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Abstract. The aim of this paper is to prove the existence and uniqueness of mild and

classical solutions of a second order evolution equation with functional dependence on the

solutions and on derivatives of the solutions. The theory of strongly continuous cosine

families of linear operators in a Banach space is applied. Further we discuss the existence of

solutions of nonlinear fractional differential equations in abstract spaces.

1. Introduction

In this paper, we consider the abstract nonlocal second order semilinear
functional-differential equation of the form:

u′′(t) = Au(t) + f(t, u(t), u(a1(t)), u′(t), u′(a2(t))), t ∈ (0, T ], (1.1)
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u(0) = x0, (1.2)

u′(0) +

p∑
i=1

hiu(ti) = x1, (1.3)

where A is a linear operator from a real Banach apace X into itself, u : [0, T ]→
X, f : [0, T ]×X4 → X, ai : [0, T ]→ [0, T ] (i = 1, 2), x0, x1 ∈ X, hi ∈ R (i =
1, 2, ..., p) and 0 < t1 < t2 < ... < tp ≤ T.

We prove the existence and uniqueness of mild and classical solutions of
problem (1.1) - (1.3). For this purpose, we apply the theory of strongly con-
tinuous cosine families of linear operators in a Banach space. We also apply
the Banach contraction theorem and the Bochenek theorem (see Theorem 1.1
in [10]).

Assumption (A1). Operator A is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear operators from X
into itself.

Recall that the infinitesimal generator of a strongly continuous cosine family
C(t) is the operator A : X ⊃ D(A)→ X defined by [24, 26]

Ax :=
d2

dt2
C(t)x |t=0, x ∈ D(A),

where

D(A) := {x ∈ X : C(t)x is of class C2 with respect to t}.
Let

E := {x ∈ X : C(t)x is of class C1 with respect to t}.
The associated sine family {S(t) : t ∈ R} is defined by

S(t)x :=

∫ t

0
C(s)x ds, x ∈ X, t ∈ R.

From Assumption (A1) it follows (see [29,30]) that there are constants M ≥ 1
and ω ≥ 0 such that

‖C(t)‖ ≤Meω|t| and ‖S(t)‖ ≤Meω|t| for t ∈ R.
We will also use the following assumption:

Assumption (A2). The adjoint operator A∗ is densly defined in X∗; that is,

D(A∗) = X∗.

The paper is based on the publications [1-4, 6-9, 13-22, 27-28, 30] and is a
generalization of papers [11] and [12].
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2. Mild solutions

A function u belonging to C1([0, T ], X) and satisfying the integral equation

u(t) = C(t)x0 + S(t)x1 − S(t)
( p∑
i=1

hiu(ti)
)

+

∫ t

0
S(t− s)f(s, u(s), u(a1(s)), u′(s), u′(a2(s)))ds, t ∈ [0, T ],

is said to be a mild solution of the nonlocal Cauchy problem (1.1) - (1.3).

Theorem 2.1. Suppose that:

(i) Assumption (A1) is satisfied,
(ii) ai : [0, T ]→ [0, T ], (i = 1, 2) are of class C1 on [0,T], f : [0, T ]×X4 →

X is continuous with respect to the first variable t ∈ [0, T ] and there
exists a positive constant L1 such that

‖f(s, z1, z2, z3, z4)− f(s, z̃1, z̃2, z̃3, z̃4)‖ ≤ L1

4∑
i=1

‖zi − z̃i‖

for s ∈ [0, T ], zi, z̃i ∈ X (i = 1, 2, 3, 4),

(iii) 2C(2TL1 +

p∑
i=1

| hi |) < 1, where C := sup{‖C(t)‖+ ‖S(t)‖+ ‖S′(t)‖ :

t ∈ [0, T ]},
(iv) x0 ∈ E and x1 ∈ X.

Then the nonlocal Cauchy problem (1.1) - (1.3) has a unique mild solution.

Proof. Let the operator F : C1([0, T ], X)→ C1([0, T ], X) be given by

(Fu)(t) = C(t)x0 + S(t)x1 − S(t)
( p∑
i=1

hiu(ti)
)

+

∫ t

0
S(t− s)f(s, u(s), u(a1(s)), u′(s), u′(a2(s)))ds, t ∈ [0, T ].

Now we shall show that F is a contraction on the Banach space C1([0, T ], X)
equipped with the norm

‖w‖1 := sup{‖w(t)‖+ ‖w′(t)‖ : t ∈ [0, T ]}.
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To do this, observe that

‖(Fw)(t)− (Fw̃)(t)‖ = ‖S(t)
( p∑
i=1

hi(w̃(ti)− w(ti))
)

+

∫ t

0
S(t− s)(f(s, w(s), w(a1(s)), w′(s), w′(a2(s))))

− f(s, w̃(s), w̃(a1(s)), w̃′(s), w̃′(a2(s))))ds‖,

‖(Fw)(t)− (Fw̃)(t)‖ ≤ C
( p∑
i=1

| hi |
)
‖w − w̃‖1

+

∫ t

0
‖S(t− s)‖L1(‖w(s)− w̃(s)‖

+ ‖w(a1(s))− w̃(a1(s))‖+ ‖w′(s)− w̃′(s)‖
+ ‖w′(a2(s))− w̃′(a2(s))‖)ds

≤ C
(

2TL1 +

p∑
i=1

| hi |
)
‖w − w̃‖1

and

‖(Fw)′(t)− (Fw̃)′(t)‖ = ‖S′(t)
( p∑
i=1

hi(w̃(ti)− w(ti))
)

+

∫ t

0
C(t− s)(f(s, w(s)), w(a1(s)), w′(s), w′(a2(s)))

− f(s, w̃(s), w̃(a1(s)), w̃′(s), w̃′(a2(s))))ds‖

≤ C
( p∑
i=1

| hi |
)
‖w − w̃‖1

+

∫ t

0
‖C(t− s)‖L1(‖w(s)− w̃(s)‖

+ ‖w(a1(s))− w̃(a1(s))‖+ ‖w′(s)− w̃′(s)‖
+ ‖w′(a2(s))− w̃′(a2(s))‖)ds

≤ C
(

2TL1 +

p∑
i=1

| hi |
)
‖w − w̃‖1, t ∈ [0, T ].

Consequently

‖Fw − Fw̃‖1 ≤ 2C
(

2TL1 +

p∑
i=1

| hi |
)
‖w − w̃‖1 for w, w̃ ∈ C1([0, T ], X).
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Therefore, in the space C1([0, T ], X) there is only one fixed point of F and
this point is the mild solution of the nonlocal Cauchy problem (1.1) - (1.3).
So the proof of Theorem 2.1 is complete. �

3. Classical solutions

A function u : [0, T ] −→ X is said to be a classical solution to problem (1.1)
- (1.3) if

u ∈ C1([0, T ], X) ∩ C2((0, T ], X),

u(0) = x0, u′(0) +

p∑
i=1

hiu(ti) = x1,

and

u′′(t) = Au(t) + f(t, u(t), u(a1(t)), u′(t), u′(a2(t))) for t ∈ [0, T ].

Theorem 3.1. Suppose that:

(i) Assumptions (A1) and (A2) are satisfied and ai : [0, T ] → [0, T ] (i =
1, 2) are of class C1 on [0, T ].

(ii) there exists a positive constant L2 such that

‖f(s, z1, z2, z3, z4)− f(s̃, z̃1, z̃2, z̃3, z̃4)‖ ≤ L2(| s− s̃ | +
4∑
i=1

‖zi − z̃i‖)

for s, s̃ ∈ [0, T ], zi, z̃i ∈ X (i = 1, 2, 3, 4).

(iii) 2C
(

2TL2 +
∑p

i=1 | hi |
)
< 1.

(iv) x0 ∈ E and x1 ∈ X.
Then the nonlocal Cauchy problem (1.1) - (1.3) has a unique mild solution u.
Moreover, if x0 ∈ D(A), x1 ∈ E and u(ti) ∈ E (i = 1, 2, ..., p), and there exist
positive constants ci (i = 1, 2) such that

‖u(a1(s))− u(a1(s̃))‖ ≤ c1‖u(s)− u(s̃)‖ for s, s̃ ∈ [0, T ]

and

‖u′(a2(s))− u′(a2(s̃))‖ ≤ c2‖u′(s)− u′(s̃)‖ for s, s̃ ∈ [0, T ],

then u is the unique classical solution of nonlocal problem (1.1) - (1.3).

Proof. Since the assumptions of Theorem 2.1 are satisfied, the nonlocal Cauchy
problem (1.1) - (1.3) possesses a unique mild solution which is denoted by u.
Now we shall show that u is the classical solution of problem (1.1) - (1.3). First
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we shall prove that u, u(a1(·), u′ and u′(a2(·)) satisfy the Lipschitz condition
on [0, T ]. Let t and t+ h be any two points belonging to [0, T ]. Observe that

u(t+ h)− u(t) = C(t+ h)x0 + S(t+ h)x1 − S(t+ h)
( p∑
i=1

hiu(ti)
)

+

∫ t+h

0
S(t+ h− s)f(s, u(s), u(a1(s)), u′(s), u′(a2(s)))ds

− C(t)x0 − S(t)x1 + S(t)
( p∑
i=1

hiu(ti)
)

−
∫ t

0
S(t− s)f(s, u(s), u(a1(s)), u′(s), u′(a2(s)))ds.

Since

C(t)x0 + S(t)
(
x1 −

p∑
i=1

hiu(ti)
)

is of class C2 in [0, T ], there are constants C1 > 0 and C2 > 0 such that

‖(C(t+ h)− C(t))x0 + (S(t+ h)− S(t))
(
x1 −

p∑
i=1

hiu(ti))
)
‖ ≤ C1 | h |

and

‖((C(t+ h)− C(t))x0)′ + ((S(t+ h)− S(t))
(
x1 −

p∑
i=1

hiu(ti))
)′
‖ ≤ C2 | h | .

Hence

‖u(t+ h)− u(t)‖

≤ C1 | h | +‖
∫ t

0
S(s)(f(t+ h− s, u(t+ h− s),

u(a1(t+ h− s), u′(t+ h− s), u′(a2(t+ h− s)))
− f(t− s, u(t− s), u(a1(t− s)), u′(t− s), u′(a2(t− s))))ds‖

+ ‖
∫ t+h

t
S(s)f(t+ h− s, u(t+ h− s), u(a1(t+ h− s)),

u′(t+ h− s), u′(a2(t+ h− s)))ds‖

≤ C1 | h | +
∫ t

0
MeωTL2(| h | +‖u(t+ h− s)− u(t− s)‖

+ ‖u(a1(t+ h− s))− u(a1(t− s))‖+ ‖u′(t+ h− s)− u′(t− s)‖
+ ‖u′(a2(t+ h− s)− u′(a2(t− s))‖+MeωTN | h |,
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where

N := sup{‖f(s, u(s), u(a1(s)), u′(s), u′(a2(s)))‖ : s ∈ [0, T ]}.

From this, we obtain

‖u(t+ h)− u(t)‖ ≤ C3 | h | +C4

∫ t

0
(‖u(s+ h)− u(s)‖

+ ‖u′(s+ h)− u′(s)‖)ds. (3.1)

Moreover we have

u′(t) = (C(t)x0 + S(t)
(
x1 −

p∑
i=1

hiu(ti))
)′

+

∫ t

0
C(t− s)f(s, u(s), u(a1(s)), u′(s), u′(a2(s)))ds.

From the above formula, we obtain analogously

‖u′(t+ h)− u′(t)‖ ≤ C5 | h | +C6

∫ t

0
(‖u(s+ h)− u(s)‖

+ ‖u′(s+ h)− u′(s)‖)ds. (3.2)

By inequalities (3.1) and (3.2), we get

‖u(t+ h)− u(t)‖+ ‖u′(t+ h)− u′(t)‖

≤ C∗ | h | +C∗∗
∫ t

0
(‖u(s+ h)− u(s)‖+ ‖u′(s+ h)− u′(s)‖)ds.

From Gronwall’s inequality, we have

‖u(t+ h)− u(t)‖+ ‖u′(t+ h)− u′(t)‖ ≤ C̃ | h |, (3.3)

where C̃ is a positive constant.

