SOME NEW FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS INVOLVING RATIONAL EXPRESSIONS IN COMPLEX VALUED b-METRIC SPACES

Anil Kumar Dubey ${ }^{1}$, Urmila Mishra ${ }^{2}$ and Won Hee Lim ${ }^{3}$
${ }^{1}$ Department of Mathematics
Bhilai Institute of Technology, Bhilai House
Durg (Chhattisgarh), India
e-mail: anilkumardbye@rediffmail.com
${ }^{2}$ Department of Mathematics Vishwavidyalaya Engineering College
Lakhanpur-Ambikapur(Chhattisgarh), India
e-mail: mishra.urmila@gmail.com
${ }^{3}$ Department of Mathematics
Kyungnam University, Changwon, Gyeongnam, 51767, Korea
e-mail: worry36@kyungnam.ac.kr

Abstract

In this paper, we present some fixed point theorems for generalized contractions involving rational expressions in the framework of complex valued b-metric spaces. Our results generalize some existing results.

1. Introduction

In 2011, Azam et al. [2] introduced the concept of complex valued metric space and proved some fixed point results for mappings satisfying a rational inequality. This concept is useful in different branches of mathematics, including applied mathematics, number theory, algebraic geometry etc. Large

[^0]number of papers have been published containing fixed point results for a single and a pair of self-mappings with different rational contraction conditions in complex valued metric space (see $[9,11,13,14]$). After the establishment of complex valued metric spaces, Rao et al. [10] introduced the complex valued b-metric spaces and then several authors have contributed in this directions (see $[1,3,4,5,6,7,8]$ and [12]).

In this manuscript, we prove some fixed point theorems having rational type contraction conditions in the notion of partially ordered complex valued b metric space.

2. BASIC FACTS AND DEFINITIONS

Let \mathbb{C} be the set of complex numbers and $z_{1}, z_{2} \in \mathbb{C}$. Define a partial order \precsim on \mathbb{C} as follows: $z_{1} \precsim z_{2}$ if and only if $\operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)$. It follows that \precsim exist if one of the following conditions are satisfied:
$\left(C_{1}\right) \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right) ;$
$\left(C_{2}\right) \operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$;
$\left(C_{3}\right) \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$;
$\left(C_{4}\right) \operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$.
In particular, we will write $z_{1} \npreceq z_{2}$ if $z_{1} \neq z_{2}$ and one of $\left(C_{2}\right),\left(C_{3}\right)$ and $\left(C_{4}\right)$ is satisfied and we will write $z_{1} \prec z_{2}$ if only $\left(C_{4}\right)$ is satisfied. Note that
(i) $0 \precsim z_{1} \precsim z_{2} \Rightarrow\left|z_{1}\right|<\left|z_{2}\right|$,
(ii) $z_{1} \precsim z_{2}$ and $z_{2} \prec z_{3} \Rightarrow z_{1} \prec z_{3}$,
(iii) If $a, b \in \mathbb{R}$ and $a \leq b \Rightarrow a z \precsim b z$ for all $z \in \mathbb{C}$.

The following definition is recently introduced by Rao et al. [10].
Definition 2.1. ([10]) Let X be a nonempty set and let $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{C}$ is called complex valued b-metric if the following conditions are satisfied:
(M1) $0 \precsim d(x, y)$ and $d(x, y)=0 \Leftrightarrow x=y$ for all $x, y \in X$;
(M2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(M3) $d(x, y) \precsim s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.
Then the pair (X, d) is called a complex valued b-metric space.
Example 2.2. ([10]) Let $X=[0,1]$. Define the mapping $d: X \times X \rightarrow \mathbb{C}$ by $d(x, y)=|x-y|^{2}+i|x-y|^{2}$, for all $x, y \in X$. Then (X, d) is a complex valued b-metric space with $s=2$.

All other definitions like convergent sequence, Cauchy sequence, complete complex valued b-metric space we refer [10].

Lemma 2.3. ([10]) Let (X, d) be a complex valued b-metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ converges to x if and only if $\left|d\left(x_{n}, x\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.4. ([10]) Let (X, d) be a complex valued b-metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$, where $m \in \mathbb{N}$.

Definition 2.5. Let (X, d) be complex valued b-metric space, $T: X \rightarrow X$ and $x \in X$. Then the function T is continuous at x if for any sequence $\left\{x_{n}\right\}$ in X with $x_{n} \rightarrow x, T x_{n} \rightarrow T x$.

Definition 2.6. Let (X, \precsim) be a partially ordered set and $T: X \rightarrow X$. The mapping T is said to be non-decreasing if for all $x_{1}, x_{2} \in X, x_{1} \precsim x_{2}$ implies $T x_{1} \precsim T x_{2}$ and non-increasing if for all $x_{1}, x_{2} \in X, x_{1} \precsim x_{2}$ implies $T x_{1} \succsim T x_{2}$.

Now we are ready to state and prove our main result.

