and f(X) is closed subset of X,
(ii) the pair (f, g) is weakly compatible,

(iii) S(gx, gy, gz) ≤ Ψ(S(fx, fy, fz)), for every x, y, z ∈ X,

where Ψ : [0,∞) → [0,∞) is continuous, nondecreasing function such that
∞∑
n=1

Ψn(t) is convergent for each t > 0. Then f and g have a unique common

fixed point in X.

Proof. From the conditions on Ψ, it is clear that lim
n→∞

Ψn(t) = 0 and Ψ(t) < t.

Let x0 be arbitrary point in X. By (i), we can choose a point x1 in X such
that y0 = gx0 = fx1 and y1 = gx1 = fx2. There exists a sequence {yn} such
that, yn = gxn = fxn+1, for n = 0, 1, 2, · · · . For every n ∈ N, we prove that
the sequence {yn} is a Cauchy sequence. Consider

S(yn, yn, yn+1) = S(gxn, gxn, gxn+1)

≤ Ψ(S(fxn, fxn, fxn))

= Ψ(S(yn−1, yn−1, yn)).

Therefore we have

S(yn, yn, yn+1) ≤ Ψ(S(yn−1, yn−1, yn)),

and so S(yn, yn, yn+1) ≤ Ψn(S(y0, y0, y1)). Thus form > n with n ∈ {0, 1, · · · },

S(yn, yn, ym) ≤ 2
m−2∑
i=n

S(yi, yi, yi+1) + S(ym−1, ym−1, ym)

≤ 2

m−2∑
i=n

Ψi (S(y0, y0, y1)) + Ψm−1 (S(y0, y0, y1))

≤ 2

m−1∑
i=n

Ψi (S(y0, y0, y1)).

Since
∞∑
n=1

Ψn(t) is convergent for each t > 0, {yn} is a Cauchy sequence in the

S−metric space (X,S). By the completeness of X, there exists a u ∈ X such
that

lim
n→∞

yn = lim
n→∞

gxn = lim
n→∞

fxn+1 = u.
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Let f(X) is closed. Then there exist v ∈ X such that fv = u. Now we show
that gv = u. From inequality (iii) we have that

S(gxn, gxn, gv) ≤ Ψ(S(fxn, fxn, fv)).

Taking n→∞, we get

S(u, u, gv) ≤ Ψ(S(0)) = 0,

it implies gv = u. Since the pair (f, g) are weakly compatible, we get, gfv =
fgv. Thus fu = gu. Now we prove that gu = u. If set xn, xn, u replacing
x, y, z respectively, in inequality (iii) we get

S(gxn, gxn, gu) ≤ Ψ(S(fxn, fxn, fu)).

Taking n→∞, we get

S(u, u, gu) ≤ Ψ(S(u, u, gu)).

If gu 6= u, then S((u, u, gu) < S(u, u, gu), is a contradiction. Therefore,
fu = gu = u.

For the uniqueness, let u and u′ be common fixed points of f, g. Taking
x = y = u and z = u′ in (iii), we have

S(u, u, u′) = S(gu, gu, gu′)

≤ Ψ(S(fu, fu, fu′)) = Ψ(S(u, u, u′))

< S(u, u, u′),

which is a contradiction. Thus we have u = u′. �

Corollary 3.2. Let f , g and h be self-mappings of a complete S-metric space
(X,S) satisfying the following conditions:

(i) g(X) ⊆ fh(X), and fh(X) is closed subset of X,
(ii) the pair (fh, g) is weakly compatible and fh = hf, gh = hg

(iii) S(gx, gy, gz) ≤ Ψ(S(fhx, fhy, fhz)),
for every x, y, z ∈ X, where Ψ : [0,∞)→ [0,∞) is continuous, nonde-

creasing function such that
∞∑
n=1

Ψn(t) is convergent for each t > 0.

Then f , g and h have a unique common fixed point in X.

Proof. By Theorem 3.1, there exist a fixed point u ∈ X such that fhu = gu =
u. Now, we prove that hu = u. If hu 6= u, then in (iii), we have

S(hu, u, u) = S(hgu, gu, gu)

= S(ghu, gu, gu)

≤ Ψ(S(fhhu, fhu, fhu))

= Ψ(S(hu, u, u))

< S(hu, u, u),
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which is a contradiction. Thus we have hu = u. Therefore, fu = fhu = u =
hu = gu. �

Corollary 3.3. Let g be a self-mapping of a complete S-metric space (X,S)
satisfying the following condition:

S(gnx, gny, gnz) ≤ Ψ(S(x, y, z)),

for every x, y, z ∈ X and n ∈ N, where Ψ : [0,∞) → [0,∞) is continuous,

nondecreasing function such that
∞∑
n=1

Ψn(t) is convergent for each t > 0. Then

g have a unique fixed point in X.