By (3.3), it follows that u, u(a1(·)), u′ and u′(a2(·)) satisfy the Lipschitz
condition on [0, T ] with a positive constant. This implies that the mapping

[0, T ] 3 t→ f(t, u(t), u(a1(t)), u′(t), u′(a2(t))) ∈ X

also satisfies the Lipschitz condition.
The above property of f together with the assumptions of Theorem 3.1

imply, by Theorem 1.1 in [10] and by Theorem (2.1), that the linear Cauchy
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problem

v′′(t) = Av(t) + f(t, u(t), u(a1(t)), u′(t), u′(a2(t))), t ∈ [0, T ],

v(0) = x0,

v′(0) = x1 −
p∑
i=1

hiu(ti)

has a unique classical solution v such that

v(t) = C(t)x0 + S(t)
(
x1 −

p∑
i=1

hiu(ti)
)

+

∫ t

0
S(t− s)f(s, u(s), u(a1(s)), u′(s)), u′(a2(s)))ds, t ∈ [0, T ].

Consequently u is the unique classical solution of the semilinear Cauchy prob-
lem (1.1) - (1.3) and, therefore, the proof of Theorem 3.1 is complete. �

4. Abstract fractional differential equations

Fractional differential equations appear more frequently in different areas of
science and engineering. In fact, real world processes generally or most likely
result in fractional order systems. The main reason for using the integer order
models was the absence of solution methods for fractional differential equa-
tions. The most important advantage of using fractional differential equations
is their non-local property. It is well known that the integer order differential
operator is a local operator but the fractional order differential operator is
nonlocal. This means that the next state of a system depends not only upon
its current state but also upon all its past states.

Many real world systems are better characterized by using a non-integer
order dynamic model based on fractional calculus. Recently, due to increasing
applications of fractional calculus, several papers on the existence of solutions
of fractional differential equations have appeared.

In this section, we discuss the existence of solutions of nonlinear fractional
order differential equations in Banach spaces.

Let X be a Banach space and J = [0, T ]. Then Y = C(J,X) is the Banach
space of all real-valued continuous functions defined on the compact interval J,
endowed with the maximum norm. The space of linear bounded operators on
X is denoted by L(X). We use the symbol I to denote the identity operator.
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The fractional integral of a function f ∈ Y is defined as

Iαf(t) =
1

Γ (α)

t∫
t0

(t− s)α−1f(s)ds,

for any order n − 1 < α ≤ n, n ∈ N and the Caputo derivative of f is
CDαf = In−αf (n), f (n) ∈ Y.

The Mittag-Leffler function is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
, α > 0, β > 0.

and, when β = 1, we denote Eα,1(z) = Eα(z). The reader may refer the book
[23] for more information about the facts on fractional calculus.

Lemma 4.1. ([23]) Let α > 0, t ∈ J , x ∈ Y . Then

IαDαx(t) = x(t) +
n−1∑
k=0

ckt
k, ck ∈ R.

Lemma 4.2. ([25, Theorem 7.3.1]) Suppose that A is a linear bounded oper-
ator defined on a Banach space X and assume that ‖A‖ < 1. Then (I −A)−1

is linear and bounded. Also

(I −A)−1 =
∞∑
k=0

Ak,

the convergence of the series being in the operator norm and∥∥(I −A)−1
∥∥ ≤ (1− ‖A‖)−1 .

Using Lemmas 4.1 and 4.2, the following lemmas have been established for
the solutions representation of some linear fractional differential equations in
[5].

Lemma 4.3. The fractional differential equations{
CDαu(t) = Au(t) + f(t), 0 < α ≤ 1,
u(0) = u0

has a solution

u(t) = Eα(Atα)u0 +

t∫
0

(t− s)α−1Eα,α(A (t− s)α)f(s)ds,

provided
(H) The operator A ∈ L(X) commutes with the fractional integral operator Iα
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on X and ‖A‖ ≤ Γ(α+1)
Tα .

Next we introduce a linear differential equation with fractional order 1 <
α ≤ 2.

Lemma 4.4. Let the condition (H) hold. Then the fractional differential
equation {

CDαu(t) = Au(t) + f(t), 1 < α ≤ 2,

u(0) = u0 ∈ X, u
′
(0) = v0 ∈ X,

has a solution

u(t) = Eα(Atα)u0 + tEα,2(Atα)v0 + f(t) ∗ tα−1Eα,α(Atα)

= Φ0(t)u0 + Φ1(t)v0 +

∫ t

0
Φ(t− s)f(s)ds,

where Φ0(t) = Eα(Atα), Φ1(t) = tEα,2(Atα) and Φ(t) = tα−1Eα,α(Atα).

In general, if the hypothesis (H) is satisfied, then the fractional differential
equations { CDαu(t) = Au(t) + f(t), n− 1 < α ≤ n,

u
(k)

(0) = vk ∈ X, k = 0, 1, ..., n− 1

has a solution of the form

u(t) =

n−1∑
k=0

tkEα,k+1(Atα)vk +

t∫
0

(t− s)α−1Eα,α(A (t− s)α)f(s)ds.