3. Main results

Theorem 3.1. Let (X, \precsim) be a partially ordered set and suppose that there exist a complex valued b-metric d on X such that (X, d) is a complete complex valued b-metric space. Let the mapping $T: X \rightarrow X$ be a continuous and non-decreasing mapping. Suppose that there exist non-negative real numbers $\alpha, \beta, \gamma, \delta, \lambda$ with $s(\alpha+\beta+\gamma)+\delta+s(s+1) \lambda<1$ such that for all $x, y \in X$ with $x \precsim y$,

$$
\begin{align*}
d(T x, T y) \precsim & \alpha d(x, y)+\beta\left[\frac{d(x, T x) d(x, T y)+d(y, T y) d(y, T x)}{d(x, T y)+d(y, T x)}\right] \\
& +\gamma d(x, T x)+\delta d(y, T y)+\lambda[d(x, T y)+d(y, T x)] \tag{3.1}
\end{align*}
$$

if there exist $x_{0} \in X$ with $x_{0} \precsim T x_{0}$, then T has a fixed point.
Proof. Let $x_{0}=T x_{0}$. Then it is obvious that x_{0} is a fixed point of T. Suppose that $x_{0} \prec T x_{0}$. Then we construct the sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{equation*}
x_{n+1}=T x_{n} \quad \text { for } \quad \text { every } \quad n \geq 0 \tag{3.2}
\end{equation*}
$$

Since T is a non-decreasing mapping, by induction we get,

$$
\begin{equation*}
x_{0} \prec T x_{0}=x_{1} \precsim T x_{1}=x_{2} \precsim T x_{2}=x_{3} \precsim \ldots \precsim T x_{n-1}=x_{n} \precsim T x_{n}=x_{n+1} . \tag{3.3}
\end{equation*}
$$

If there exist some $n \geq 1$ such that $x_{n+1}=x_{n}$, then from (3.2), $x_{n+1}=T x_{n}=x_{n}$, that is x_{n} is a fixed point of T and the proof is finished.

Now, we assume that $x_{n+1} \neq x_{n}$ for all $n \geq 1$. Since $x_{n} \prec x_{n+1}$, all $n \geq 1$, by (3.1) we have,

$$
\begin{aligned}
d\left(x_{n+1}, x_{n+2}\right)= & d\left(T x_{n}, T x_{n+1}\right) \\
\precsim & \alpha d\left(x_{n}, x_{n+1}\right) \\
& +\beta\left[\frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n+1}\right) d\left(x_{n+1}, T x_{n}\right)}{d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)}\right] \\
& +\gamma d\left(x_{n}, T x_{n}\right)+\delta d\left(x_{n+1}, T x_{n+1}\right) \\
& +\lambda\left[d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)\right] \\
= & \alpha d\left(x_{n}, x_{n+1}\right) \\
& +\beta\left[\frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+1}, x_{n+2}\right) d\left(x_{n+1}, x_{n+1}\right)}{d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+1}, x_{n+1}\right)}\right] \\
& +\gamma d\left(x_{n}, x_{n+1}\right)+\delta d\left(x_{n+1}, x_{n+2}\right) \\
& +\lambda\left[d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+1}, x_{n+1}\right)\right] \\
\precsim & \alpha d\left(x_{n}, x_{n+1}\right)+\beta d\left(x_{n}, x_{n+1}\right)+\gamma d\left(x_{n}, x_{n+1}\right)+\delta d\left(x_{n+1}, x_{n+2}\right) \\
& +s \lambda\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]
\end{aligned}
$$

which implies that,

$$
\begin{align*}
d\left(x_{n+1}, x_{n+2}\right) & \precsim\left(\frac{\alpha+\beta+\gamma+s \lambda}{1-\delta-s \lambda}\right) d\left(x_{n}, x_{n+1}\right) \\
& =\mu d\left(x_{n}, x_{n+1}\right) \tag{3.4}
\end{align*}
$$

where $\mu=\left(\frac{\alpha+\beta+\gamma+s \lambda}{1-\delta-s \lambda}\right)$, since $s(\alpha+\beta+\gamma)+\delta+s(s+1) \lambda<1$, it follows that $0<\mu<\frac{1}{s}$. By induction, we have

$$
d\left(x_{n+1}, x_{n+2}\right) \precsim \mu d\left(x_{n}, x_{n+1}\right) \precsim \mu^{2} d\left(x_{n-1}, x_{n}\right) \precsim \ldots \precsim \mu^{n+1} d\left(x_{0}, x_{1}\right)
$$

for $m>n$

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \precsim s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{m}\right)\right] \\
& \precsim s d\left(x_{n}, x_{n+1}\right)+s^{2}\left[d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{m}\right)\right] \\
& \precsim s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+s^{3} d\left(x_{n+2}, x_{n+3}\right) \\
& +\ldots+s^{m-n} d\left(x_{m-1}, x_{m}\right) \\
& \precsim\left(s \mu^{n}+s^{2} \mu^{n+1}+\ldots+s^{m-n} \mu^{m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \precsim \mu^{n}\left[1+(s \mu)+(s \mu)^{2}+\ldots+(s \mu)^{m-n-1}\right] d\left(x_{0}, x_{1}\right) \\
& \precsim \frac{s \mu^{n}}{1-s \mu} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Since $0 \leq \mu<\frac{1}{s}$, we conclude that $\left(\frac{s \mu^{n}}{1-s \mu}\right) \rightarrow 0$ as $n \rightarrow \infty$, which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence. From the completeness of X, there exists a point $z \in X$ such that

$$
\begin{equation*}
x_{n} \rightarrow z \quad \text { as } \quad n \rightarrow \infty \tag{3.5}
\end{equation*}
$$

The continuity of T implies that $T z=\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=z$ that is z is a fixed point of T.

If continuity is dropped for underlying mapping then we get the following result:

Theorem 3.2. Let (X, \precsim) be a partially ordered set and suppose that there exist a complex valued b-metric d on X such that (X, d) is a complete complex valued b-metric space. Let the mapping $T: X \rightarrow X$ be a non-decreasing mapping. