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Abstract. In this paper, we give some definitions of S∗-metric spaces and we prove a

common fixed point theorem for four mappings under the condition of weakly compatible

mappings in complete S∗-metric spaces. We get some improved versions of several fixed

point theorems in complete S∗-metric spaces.

1. Introduction

Metrical fixed point theory became one of the most interesting area of re-
search in the last fifty years. A lot of fixed and common fixed point results
have been obtained by several authors in various types of spaces, such as met-
ric spaces, fuzzy metric spaces, uniform spaces and others. One of the most
interesting are partial metric spaces, which were defined by Matthews in the
following way.
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Definition 1.1. ([4]) A partial metric on a nonempty set X is a function
p : X ×X → [0,+∞) such that, for all x, y, z ∈ X:

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

In this case, the pair (X, p) is called a partial metric space (see also [5]).

On the other hand, S-metric space were initiated by Sedghi, Shobe and
Aliouche in [11] (see also [2, 7, 8, 12] and references cited therein).

Definition 1.2. ([11]) An S-metric on a nonempty set X is a function S :
X×X×X → [0,+∞) such that for all x, y, z, a ∈ X, the following conditions
are satisfied:

(s1) S(x, y, z) = 0 ⇐⇒ x = y = z,
(s2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

In this case, the pair (X,S) is called an S-metric space.

It is easy to see that in an S-metric space (X,S) we always have S(x, x, y) =
S(y, y, x), x, y ∈ X.

In this paper, combining these two concepts, we introduce the notion of
partial S-metric space and prove a common fixed point theorem for weakly
increasing mappings in ordered spaces of this kind.

We recall some notions and properties in S-metric spaces.

Definition 1.3. ([9]) Let (X,S) be an S-metric space and {xn} be a sequence
in X.

(a) The sequence {xn} is convergent to x ∈ X if S(xn, xn, x) → 0 as
n→∞. In this case, we write limn→∞ xn = x.

(b) {xn} is said to be a Cauchy sequence if for each ε > 0, there exists
n0 ∈ N such that for S(xn, xn, xm) < ε for all n,m ≥ n0.

(c) The space (X,S) is said to be complete if every Cauchy sequence is
convergent in X.

Lemma 1.4. ([9]) Let (X,S) be an S-metric space. If {xn} and {yn} are
sequences such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).
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2. Partial S-metric spaces

In this section, we introduce partial S-metric spaces and investigate some
of their simple properties.

Definition 2.1. A partial S-metric on a nonempty set X is a function S∗ :
X ×X ×X → [0,+∞) such that for all x, y, z, a ∈ X:

(sp1) x = y = z ⇐⇒ S∗(x, y, z) = S∗(x, x, x) = S∗(y, y, y) = S∗(z, z, z),
(sp2) S

∗(x, x, x) ≤ S∗(x, y, z),
(sp3) S

∗(x, y, z) ≤ S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a)− 2S∗(a, a, a).

The pair (X,S∗) is then called a partial S-metric space or S∗-metric space.

Each S-metric space is also a partial S-metric space. The converse is not
true, as shown by the following example.

Example 2.2. Let X = [0,+∞) and let S∗ : X × X × X → [0,+∞) be
defined by S∗(x, y, z) = max{x, y, z}. Then, it is easy to check that (X,S∗) is
a partial S-metric space. Obviously, (X,S∗) is not an S-metric space.

Lemma 2.3. For a partial S-metric S∗ on X, we have, for all x, y ∈ X:

(a) S∗(x, x, y) = S∗(y, y, x),
(b) if S∗(x, x, y) = 0 then x = y.

Proof. (a) By the condition (sp3), we have

S∗(x, x, y) ≤ S∗(x, x, x) + S∗(x, x, x) + S∗(y, y, x)− 2S∗(x, x, x)

= S∗(y, y, x)

and

S∗(y, y, x) ≤ S∗(y, y, y) + S∗(y, y, y) + S∗(x, x, y)− 2S∗(y, y, y)

= S∗(x, x, y).

Hence, we get S∗(x, x, y) = S∗(y, y, x).
(b) By the condition (sp2), we have

S∗(x, x, x) ≤ S∗(x, x, y) = 0,

and similarly by relation (a), we also have

S∗(y, y, y) ≤ S∗(y, y, x) = S∗(x, x, y) = 0.

Therefore, we get S∗(x, x, y) = S∗(x, x, x) = S∗(y, y, y) = 0, which, by the
condition (sp1) implies that x = y. �

Remark 2.4. Dung, Hieu and Radojević noted in [3, Examples 2.1 and 2.2]
that the class of S-metric spaces is incomparable with the the class of G-metric
spaces, in the sense of Mustafa and Sims [6]. The same examples show that the
class of partial S-metric spaces is incomparable with the class of GP -metric
spaces, in the sense of Zand and Nezhad [14].
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Definition 2.5. Let (X,S∗) be a partial S-metric space and {xn} be a se-
quence in X.

(a) The sequence {xn} is convergent to x ∈ X (denoted as xn → x as
n→∞) if

lim
n→∞

S∗(xn, xn, x) = lim
n→∞

S∗(xn, xn, xn) = S∗(x, x, x).

(b) {xn} is said to be a Cauchy sequence if there exists (finite)
limn,m→∞ S

∗(xn, xn, xm).
(c) The space (X,S∗) is complete if every Cauchy sequence in X is con-

vergent.

Note that if xn → x as n→∞, then for each ε > 0 there exists n0 ∈ N such
that

|S∗(xn, xn, x)− S∗(x, x, x)| < ε, ∀n ≥ n0, (2.1)

and
|S∗(xn, xn, xn)− S∗(x, x, x)| < ε, ∀n ≥ n0. (2.2)

Hence, for each ε > 0 there exists n0 ∈ N such that

|S∗(xn, xn, xn)− S∗(xn, xn, x)| < ε, ∀n ≥ n0. (2.3)

Lemma 2.6. Let (X,S∗) be a partial S-metric space. If a sequence {xn} in
X converges to x ∈ X, then x is unique.

Proof. Let {xn} converges to x and y. Then we have

lim
n→∞

S∗(xn, xn, xn) = lim
n→∞

S∗(xn, xn, x) = S∗(x, x, x) (2.4)

and
lim
n→∞

S∗(xn, xn, xn) = lim
n→∞

S∗(xn, xn, y) = S∗(y, y, y).

Then, by the condition (sp3), relation (2.4) and Lemma 2.3, we have

S∗(x, x, y) ≤ 2S∗(x, x, xn) + S∗(y, y, xn)− 2S∗(xn, xn, xn)

= 2(S∗(xn, xn, x)− S∗(xn, xn, xn)) + S∗(xn, xn, y)

− S∗(y, y, y) + S∗(y, y, y).

By taking the limit as n→∞, we get S∗(x, x, y) ≤ S∗(y, y, y).
Also, by the condition (sp2), we have

S∗(y, y, y) ≤ S∗(y, y, x) = S∗(x, x, y).

Hence, we get
S∗(x, x, y) = S∗(y, y, y).

Similarly, we have
S∗(x, x, y) = S∗(x, x, x).

Hence, by the condition, (sp1) it follows that x = y. �



Common fixed point theorems in S∗-metric spaces 441

Lemma 2.7. Let (X,S∗) be a partial S-metric space. Then every convergent
sequence {xn} in X is a Cauchy sequence.

Proof. Let {xn} converges to x, that is for each ε > 0 there exists n0 ∈ N
such that inequalities (2.1), (2.2) and (2.3) hold for all n ≥ n0. Then, by the
condition (sp3) and these inequalities, we have, for m,n ≥ n0,

S∗(xn, xn, xm) ≤ S∗(xn, xn, x) + S∗(xn, xn, x)

+ S∗(xm, xm, x)− 2S∗(x, x, x) (2.5)

≤ 2(S∗(xn, xn, x)− S∗(x, x, x))

+ S∗(xm, xm, x)− S∗(x, x, x) + S∗(x, x, x)

< 2ε+ ε+ S∗(x, x, x).

Similarly, by the condition (sp3) and Lemma 2.6,

S∗(x, x, x) ≤ S∗(x, x, xn) + S∗(x, x, xn)

+ S∗(x, x, xn)− 2S∗(xn, xn, xn) (2.6)

= 2(S∗(xn, xn, x)− S∗(xn, xn, xn)) + S∗(x, x, xn)

≤ 2(S∗(xn, xn, x)− S∗(xn, xn, xn)) + 2S∗(x, x, xm)

+ S∗(xn, xn, xm)− 2S∗(xm, xm, xm).

< 2ε+ 2ε+ S∗(xn, xn, xm).

Hence, by (2.5) and (2.6), we have

|S∗(xn, xn, xm)− S∗(x, x, x)| < 4ε

for m,n ≥ n0. Thus, limn,m→∞ S
∗(xn, xn, xm) = S∗(x, x, x), and the sequence

{xn} is Cauchy. �

The notion of Sb-metric spaces was introduced independently in [10] and
[13].

Definition 2.8. Let X be a nonempty set and b ≥ 1 a given real number. An
Sb-metric on X, with parameter b, is a function Sb : X ×X ×X → [0,+∞)
such that for all x, y, z, a ∈ X, the following conditions are satisfied:

(sb1) Sb(x, y, z) = 0 ⇐⇒ x = y = z,
(sb2) Sb(x, x, y) = Sb(y, y, x),
(sb3) Sb(x, y, z) ≤ b(Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)).

In this case, the pair (X,Sb) is called an Sb-metric space.

A connection between partial S-metric and Sb-metric is given by the fol-
lowing lemma.
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Lemma 2.9. If (X,S∗) is a partial S-metric space, then Ss : X ×X ×X →
[0,+∞), given by

Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z)

+ S∗(z, z, x)− S∗(x, x, x)

− S∗(y, y, y)− S∗(z, z, z),

is an Sb-metric on X, with parameter b = 2.

Proof. First of all, by the condition (sp2) and the definition of Ss, we have
Ss(x, y, z) ≥ 0. Further, we check that the conditions of Definition 2.8 are
fulfilled.