Consider the nonlinear fractional differential equation of the form{
CDαu(t) = Au(t) + f(t, u(t),CDβu(t)), t ∈ J,

u(0) = u0, u
′(0) = v0,

(4.1)

with 1 < α ≤ 2, 0 < β ≤ 1, A is a bounded linear operator and the nonlinear
function f : J ×X ×X → X is continuous. The solution of (4.1) is given by

u(t) = Φ0(t)u0 + Φ1(t) v0 +

∫ t

0
Φ(t− s)f(s, u(s),CDβu(s))ds.

For brevity let us take

n1 = sup{‖Φ0(t)‖, t ∈ J}; n2 = sup{‖Φ1(t)‖, t ∈ J};
n3 = sup{‖Φ(t− s)‖, t, s ∈ J}; n4 = sup{‖AΦ(t)‖, t ∈ J};
n5 = sup{‖Φ2(t− s)‖, t, s ∈ J}; Φ2(t) = tα−1Eα,α−1(Atα);

n6 = n4‖u0‖+ n1‖v0‖; c=n1‖u0‖+ n2‖v0‖.
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Now we make the following assumptions to obtain the existence results for
the equation:

(H1) For each t ∈ J , the function f(t, ·, ·) : X × X → X is continuous
and the function f(·, u, v) : J → X is strongly measurable for each
u, v ∈ X.

(H2) For every positive constant k, there exists hk ∈ L1(J) such that

sup
‖u‖, ‖v‖≤k

‖f(t, u, v)‖ ≤ hk(t), for every t ∈ J.

(H3) There exists a continuous function m1 : J → [0,∞) such that

‖f(t, u, v)‖ ≤ m1(t)Ω (‖u‖+ ‖v‖) , t ∈ J, u, v ∈ X

where Ω : (0,∞)→ (0,∞) is a continuous nondecreasing function.
(H4) There exists a constant M > 0 and a continuous function m2 : J →

[0,∞) such that

n6t
−β

Γ(1− β)
+

n5

Γ(1− β)

∫ t

0
(t−τ)−βm1(τ)Ω(w(τ))dτ ≤Mm2(t)Ω(w(t))

and ∫ T

0
m(s)ds <

∫ ∞
c

ds

Ω(s)
.

where m(t)=max{n3m1(t),Mm2(t)}.

Theorem 4.5. Assume that the hypotheses (H1) − (H4) hold. Then there
exists a solution to the nonlinear equation (4.1) on J .

Proof. Consider the Banach space Z =
{
u : u ∈ C(J,X) and CDβu ∈ C(J,X)

}
with norm ‖u‖∗ = max{‖u‖, ‖CDβu‖}. We now show that the nonlinear oper-
ator F : Z → Z defined by

(Fu)(t) = Φ0(t)u0 + Φ1(t) v0 +

∫ t

0
Φ(t− s)f(s, u(s),CDβu(s))ds

has a fixed point. This fixed point is then a solution to (4.1).
The first step is to obtain a priori bound of the set

ζ(F ) = {u ∈ Z : u = λFu for some λ ∈ (0, 1)}.

Let u ∈ ζ(F ). Then u = λFu for some 0 < λ < 1. Thus, for each t ∈ J , we
have

u(t) = λΦ0(t)u0 + λΦ1(t) v0 + λ

∫ t

0
Φ(t− s)f(s, u(s),CDβu(s))ds.
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Then

‖u(t)‖ ≤ n1‖u0‖+ n2‖v0‖+ n3

∫ t

0
m1(s)Ω(‖u(s)‖+ ‖CDβu(s)‖)ds

≡ c+ n3

∫ t

0
m1(s)Ω(‖u(s)‖+ ‖CDβu(s)‖)ds.

Denoting the right-hand side of the above inequality by r1(t), we have r1(0) =
c,

‖u(t)‖ ≤ r1(t)

and

r′1(t) = n3m1(t)Ω(‖u(t)‖+ ‖CDβu(t)‖).
Also, we have

u′(t) = λAΦ(t)u0 + λΦ0(t) v0 + λ

∫ t

0
Φ2(t− s)f(s, u(s),CDβu(s))ds.

and

‖u′(t)‖ ≤ n4‖u0‖+ n1‖v0‖+ n5

∫ t

0
m1(s)Ω(‖u(s)‖+ ‖CDβu(s)‖)ds

≡ n6 + n5

∫ t

0
m1(s)Ω(‖u(s)‖+ ‖CDβu(s)‖)ds.

