QUADRATIC ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS NORMED SPACES

Inho Hwang
Department of Mathemtics
Incheon National University, Incheon 22012, Korea
e-mail: ho818@inu.ac.kr

Abstract. In this paper, we solve the quadratic ρ-functional equations:

$$
\begin{align*}
& f(x+y)+f(x-y)-2 f(x)-2 f(y) \tag{1}\\
& =\rho\left(4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y)\right)
\end{align*}
$$

and

$$
\begin{align*}
& 4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y) \tag{2}\\
& =\rho(f(x+y)+f(x-y)-2 f(x)-2 f(y))
\end{align*}
$$

where ρ is a fixed complex number with $\rho \neq 1$.
Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ-functional equations (1) and (2) in β-homogeneous complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [19] concerning the stability of group homomorphisms. The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by Aoki [2] for additive mappings and by Rassias [16] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta

[^0][8] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [18] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. The stability problems of various functional equations have been extensively investigated by a number of authors (see [1, $3,4,6,7,10,11,12,13,14,15])$.

Definition 1.1. Let X be a linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:
$\left(\mathrm{FN}_{1}\right)\|x\|=0$ if and only if $x=0$;
$\left(\mathrm{FN}_{2}\right) \quad\|\lambda x\|=\|x\|$ for all $x \in X$ and all λ with $|\lambda|=1$;
$\left(\mathrm{FN}_{3}\right)\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$;
$\left(\mathrm{FN}_{4}\right)\left\|\lambda_{n} x\right\| \rightarrow 0$ provided $\lambda_{n} \rightarrow 0$;
$\left(\mathrm{FN}_{5}\right)\left\|\lambda x_{n}\right\| \rightarrow 0$ provided $\left\|x_{n}\right\| \rightarrow 0$.
Then $(X,\|\cdot\|)$ is called an F^{*}-space. An F-space is a complete F^{*}-space.
An F-norm is called β-homogeneous $(\beta>0)$ if $\|t x\|=|t|^{\beta}\|x\|$ for all $x \in X$ and all $t \in \mathbb{C}$ (see [17]).

In this paper, we solve the quadratic ρ-functional equations (1) and (2) and prove the Hyers-Ulam stability of the quadratic ρ-functional equations (1) and (2) in β_{2}-homogeneous complex Banach space.

Throughout this paper, let β_{1}, β_{2} be positive real numbers with $\beta_{1} \leq 1$ and $\beta_{2} \leq 1$. Assume that X is a β_{1}-homogeneous real or complex normed space with norm $\|\cdot\|$ and that Y is a β_{2}-homogeneous complex Banach space with norm $\|\cdot\|$. Assume that ρ is a complex number with $\rho \neq 1$.

2. Quadratic ρ-functional equation (1) in β-homogeneous complex Banach spaces

We solve and investigate the quadratic ρ-functional equation (1) in complex normed spaces.

Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{align*}
& f(x+y)+f(x-y)-2 f(x)-2 f(y) \tag{2.1}\\
& =\rho\left(4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y)\right)
\end{align*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is quadratic.
Proof. Assume that $f: X \rightarrow Y$ satisfies (2.1). Letting $y=x$ in (2.1), we get $f(2 x)-4 f(x)=0$ for all $x \in X$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{4} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
& f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
& =\left\lvert\, \rho\left(4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y)\right)\right. \\
& =\rho(f(x+y)+f(x-y)-2 f(x)-2 f(y))
\end{aligned}
$$

and so

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$.
Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional equation (2.1) in β-homogeneous complex Banach spaces.

Theorem 2.2. Let $r>\frac{2 \beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let f : $X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| f(x+y)+f(x-y)-2 f(x)-2 f(y) \tag{2.3}\\
& -\rho\left(4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y)\right) \| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2 \theta}{2^{\beta_{1} r}-4^{\beta_{2}}}\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (2.3), we get

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq 2 \theta\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\| \leq \frac{2 \theta}{2^{\beta_{1} r}}\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|4^{l} f\left(\frac{x}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|4^{j} f\left(\frac{x}{2^{j}}\right)-4^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{2}{2^{\beta_{1} r}} \sum_{j=l}^{m-1} \frac{4^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta\|x\|^{r} \tag{2.6}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.6) that the sequence $\left\{4^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is a Banach space, the sequence $\left\{4^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is convergent. So we can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{k \rightarrow \infty} 4^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.6), we get (2.4).