(sb1) If Ss(x, y, z) = 0 then it follows that

S∗(x, y, z) = S∗(x, x, x) = S∗(y, y, y) = S∗(z, z, z).

That is, x = y = z. Conversely, if x = y = z, then we have Ss(x, y, z) = 0.
(sb2) By the definition of Ss and Lemma 2.3, we have

Ss(x, x, y) = S∗(x, x, x) + S∗(x, x, y)

+ S∗(y, y, x)− S∗(x, x, x)

− S∗(x, x, x)− S∗(y, y, y)

= S∗(x, x, x) + S∗(x, x, y)

+ S∗(x, x, y)− S∗(x, x, x)

− S∗(x, x, x)− S∗(y, y, y)

= 2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y).

Similarly, we can show that

Ss(y, y, x) = 2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y).

Therefore, Ss(x, x, y) = Ss(y, y, x). Also, we have always that

S∗(x, x, y)− S∗(x, x, x) ≤ Ss(x, x, y).

(sb3) By the condition (sp3) and Lemma 2.3, we have
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Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z) + S∗(z, z, x)− S∗(x, x, x)

− S∗(y, y, y)− S∗(z, z, z)
≤ 2S∗(x, x, a)− 2S∗(a, a, a) + S∗(y, y, a)

+ 2S∗(y, y, a)− 2S∗(a, a, a) + S∗(z, z, a)

+ 2S∗(z, z, a)− 2S∗(a, a, a) + S∗(x, x, a)

− S∗(x, x, x)− S∗(y, y, y)− S∗(z, z, z)
= 3S∗(a, a, x)− 2S∗(a, a, a)− S∗(x, x, x)

+ S∗(a, a, x)− S∗(x, x, x)

+ 3S∗(a, a, y)− 2S∗(a, a, a)− S∗(y, y, y)

+ S∗(a, a, y)− S∗(y, y, y)

+ 3S∗(a, a, z)− 2S∗(a, a, a)− S∗(z, z, z)
+ S∗(a, a, z)− S∗(z, z, z)

= 2[Ss(x, x, a) + Ss(y, y, a) + Ss(z, z, a)].

�

Lemma 2.10. Let (X,S∗) be a partial S-metric space and Ss the respective
Sb-metric introduced in Lemma 2.9. Then, we have the following statement:

(a) A sequence {xn} in X is a Cauchy sequence in (X,S∗) if and only if
it is a Cauchy sequence in (X,Ss).

(b) The space (X,S∗) is complete if and only if the space (X,Ss) is com-
plete. Furthermore, limn→∞ S

s(xn, xn, x) = 0 if and only if

S∗(x, x, x) = lim
n→∞

S∗(xn, xn, x) = lim
n,m→∞

S∗(xn, xn, xm).

Proof. (a) Let {xn} be a Cauchy sequence in (X,S∗). Then there exists (finite)
limn,m→∞ S

∗(xn, xn, xm) = limn→∞ S
∗(xn, xn, xn). Since

Ss(xn, xn, xm) = 2S∗(xn, xn, xm)− S∗(xn, xn, xn)− S∗(xm, xm, xm),

we have

lim
n,m→∞

Ss(xn, xn, xm) = 2 lim
n,m→∞

S∗(xn, xn, xm)

− lim
n→∞

S∗(xn, xn, xn)− lim
m→∞

S∗(xm, xm, xm)

= 0.

We conclude that {xn} is a Cauchy sequence in (X,Ss).

(b) Next we prove that completeness of (X,Ss) implies completeness of (X,S∗).
Indeed, if {xn} is a Cauchy sequence in (X,S∗) then it is also a Cauchy se-
quence in (X,Ss). Since the space (X,Ss) is complete, we deduce that there
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exists y ∈ X such that limn→∞ S
s(xn, xn, y) = 0, since

Ss(xn, xn, y) = 2S∗(xn, xn, y)− S∗(y, y, y)− S∗(xn, xn, xn).

Also, we know that

0 ≤ S∗(xn, xn, y)− S∗(y, y, y) < Ss(xn, xn, y)

and

0 ≤ S∗(xn, xn, y)− S∗(xn, xn, xn) < Ss(xn, xn, y).

Therefore, we have

lim
n→∞

S∗(xn, xn, y) = lim
n→∞

S∗(xn, xn, xn) = lim
n→∞

S∗(y, y, y).

Hence, we deduce that {xn} is a convergent sequence in (X,S∗). Now we
prove that every Cauchy sequence {xn} in (X,Ss) is a Cauchy sequence in
(X,S∗). Let ε = 1

2 . Then there exists n0 ∈ N such that Ss(xn, xn, xm) < 1
2

for all n,m ≥ n0. Since

S∗(xn, xn, xn) ≤ 4S∗(xn0 , xn0 , xn)− 3S∗(xn, xn, xn)

− S∗(xn0 , xn0 , xn0) + S∗(xn, xn, xn)

≤ 2Ss(xn, xn, xn0) + S∗(xn0 , xn0 , xn0),

we have

S∗(xn, xn, xn) ≤ 2Ss(xn, xn, xn0) + S∗(xn0 , xn0 , xn0)

≤ 1 + S∗(xn0 , xn0 , xn0).