Hence it follows that

‖CDβu(t)‖ ≤ 1

Γ(1− β)

∫ t

0
(t− s)−β‖u′(s)‖ds

≤ n6

Γ(1− β)

∫ t

0
(t− s)−βds

+
n5

Γ(1− β)

∫ t

0
(t− s)−β

(∫ s

0
m1(τ)Ω(‖u(τ)‖+ ‖CDβu(τ)‖)dτ

)
ds

≤ n6

Γ(1− β)

∫ t

0
(t− s)−βds

+
n5

Γ(1− β)

∫ t

0

∫ t

τ
(t− s)−βdsm1(τ)Ω(‖u(τ)‖+ ‖CDβu(τ)‖)dτ

≤ n6 t
1−β

Γ(2− β)
+

n5

Γ(2− β)

∫ t

0
(t− τ)1−βm1(τ)Ω(‖u(τ)‖+ ‖CDβu(τ)‖)dτ.

Denoting the right-hand side of the above inequality by r2(t), we have r2(0) =
0,

‖CDβu(t)‖ ≤ r2(t)
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and

r′2(t) =
n6 t

−β

Γ(1− β)
+

n5

Γ(1− β)

∫ t

0
(t− τ)−βm1(τ)Ω(‖u(τ)‖+ ‖CDβu(τ)‖)dτ.

Let w(t) = r1(t) + r2(t), t ∈ J . Then w(0) = r1(0) + r2(0) = c and

w′(t) = r′1(t) + r′2(t) ≤ m(t)Ω(w(t))

which implies that for each t ∈ J ,∫ w(t)

w(0)

ds

Ω(s)
≤
∫ T

0
m(s)ds <

∫ ∞
c

ds

Ω(s)
.

From the above inequality, we see that there exists a constant K such that

w(t) = r1(t) + r2(t) ≤ K, t ∈ J.

Then ‖u(t)‖ ≤ r1(t) and ‖CDβu(t)‖ ≤ r2(t), t ∈ J, and hence

‖u‖∗ = max{‖u‖, ‖CDβu‖} ≤ K

and the set ζ(F ) is bounded.
Next we prove that the operator F :X→X is completely continuous.
Let Bq = {u ∈ Z : ‖u‖∗ ≤ q}. We first show that F maps bounded

sets into equicontinuous family in Bq. Let u ∈ Bq and t1, t2 ∈ J . Then if
0 < t1 < t2 ≤ T ,

‖(Fu)(t2)− (Fu)(t1)‖ ≤ ‖Φ0(t2)− Φ0(t1)‖‖u0‖+ ‖Φ1(t2)− Φ1(t1)‖‖y0‖

+
∥∥∥∫ t1

0
[Φ(t2 − s)− Φ(t1 − s)]f(s, u(s),CDβu(s))ds

∥∥∥
+
∥∥∥∫ t2

t1

Φ(t2 − s)f(s, u(s),CDβu(s))ds
∥∥∥

≤ ‖Φ0(t2)− Φ0(t1)‖‖u0‖+ ‖Φ1(t2)− Φ1(t1)‖‖y0‖

+

∫ t1

0
‖Φ(t2 − s)− Φ(t1 − s)‖hq(s)ds

+

∫ t2

t1

‖Φ(t2 − s)‖hq(s)ds (4.2)
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and

‖(Fu)′(t)‖ ≤ ‖AΦ(t)‖‖u0‖+ ‖Φ0(t)‖‖v0‖+

∫ t

0
‖Φ2(t− s)‖hq(s)ds.

≤ n4‖u0‖+ n1‖v0‖+ n5

∫ t

0
hq(s)ds

≤ n6 + n5

∫ t

0
hq(s)ds.

Hence it follows that

‖CDβ(Fu)(t2) − CDβ(Fu)(t1)‖

=
∥∥∥ 1

Γ(1− β)

∫ t2

0
(t2 − s)−β(Fu)′(s)ds

− 1

Γ(1− β)

∫ t1

0
(t1 − s)−β(Fu)′(s)ds

∥∥∥
≤ 1

Γ(1− β)

∥∥∥∫ t2

t1

(t2 − s)−β(Fu)′(s)ds
∥∥∥

+
1

Γ(1− β)

∥∥∥∫ t1

0

(
(t2 − s)−β − (t1 − s)−β

)
(Fu)′(s)ds

∥∥∥
≤ 1

Γ(1− β)

∫ t2

t1

(t2 − s)−β‖(Fu)′(s)‖ds

+
1

Γ(1− β)

∫ t1

0

(
(t2 − s)−β − (t1 − s)−β

)
‖(Fu)′(s)‖ds

≤ n6

Γ(1− β)

∫ t2

t1

(t2 − s)−βds+
n5

Γ(1− β)

∫ t2

t1

(t2 − s)−β
(∫ s

0
hq(τ)dτ

)
ds

+
n6

Γ(1− β)

∫ t1

0

(
(t2 − s)−β − (t1 − s)−β

)
ds

+
n5

Γ(1− β)

∫ t1

0

(
(t2 − s)−β − (t1 − s)−β

)(∫ s

0
hq(τ)dτ

)
ds

≤ n6

Γ(2− β)
(t1−β2 − t1−β1 ) +

1

Γ(1− β)

∫ t2

t1

(t2 − s)−β
(∫ s

0
hq(τ)dτ

)
ds

+
1

Γ(2− β)

∫ t1

0

(
(t2 − τ)1−β − (t2 − t1)1−β − (t1 − τ)1−β

)
hq(τ)dτ. (4.3)

The right-hand sides of (4.2) and (4.3) tend to zero as t2 → t1. Thus F maps
Bq into an equicontinuous family of functions. It is easy to see that the family
FBq is uniformly bounded.
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Next we show that F is a compact operator. It suffices to show that the
closure of FBq is compact.

Let 0 ≤ t ≤ T be fixed and ε be a real number satisfying 0 < ε < t. For
u ∈ Bq, we define

(Fεu)(t) = Φ0(t)u0 + Φ1(t)v0 +

∫ t−ε

0
Φ(t− s)f(s, u(s),CDβu(s))ds.

Note that using the same methods as in the procedure above, we obtain the
boundedness and equicontinuous property of Fε which implies that the set
Sε(t) = {(Fεu)(t) : u ∈ Bq} is relatively compact in X for every 0 < ε < t.

Moreover, for every u ∈ Bq,

‖(Fu)(t)− (Fεu)(t)‖ ≤
∥∥∥∫ t

t−ε
Φ(t− s)f(s, u(s),CDβu(s))ds

∥∥∥
≤
∫ t

t−ε
‖Φ(t− s)‖hq(s)ds.

Also

‖(Fu)′(t)− (Fεu)′(t)‖ ≤
∥∥∥∫ t

t−ε
Φ2(t− s)f(s, u(s),CDβu(s))ds

∥∥∥
≤
∫ t

t−ε
‖Φ2(t− s)‖hq(s)ds.

Since ‖(Fu)(t)− (Fεu)(t)‖ → 0 and ‖(Fu)′(t)− (Fεu)′(t)‖ → 0 as ε→ 0, this
implies that

‖CDβ(Fu)(t)−CDβ(Fεu)(t)‖

≤ 1

Γ(1− β)

∫ t

0
(t− s)−β‖(Fu)′(t)− (Fεu)′(t))‖ds → 0 as ε→ 0.

So relatively compact sets Sε(t) = {(Fεu)(t) : u ∈ Bq} are arbitrarily close to
the set {(Fu)(t) : u ∈ Bq}. Hence {(Fu)(t) : u ∈ Bq} is compact in Z by the
Arzela-Ascoli theorem.

Next it remains to show that F is continuous. Let {un} be a sequence in
Z such that ‖un − u‖ → 0 as n → ∞. Then there is an integer k such that
‖un‖ ≤ k, ‖CDβun‖ ≤ k for all n and t ∈ J . So ‖u(t)‖ ≤ k, ‖CDβu(t)‖ ≤ k
and u, CDβu ∈ Z. By (H1),

f(t, un(t),CDβun(t))→ f(t, u(t),CDβu(t)),

for each t ∈ J . Since

‖f(t, un(t),CDβun(t))− f(t, u(t),CDβu(t))‖ ≤ 2hk(t),

we have, by the dominated convergence theorem,
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‖(Fun)(t)−(Fu)(t)‖

= sup
t∈J

∥∥∥∫ t

0
Φ(t− s)

[
f(s, un(s),CDβun(s))− f(s, u(s),CDβu(s))

]
ds
∥∥∥

≤
∫ T

0

∥∥∥Φ(t− s)
[
f(s, un(s),CDβun(s))− f(s, u(s),CDβu(s))

] ∥∥∥ds.