It follows from (2.3) that

$$
\begin{aligned}
& \| Q(x+y)+Q(x-y)-2 Q(x)-2 Q(y) \\
& \quad-\rho\left(4 Q\left(\frac{x+y}{2}\right)+Q(x-y)-2 Q(x)-2 Q(y)\right) \| \\
& =\lim _{n \rightarrow \infty} \| 4^{n}\left(f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{y}{2^{n}}\right)\right. \\
& \left.\quad-\rho\left(4 f\left(\frac{x+y}{2^{n+1}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{y}{2^{n}}\right)\right)\right) \| \\
& \leq \lim _{n \rightarrow \infty} \frac{4^{\beta_{2} n}}{2^{\beta_{1} r n}} \theta\left(\|x\|^{r}+\|y\|^{r}\right)=0
\end{aligned}
$$

for all $x, y \in X$. So

$$
\begin{aligned}
& Q\left(\frac{x+y}{2}\right)+Q\left(\frac{x-y}{2}\right)-2 Q(x)-2 Q(y) \\
& =\rho\left(4 Q\left(\frac{x+y}{2}\right)+Q(x-y)-2 Q(x)-2 Q(y)\right)
\end{aligned}
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is quadratic.

Now, let $T: X \rightarrow Y$ be another quadratic mapping satisfying (2.4). Then we have

$$
\begin{aligned}
\|Q(x)-T(x)\| & =\left\|4^{q} Q\left(\frac{x}{2^{q}}\right)-4^{q} T\left(\frac{x}{2^{q}}\right)\right\| \\
& \leq\left\|4^{q} Q\left(\frac{x}{2^{q}}\right)-4^{q} f\left(\frac{x}{2^{q}}\right)\right\|+\left\|4^{q} T\left(\frac{x}{2^{q}}\right)-4^{q} f\left(\frac{x}{2^{q}}\right)\right\| \\
& \leq \frac{2 \theta}{2^{\beta_{1} r}-4^{\beta_{2}}} \frac{4^{\beta_{2} q}}{2^{\beta_{1} q r}}\|x\|^{r},
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $Q(x)=T(x)$ for all $x \in X$. This proves the uniqueness of Q, as desired.

Theorem 2.3. Let $r<\frac{2 \beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let f : $X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.3). Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2 \theta}{4^{\beta_{2}}-2^{\beta_{1} r}}\|x\|^{r} \tag{2.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.5) that

$$
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{2 \theta}{4^{\beta_{2}}}\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{4^{l}} f\left(2^{l} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{4^{j}} f\left(2^{j} x\right)-\frac{1}{4^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \frac{2 \theta}{4^{\beta_{2}}} \sum_{j=l}^{m-1} \frac{2^{\beta_{1} r}}{4^{\beta_{2} j}}\|x\|^{r} \tag{2.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.8) that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y. Since Y is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ convergent. So we can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.8), we get (2.7).

The rest of the proof is similar to the proof of Theorem 2.2.

3. Quadratic ρ-functional equation (2) in β-homogeneous complex Banach spaces

We solve and investigate the quadratic ρ-functional equation (2) in β homogeneous complex normed spaces.
Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{align*}
& 4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y) \tag{3.1}\\
& =\rho(f(x+y)+f(x-y)-2 f(x)-2 f(y))
\end{align*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is quadratic.
Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1).
Letting $y=0$ in (3.1), we get

$$
\begin{equation*}
4 f\left(\frac{x}{2}\right)=f(x) \tag{3.2}
\end{equation*}
$$

for all $x \in X$. It follows from (3.1) and (3.2) that

$$
\begin{aligned}
& f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
& =4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y) \\
& =\rho(f(x+y)+f(x-y)-2 f(x)-2 f(y))
\end{aligned}
$$

and so

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$.
Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional equation (3.1) in β-homogeneous complex Banach spaces.