Consequently, the sequence {S∗(xn, xn, xn)} is bounded in R, and so there
exists an α ∈ R such that a subsequence {S∗(xnk

, xnk
, xnk

)} is convergent to
α, that is, limk→∞ S

∗(xnk
, xnk

, xnk
) = α.

It remains to prove that {S∗(xn, xn, xn)} is a Cauchy sequence in R. Since
{xn} is a Cauchy sequence in (X,Ss), for given ε > 0, there exists nε such
that Ss(xn, xn, xm) < ε

2 for all n,m ≥ nε. Thus, for all n,m ≥ nε,
|S∗(xn, xn, xn)− S∗(xm, xm, xm)| ≤ 4S∗(xn, xn, xm)− 3S∗(xn, xn, xn)

− S∗(xm, xm, xm) + S∗(xn, xn, xn)

− S∗(xm, xm, xm)

≤ 2Ss(xn, xn, xm)

< ε.

On the other hand,

|S∗(xn, xn, xn)− α| ≤ |S∗(xn, xn, xn)− S∗(xnk
, xnk

, xnk
)|

+ |S∗(xnk
, xnk

, xnk
)− α|

< ε+ ε = 2ε,
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for all n, nk ≥ nε. Hence limn→∞ S
∗(xn, xn, xn) = α. Now,

|2S∗(xn, xn, xm)− 2α|
= |Ss(xn, xn, xm) + S∗(xn, xn, xn)− α+ S∗(xm, xm, xm)− α|
≤ Ss(xm, xm, xm) + |S∗(xn, xn, xn)− α|+ |S∗(xm, xm, xm)− α|

<
ε

2
+ 2ε+ 2ε =

9

2
ε.

Thus, {xn} is a Cauchy sequence in (X,S∗).
In order to complete the proof, we have to prove that (X,Ss) is complete

if such is (X,S∗). Let {xn} be a Cauchy sequence in (X,Ss). Then {xn} is a
Cauchy sequence in (X,S∗), and so it is convergent to a point y ∈ X with

lim
n,m→∞

S∗(xn, xn, xm) = lim
n→∞

S∗(y, y, xn) = S∗(y, y, y).

Thus, given ε > 0, there exists nε ∈ N such that

|S∗(y, y, xn)− S∗(y, y, y)| < ε

2
and |S∗(y, y, y)− S∗(xn, xn, xn)| < ε

2
,

whenever n ≥ nε. Hence, we have

Ss(y, y, xn) = 2S∗(y, y, xn)− S∗(xn, xn, xn)− S∗(y, y, y)

≤ |S∗(y, y, xn)− S∗(y, y, y)|+ |S∗(y, y, xn)− S∗(xn, xn, xn)|

<
ε

2
+
ε

2
= ε,

whenever n ≥ nε. Therefore (X,Ss) is complete. Finally, it is a simple matter
to check that limn→∞ S

s(a, a, xn) = 0 if and only if

S∗(a, a, a) = lim
n→∞

S∗(a, a, xn) = lim
n,m→∞

S∗(xn, xn, xm).

�

Lemma 2.11. Let {xn} and {yn} be two convergent sequences to x ∈ X and
y ∈ X, respectively, in a partial S-metric space (X,S∗). Then

lim
n→∞

S∗(xn, xn, yn) = S∗(x, x, y).

In particular, limn→∞ S
∗(xn, yn, z) = S∗(x, y, z) for every z ∈ X.

Proof. By the assumptions, for each ε > 0 there exists n0 ∈ N such that

|S∗(xn, xn, x)− S∗(x, x, x)| < ε

4
, |S∗(yn, yn, y)− S∗(y, y, y)| < ε

4
,

|S∗(xn, xn, xn)− S∗(x, x, x)| < ε

4
, |S∗(yn, yn, yn)− S∗(y, y, y)| < ε

4
,

|S∗(xn, xn, xn)− S∗(xn, xn, x)| < ε

4
, |S∗(yn, yn, yn)− S∗(yn, yn, y)| < ε

4
,
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hold for all n ≥ n0. By the condition (sp3), for n ≥ n0 we have

S∗(xn, xn, yn) ≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(yn, yn, x)− 2S∗(x, x, x)

≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(yn, yn, y) + S∗(yn, yn, y)

+ S∗(x, x, y)− 2S∗(y, y, y)− 2S∗(x, x, x)

<
ε

4
+
ε

4
+
ε

4
+
ε

4
+ S∗(x, x, y),

and so we obtain

S∗(xn, xn, yn)− S∗(x, x, y) < ε.

Also,

S∗(x, x, y) ≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(y, y, xn)− 2S∗(xn, xn, xn)

≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(y, y, yn) + S∗(y, y, yn)

+ S∗(xn, xn, yn)− 2S∗(yn, yn, yn)− 2S∗(xn, xn, xn)

<
ε

4
+
ε

4
+
ε

4
+
ε

4
+ S∗(xn, xn, yn).

Thus,

S∗(x, x, y)− S∗(xn, xn, yn) < ε.