Proof. Replace f with I, the identity map, in Theorem 3.1. Hence the all
conditions of Theorem 3.1 are hold and therefore there exists a unique u ∈ X
such that gnu = u. Thus gn(gu) = g(gnu) = gu. Since u is unique, we have
gu = u. �

Corollary 3.4. Let f and g be self-mappings of a complete S-metric space
(X,S) satisfying the following conditions:

(i) gn(X) ⊆ fm(X), and fm(X) is closed subset of X,
(ii) the pair (fm, gn) is weakly compatible and fmg = gfm, gnf = fgn

(iii) S(gnx, gny, gnz) ≤ Ψ(S(fmx, fmy, fmz)),
for every x, y, z ∈ X and n,m ∈ N, where Ψ : [0,∞) → [0,∞) is

continuous, nondecreasing function such that
∞∑
n=1

Ψn(t) is convergent

for each t > 0.

Then f and g have a unique common fixed point in X.

Proof. By Theorem 3.1 there exist a fixed point u ∈ X such that fmu = gnu =
u. On the other hand, we have

gu = g(gnu) = gn(gu) and gu = g(fmu) = fm(gu).

Since u is unique, we have gu = u. Similarly, we have fu = u. �

Corollary 3.5. Let (X,S) be a complete S-metric space and let f1, f2, · · · , fn, g :
X −→ X be maps that satisfy the following conditions:

(i) g(X) ⊆ f1f2 · · · fn(X);
(ii) the pair (f1f2 · · · fn, g) is weak compatible, f1f2 · · · fn(X) is closed sub-

set of X;
(iii) S(gx, gy, gz) ≤ Ψ(S(f1f2 · · · fn(x), f1f2 · · · fn(y), f1f2 · · · fn(z))),

for all x, y, z ∈ X and n ∈ N, where Ψ : [0,∞) → [0,∞) is continu-

ous, nondecreasing function such that
∞∑
n=1

Ψn(t) is convergent for each

t > 0;
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(iv) g(f2 · · · fn) = (f2 · · · fn)g,
g(f3 · · · fn) = (f3 · · · fn)g,
...
gfn = fng,
f1(f2 · · · fn) = (f2 · · · fn)f1,
f1f2(f3 · · · fn) = (f3 · · · fn)f1f2,
...
f1 · · · fn−1(fn) = (fn)f1 · · · fn−1.

Then f1, f2, · · · , fn, g have a unique common fixed point.

Proof. By Corollary 3.2, if set f1f2 · · · fn = f then f, g have a unique common
fixed point in X. That is, there exists x ∈ X, such that f1f2 · · · fn(x) = g(x) =
x. We prove that fi(x) = x, for i = 1, 2, · · · . From (iii), we have

S(g(f2 · · · fnx), g(x), g(x))

≤ Ψ(S(f1f2 · · · fn(f2 · · · fnx), f1f2 · · · fn(x), f1f2 · · · fn(x))).

By (iv), we get

S(f2 · · · fnx, x, x) ≤ Ψ(S(f2 · · · fnx, x, x)) < S(f2 · · · fnx, x, x).

Hence, f2 · · · fn(x) = x. Thus , f1(x) = f1f2 · · · fn(x) = x. Similarly, we have
f2(x) = · · · fn(x) = x. �

Now, we give one example to validate Theorem 3.1.

Example 3.6. Let (X,S) be a complete S-metric space, where X = [0, 2] and

S(x, y, z) = |x− y|+ |y − z|+ |z − x|.

Define self-maps f and g on X as follows: fx = x+1
2 and gx = x+5

6 , for all

x ∈ X. Let Ψ(t) = 1
2 t. Then , we have

S(gx, gy, gz) =
1

6
(|x− y|+ |y − z|+ |z − x|)

≤ 1

4
(|x− y|+ |y − z|+ |x− z|)

= Ψ(S(fx, fy, fz).

That is, all conditions of Theorem 3.1 are hold and 1 is the unique common
fixed point of f and g.
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