Theorem 3.2. Let $r>\frac{2 \beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let f : $X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 4 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-2 f(y) \tag{3.3}\\
& -\rho(f(x+y)+f(x-y)-2 f(x)-2 f(y)) \| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2^{\beta_{1} r} \theta}{2^{\beta_{1} r}-4^{\beta_{2}}}\|x\|^{r} \tag{3.4}
\end{equation*}
$$

for all $x \in X$.

Proof. Letting $y=0$ in (3.3), we get

$$
\begin{equation*}
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\|=\left\|4 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \theta\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|4^{l} f\left(\frac{x}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|4^{j} f\left(\frac{x}{2^{j}}\right)-4^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \sum_{j=l}^{m-1} \frac{4^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta\|x\|^{r} \tag{3.6}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.6) that the sequence $\left\{4^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is a Banach space, the sequence $\left\{4^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ convergnt. So we can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{k \rightarrow \infty} 4^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.6), we get (3.4).

The rest of the proof is similar to the proof of Theorem 2.2
Theorem 3.3. Let $r<\frac{2 \beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let f : $X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (3.3). Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2^{\beta_{1} r} \theta}{4^{\beta_{2}}-2^{\beta_{1} r}}\|x\|^{r} \tag{3.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.5) that

$$
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{2^{\beta_{1} r}}{4^{\beta_{2}}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{4^{l}} f\left(2^{l} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{4^{j}} f\left(2^{j} x\right)-\frac{1}{4^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \sum_{j=l+1}^{m} \frac{2^{\beta_{1} r j}}{4^{\beta_{2} j}} \theta\|x\|^{r} \tag{3.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.8) that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$.

Since Y is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ convergent. So we can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.8), we get (3.7).

The rest of the proof is similar to the proof of Theorem 2.2.

References

[1] M. Adam, On the stability of some quadratic functional equation, J. Nonlinear Sci. Appl., 4 (2011), 50-59.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] L. Cădariu, L. Găvruta and P. Găvruta, On the stability of an affine functional equation, J. Nonlinear Sci. Appl., 6 (2013), 60-67.
[4] A. Chahbi and N. Bounader, On the generalized stability of d'Alembert functional equation, J. Nonlinear Sci. Appl., 6 (2013), 198-204.
[5] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[6] G.Z. Eskandani and P. Gǎvruta, Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces, J. Nonlinear Sci. Appl., 5 (2012), 459-465.
[7] J. Gao, On the stability of functional equations in 2-normed spaces, Nonlinear Funct. Anal. Appl., 15 (2010), 635-645.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222-224.
[10] G. Kim and H. Shin, Approximately quadartic mappings in non-Archimedean fuzzy normed spaces, Nonlinear Funct. Anal. Appl. 23 (2018), 369-380.,
[11] Y. Lee and S. Jung, A general theorem on the fuzzy stability of a class of functional equations including quadartic-additive functional equations, Nonlinear Funct. Anal. Appl., 23 (2018), 353-368.
[12] Y. Manar, E. Elqorachi and Th.M. Rassais, Hyers-Ulam stability of the Jensen functional equation in quasi-Banach spaces, Nonlinear Funct. Anal. Appl., 15 (2010), 581603.
[13] C. Park, Orthogonal stability of a cubic-quartic functional equation, J. Nonlinear Sci. Appl., 5 (2012), 28-36.
[14] C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal., 9 (2015), 17-26.
[15] C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397-407.
[16] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[17] S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1972.
[18] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[19] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

[^0]: ${ }^{0}$ Received September 12, 2018. Revised February 18, 2019.
 ${ }^{0} 2010$ Mathematics Subject Classification: 39B62, 39B72, 39B52, 39B82.
 ${ }^{0}$ Keywords: Hyers-Ulam stability, β-homogeneous space, quadratic ρ-functional equation.