Hence for all n ≥ n0, we have |S∗(xn, xn, yn)− S∗(x, x, y)| < ε and the result
follows. �

Lemma 2.12. If (X,S∗) is a partial S-metric space, the Sb-metrics Ss (de-
fined in Lemma 2.9) and Sm : X ×X ×X → R+ given by

Sm(x, y, z) = max

 2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y),
2S∗(y, y, z)− S∗(y, y, y)− S∗(z, z, z),
2S∗(z, z, x)− S∗(z, z, z)− S∗(x, x, x)


for all x, y, z ∈ X, are equivalent.

Proof. It is easy to see that Sm is an Sb-metric on X. Let x, y, z ∈ X. It is
obvious that

Sm(x, y, z) ≤ 2Ss(x, y, z).
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On the other hand, since a+ b+ c ≤ 3 max{a, b, c}, it follows that

Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z) + S∗(z, z, x)− S∗(x, x, x)

− S∗(y, y, y)− S∗(z, z, z)

=
1

2
[2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y)]

+
1

2
[2S∗(y, y, z)− S∗(y, y, y)− S∗(z, z, z)]

+
1

2
[2S∗(z, z, x)− S∗(z, z, z)− S∗(x, x, x)]

≤ 3

2
max

 2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y),
2S∗(y, y, z)− S∗(y, y, y)− S∗(z, z, z),
2S∗(z, z, x)− S∗(z, z, z)− S∗(x, x, x)


=

3

2
Sm(x, y, z).

Thus, we have

1

2
Sm(x, y, z) ≤ Ss(x, y, z) ≤ 3

2
Sm(x, y, z).

These inequalities imply that Ss and Sm are equivalent. �

3. Main results

A class of implicit relation: Throughout this section (X,S∗) denotes a
partial S-metric space, that is, S∗-metric space and Φ denotes a family of

mappings such that for each φ ∈ Φ, φ : (R+)
4 −→ R+, is continuous and

increasing in each co-ordinate variable. Also γ(t) = φ(t, t, t, t) ≤ t for every
t ∈ R+.

Example 3.1. Let φ : (R+)
4 −→ R+,be defined by

φ(t1, t2, t3, t4) =
1

5
(t1 + t2 + t3 + t4).

Then φ ∈ Φ.

Our main result, for a complete S∗-metric space X, reads follows:

Theorem 3.2. Let A, T , C and R be self-mappings of a complete S∗-metric
space (X,S∗) with:

(i) A(X) ⊆ T (X), C(X) ⊆ R(X) and T (X) or R(X) is a closed subset
of X,
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(ii)

S∗(Ax,Ay,Cz) ≤ qφ

(
S∗(Rx,Ry, Tz), S∗(Rx,Ry,Ay),
1
2S
∗(Ry, Tz, Cz), 12S

∗(Tz,Rx,Ax)

)
,

for every x, y, z ∈ X, some 0 < q < 1
2 and φ ∈ Φ,

(iii) the pair (A,R) and (T,C) are weak compatible.

Then A, T , C and R have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. By (i), there exists x1, x2 ∈ X such
that

Ax0 = Tx1 = y0 and Cx1 = Rx2 = y1.

Inductively, construct sequence {yn} in X such that

y2n = Ax2n = Tx2n+1 and y2n+1 = Cx2n+1 = Rx2n+2,

for n = 0, 1, 2, · · · .
Now, we prove that {yn} is a Cauchy sequence. Let S∗m = S∗(ym, ym, ym+1).

Then, we have

S∗2n = S∗(y2n, y2n, y2n+1)

= S∗(Ax2n, Ax2n, Cx2n+1)

≤ qφ
(
S∗(Rx2n, Rx2n, Tx2n+1), S

∗(Rx2n, Rx2n, Ax2n),
1
2S
∗(Rx2n, Tx2n+1, Cx2n+1),

1
2S
∗(Tx2n+1, Rx2n, Ax2n)

)
= qφ

(
S∗(y2n−1, y2n−1, y2n), S∗(y2n−1, y2n−1, y2n),
1
2S
∗(y2n−1, y2n, y2n+1),

1
2S
∗(y2n, y2n−1, y2n)

)
= qφ(S∗2n−1, S

∗
2n−1,

1

2
S∗(y2n−1, y2n, y2n+1),

1

2
S∗(y2n, y2n−1, y2n)). (3.1)

Since

S∗(y2n−1, y2n, y2n+1) ≤ S∗(y2n−1, y2n−1, y2n) + S∗(y2n, y2n, y2n)

+ S∗(y2n+1, y2n+1, y2n)− 2S∗(y2n, y2n, y2n),

that is,

S∗(y2n−1, y2n, y2n+1) ≤ S∗(y2n−1, y2n−1, y2n) + S∗(y2n, y2n, y2n+1),

also, since

S∗(y2n, y2n−1, y2n) ≤ 2S∗(y2n, y2n, y2n−1) + S∗(y2n−1, y2n−1, y2n−1)

− 2S∗(y2n−1, y2n−1, y2n−1),

that is,

S∗(y2n, y2n−1, y2n) ≤ 2S∗(y2n−1, y2n−1, y2n),
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we prove that S∗2n ≤ S∗2n−1, for every n ∈ N. If S∗2n > S∗2n−1 for some n ∈ N,
then we get

S∗(y2n−1, y2n, y2n+1) < 2S∗(y2n, y2n, y2n+1) = 2S∗2n

and
S∗(y2n, y2n−1, y2n) ≤ 2S∗(y2n−1, y2n−1, y2n) < 2S∗2n.

Hence by inequality (3.1) we have S∗2n < qS∗2n, is a contradiction. Now, if
m = 2n+ 1, then

S∗2n+1 = S∗(y2n+1, y2n+1, y2n+2)

= S∗(y2n+2, y2n+2, y2n+1)

= S∗(Ax2n+2, Ax2n+2, Cx2n+1)

≤ qφ
(
S∗(Rx2n+2, Rx2n+2, Tx2n+1), S

∗(Rx2n+2, Rx2n+2, Ax2n+2),
1
2S
∗(Rx2n+2, Tx2n+1, Cx2n+1),

1
2S
∗(Tx2n+1, Rx2n+2, Ax2n+2)

)
= qφ

(
S∗(y2n+1, y2n+1, y2n), S∗(y2n+1, y2n+1, y2n+2),
1
2S
∗(y2n+1, y2n, y2n+1),

1
2S
∗(y2n, y2n+1, y2n+2)

)
= qφ(S∗2n, S

∗
2n+1,

1

2
S∗(y2n+1, y2n, y2n+1),

1

2
S∗(y2n, y2n+1, y2n+2)).

Since

S∗(y2n+1, y2n, y2n+1) ≤ 2S∗(y2n+1, y2n+1, y2n) + S∗(y2n, y2n, y2n)

− 2S∗(y2n, y2n, y2n), (3.2)

that is,

S∗(y2n+1, y2n, y2n+1) ≤ 2S∗(y2n, y2n, y2n+1),

also, since

S∗(y2n, y2n+1, y2n+2) ≤ S∗(y2n, y2n, y2n+1) + S∗(y2n+1, y2n+1, y2n+1)

+ S∗(y2n+2, y2n+2, y2n+1)− 2S∗(y2n+1, y2n+1, y2n+1),

that is,

S∗(y2n, y2n+1, y2n+2) ≤ S∗(y2n, y2n, y2n+1) + S∗(y2n+1, y2n+1, y2n+2),

we prove that S∗2n+1 ≤ S∗2n, for every n ∈ N. If S∗2n+1 > S∗2n for some n ∈ N,
then we get

S∗(y2n+1, y2n, y2n+1) ≤ 2S∗(y2n, y2n, y2n+1) = 2S∗2n

and
S∗(y2n, y2n+1, y2n+2) < 2S∗(y2n+1, y2n+1, y2n+2) = 2S∗2n+1.

Hence, by inequality (3.2) we have S∗2n+1 < qS∗2n+1 which is a contradiction.
Hence for every n ∈ N we have S∗n ≤ qS∗n−1. That is

S∗n = S∗(yn, yn, yn+1) ≤ qS∗(yn−1, yn−1, yn) ≤ · · · ≤ qnS∗(y0, y0, y1).
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Hence we get

S∗(yn, yn, yn+1) ≤ qnS∗(y0, y0, y1),
so that

lim
n→∞

S∗(yn, yn, yn+1) = 0. (3.3)

Since Ss(yn, yn, yn+1) ≤ 2S∗(yn, yn, yn+1) we have

Ss(yn, yn, yn+1) ≤ 2S∗(yn, yn, yn+1) ≤ 2qnS∗(y0, y0, y1).

By the triangle inequality in Sb− metric space, for m > n we have

Ss(yn, yn, ym) ≤ 2.2Ss(yn, yn, yn+1) + 2.22Ss(yn+1, yn+1, yn+2)

+ · · ·+ 2.2m−nSs(ym−1, ym−1, ym),

hence we get

Ss(yn, yn, ym) ≤ 23qnS∗(y0, y0, y1) + 24qn+1S∗(y0, y0, y1)

+ · · · .+ 2m−n+2qm−1S∗(y0, y0, y1) (3.4)

≤ 23qn[1 + 2q + 22q2 + · · · ]S∗(y0, y0, y1)

≤ 23qn

1− 2q
S∗(y0, y0, y1)

−→ 0.

It follows that {yn} is a Cauchy sequence in the Sb−metric space (X,Ss).
Since (X,S∗) is complete, then from Lemma 1.4 follows that the sequence
{yn} converges to some y in the Sb−metric space (X,Ss). Hence

lim
n→∞

Ss(yn, yn, y) = 0.

Again, from Lemma 1.4 we have

S∗(y, y, y) = lim
n→∞

S∗(yn, yn, y) = lim
n,m→∞

S∗(yn, yn, ym). (3.5)

Since {yn} is a Cauchy sequence in the Sb−metric space (X,Ss) and

Ss(yn, yn, ym) = 2S∗(yn, yn, ym)− S∗(yn, yn, yn)− S∗(ym, ym, ym),

we have

lim
n,m→∞

Ss(yn, yn, ym) = 0,

and by (3.3), we have

lim
n→∞

S∗(yn, yn, yn) = 0.

Thus by definition of Ss we have

lim
n,m→∞

S∗(yn, yn, ym) = 0.
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Therefore by (3.5), we have

S∗(y, y, y) = lim
n→∞

S∗(yn, yn, y) = lim
n,m→∞

S∗(yn, xy, ym) = 0.

That is,

lim
n→∞

yn = lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Rx2n+2

= lim
n→∞

y2n+1 = lim
n→∞

Cx2n+1 = lim
n→∞

Tx2n+1 = y.

Let R(X) be a closed subset of X, hence there exist x ∈ X such that
Rx = y. We prove that Ax = y. By the inequality (3.1), for x = x, y = x and
z = x2n+1, then we have

S∗(Ax,Ax, y2n+1) = S∗(Ax,Ax,Cx2n+1)

≤ qφ
(
S∗(Rx,Rx, Tx2n+1), S

∗(Rx,Rx,Ax),
1
2S
∗(Rx, Tx2n+1, Cx2n+1),

1
2S
∗(Tx2n+1, Rx,Ax)

)
= qφ

(
S∗(y, y, y2n), S∗(y, y, Ax),
1
2S
∗(y, y2n, y2n+1),

1
2S
∗(y2n, y, Ax)

)
.

Since

S∗(Ax,Ax, y2n+1) = S∗(y2n+1, y2n+1, Ax),

S∗(y, y2n, y2n+1) ≤ S∗(y, y, y) + S∗(y2n, y2n, y)

+ S∗(y2n+1, y2n+1, y)− 2S∗(y, y, y)

and

S∗(y2n, y, Ax) ≤ S∗(y2n, y2n, y) + S∗(y, y, y) + S∗(Ax,Ax, y)− 2S∗(y, y, y),

taking the limit as n→∞ we get

lim sup
n−→∞

S∗(y, y2n, y2n+1) ≤ S∗(y, y, y) + lim sup
n−→∞

S∗(y2n, y2n, y)

+ lim sup
n−→∞

S∗(y2n+1, y2n+1, y)− 2S∗(y, y, y)

= S∗(y, y, y)

and

lim sup
n−→∞

S∗(y2n, y, Ax) ≤ lim sup
n−→∞

S∗(y2n, y2n, y) + S∗(y, y, y)

+ S∗(Ax,Ax, y)− 2S∗(y, y, y)

= S∗(Ax,Ax, y).
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Hence we have

S∗(Ax,Ax, y) = lim
n→∞

S∗(y2n+1, y2n+1, Ax)

≤ qφ
(
S∗(y, y, y), S∗(y, y, Ax),
1
2S
∗(y, y, y), 12S

∗(Ax,Ax, y)

)
5 φ

(
S∗(Ax,Ax, y), S∗(Ax,Ax, y),
S∗(Ax,Ax, y), S∗(Ax,Ax, y)

)
≤ qS∗(Ax,Ax, y)

< (Ax,Ax, y).

If S∗(Ax,Ax, y) > 0, then we have S∗(Ax,Ax, y) < S∗(Ax,Ax, y) which is a
contradiction. Thus Ax = y. By the weak compatibility of the pair (A,R) we
have ARx = RAx. Hence Ay = Ry. We prove that Ay = y. If Ay 6= y , then
by the inequality (3.1), for x = y, y = y and z = x2n+1, we have

S∗(Ay,Ay, y2n+1) = S∗(Ay,Ay,Cx2n+1)

≤ qφ
(
S∗(Ry,Ry, Tx2n+1), S

∗(Ry,Ry,Ay),
1
2S
∗(Ry, Tx2n+1, Cx2n+1),

1
2S
∗(Tx2n+1, Ry,Ay)

)
= qφ

(
S∗(Ay,Ay, y2n), S∗(Ay,Ay,Ay),
1
2S
∗(Ay, y2n, y2n+1),

1
2S
∗(y2n, Ay,Ay)

)
.

Similarly, taking the limit as n→∞, we get

S∗(Ay,Ay, y) = lim
n→∞

S∗(Ay,Ay, y2n+1)

≤ qφ
(
S∗(Ay,Ay, y), S∗(Ay,Ay,Ay),
1
2S
∗(Ay,Ay, y), 12S

∗(Ay,Ay, y)

)
< qS∗(Ay,Ay, y),

which is a contradiction. Therefore, Ry = Ay = y, that is, y is a common
fixed of R and A.