Also

‖(Fun)′(t)−(Fu)′(t)‖

= sup
t∈J

∥∥∥∫ t

0
Φ2(t− s)

[
f(s, un(s),CDβun(s))− f(s, u(s),CDβu(s))

]
ds
∥∥∥

≤
∫ T

0

∥∥∥Φ2(t− s)
[
f(s, un(s),CDβun(s))− f(s, u(s),CDβu(s))

] ∥∥∥ds.

This implies that

‖CDβ(Fun)(t)−CDβ(Fu)(t)‖

≤ 1

Γ(1− β)

∫ t

0
(t− s)−β‖(Fun)′(t)− (Fu)′(t)‖ds → 0 as n→∞.

Thus F is continuous. Finally the set ζ(F ) = {u ∈ Z : u = λFu, λ ∈ (0, 1)}
is bounded as shown in the first step. By Schaefer’s fixed point theorem, the
operator F has a fixed point in Z. This fixed point is then the solution of
(4.1). This completes the proof. �

5. Examples

Example 5.1. Consider the fractional differential equations
CD3/2u1(t) = 4u2(t) +

u1

u2
1 + sin t

,

CD3/2u2(t) = 3u1(t) +
u1

u2
1 + t

,
(5.1)

with initial conditions

[
u1(0)
u2(0)

]
=

[
1
1

]
and

[
u′1(0)
u′2(0)

]
=

[
0
0

]
for t ∈ [0, 1].

It has the following form
CD3/2u(t) = Au(t) + f(t, u), t ∈ [0, 1],

u(0) = u0, u
′(0) = v0,

(5.2)
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where A=

[
0 4
3 0

]
, f(t, u)=


u1

u2
1 + sin t

u2

u2
2 + t

, u(t)=

[
u1(t)
u2(t)

]
.

Using Mittag-Leffler matrix function for a given matrix A, we get

Φ(1− s) =

[
L1(s) L2(s)
L3(s) L4(s)

]
,

where

L1(s) = (t− s)
1
2E3, 3

2
(12(t− s)3),

L2(s) = 4e12(t−s),

L3(s) = 3e12(t−s),

L4(s) = (t− s)
1
2E3, 3

2
(12(t− s)3).

Further the nonlinear function f is bounded, continuous and satisfies con-
ditions of Theorem 4.5. Hence there exist a solution to the nonlinear equation
(5.1).

Example 5.2. Consider the system of fractional differential equation of the
form

CD5/4u1(t) = u1(t)− u2(t) +
exp(−2t)

(
|u1|+ |CD1/2u1(t)|

)
1 + |u2(t)|

,

CD5/4u2(t) = u2(t) +
exp(−2t)

(
|u2|+ |CD1/2u2(t)|

)
1 + |u1(t)|

,

(5.3)

with initial conditions

[
u1(0)
u2(0)

]
=

[
1
0

]
and

[
u′1(0)
u′2(0)

]
=

[
0
1

]
for t ∈ [0, 5].

It has the following form
CD5/4u(t) = Au(t) + f(t, u(t),CD1/2u(t)), t ∈ [0, 5],

u(0) = u0, u
′(0) = v0

(5.4)

where A=

[
1 −1
0 1

]
, u(t) =

[
u1(t)
u2(t)

]
, and

f(t, u(t),CD1/2u(t)) =


exp(−2t)

(
|u1|+ |CD1/2u1(t)|

)
1 + |u2(t)|

exp(−2t)
(
|u2|+ |CD1/2u2(t)|

)
1 + |u1(t)|

 .
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Using Mittag-Leffler matrix function for a given matrix A, we get

Φ(5− t) =

[
N(t) 0

0 N(t)

]
,

where N(t) = (5 − t)1/4E5/4,5/4((5 − t)5/4). Further the nonlinear function f
is continuous and satisfies the hypotheses of Theorem 4.5. Hence the equation
(5.3) has a solution on [0, 3].
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