Since y = Ay ∈ A(X) ⊆ T (X), there exists v ∈ X such that Tv = y. We
prove that Cv = y. For

S∗(Ay,Ay,Cv) = S∗(y, y, Cv)

≤ qφ
(
S∗(Ry,Ry, Tv), S∗(Ry,Ry,Ay),
1
2S
∗(Ry, Tv, Cv), 12S

∗(Tv,Ry,Ay)

)
= qφ

(
S∗(y, y, y), S∗(y, y, y),
1
2S
∗(y, y, Cv), 12S

∗(y, y, y)

)
< qS∗(y, y, Cv).
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Thus Cv = y. By the weak compatibility of the pair (C, T ) we have TCv =
CTv. Hence Cy = Ty. We prove that Cy = y. If Cy 6= y, then

S∗(Ay,Ay,Cy) = S∗(y, y, Cy)

≤ qφ
(
S∗(Ry,Ry, Ty), S∗(Ry,Ry,Ay),
1
2S
∗(Ry, Ty, Cy), 12S

∗(Ty,Ry,Ay)

)
= qφ

(
S∗(y, y, y), S∗(y, y, y),
1
2S
∗(y, y, Cy), 12S

∗(y, y, y)

)
< qS∗(y, y, Cy),

which is a contradiction. Therefore, Cy = Ty = y, that is, y is a common
fixed of C and T . That is,

Cy = Ty = Ay = Ry = y

To prove uniqueness, let v be another common fixed point of A,C,R, T .
If S∗(y, y, v) > 0, then

S∗(y, y, v) = S∗(Ay,Ay,Cv)

≤ qφ
(
S∗(Ry,Ry, Tv), S∗(Ry,Ry,Ay),
1
2S
∗(Ry, Tv, Cv), 12S

∗(Tv,Ry,Ay)

)
= qφ

(
S∗(y, y, v), S∗(y, y, y),
1
2S
∗(y, v, v), 12S

∗(v, y, y)

)
< qS∗(y, y, v),

which is a contradiction. Therefore, y = v. This means that y is the unique
common fixed point of self-maps A,C,R, T . �

Example 3.3. Let X = [0,∞) be equipped with the partial S− metric
S∗(x, y, z) = max{x, y, z}.

Consider the mappings A, T,C and R be self-mappings of a complete S∗−
metric space (X,S∗) with:
A(x) = x

9 , T (x) = x
2 , C(x) = x

6 and R(x) = x
3 . Choose φ ∈ Φ as

φ(t1, t2, t3, t4) = max{t1, t2, t3, t4}.
We will check that conditions of Theorem 3.2 are fulfilled.
First of all, since A(X) = T (X) = C(X) = R(X) = X hence A(X) ⊆

T (X), C(X) ⊆ R(X) holds for x ∈ X and T (X) or R(X) is a closed subset of
X and the pair (A,R) and (T,C) are weak compatible. Since

S∗(Ax,Ay,Cz) = max{x
9
,
y

9
,
z

6
} =

1

3
max{x

3
,
y

3
,
z

2
}

and

S∗(Rx,Ry, Tz) = max{x
3
,
y

3
,
z

2
},
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this reduces to

S∗(Ax,Ay,Cz) ≤ qφ

(
S∗(Rx,Ry, Tz), S∗(Rx,Ry,Ay),
1
2S
∗(Ry, Tz, Cz), 12S

∗(Tz,Rx,Ax)

)
,

for every x, y, z ∈ X and q = 1
3 . By Theorem 3.2, the mappings A, T,C and

R have a unique common fixed point 0 in X.

Corollary 3.4. Let T,R and {Aα}α∈I and {Cγ}γ∈K be the set of all self-

mappings of a complete S∗-metric space (X,S∗). Suppose that the following
conditions are satisfied:

(i) there exists α0 ∈ I and γ0 ∈ K such that Aα0(X) ⊆ T (X) and
Cγ0(X) ⊆ R(X),

(ii) Aα0(X) or Cγ0(X) is a closed subset of X,
(iii)

S∗(Aαx,Aαy, Cγz) ≤ qφ
(
S∗(Rx,Ry, Tz), S∗(Rx,Ry,Aαy),
1
2S
∗(Ry, Tz, Cγz),

1
2S
∗(Tz,Rx,Aαx)

)
for every x, y, z ∈ X, some 0 < q < 1

2 and φ ∈ Φ, and every α ∈ I, γ ∈
K,

(iv) the pair (Aα0 , R) or (Cγ0 , T ) is weak compatible.

Then for every λ ∈ I and η ∈ K Aλ, Cη, R, T have a unique common fixed
point in X.

Proof. By Theorem 3.2 R, T and Aα0 and Cγ0 for some α0 ∈ I, γ0 ∈ K, have
a unique common fixed point in X. That is, there exist a unique a ∈ X such
that R(a) = T (a) = Aα0(a) = Cγ0(a) = a. Suppose that there exist λ ∈ I such
that λ 6= α0 and S∗(Aλa,Aλa, a) > 0. Then we have

S∗(Aλa,Aλa, a) = S∗(Aλa,Aλa,Cγ0a)

≤ qφ
(
S∗(Ra,Ra, Ta), S∗(Ra,Ra,Aλa),
1
2S
∗(Ra, Ta,Cγ0a), 12S

∗(Ta,Ra,Aλa)

)
≤ qφ

(
S∗(a, a, a), S∗(a, a,Aλa),
1
2S
∗(a, a, a), 12S

∗(a, a,Aλa)

)
≤ qS∗(Aλa,Aλa, a) < S∗(Aλa,Aλa, a),

which is a contradiction. Hence for every λ ∈ I we have Aλ(a) = a. Similarly
for every η ∈ K we get Cη(a) = a. Therefore for every λ ∈ I and η ∈ K we
have Aλ(a) = Cη(a) = R(a) = T (a) = a. This completes the proof. �
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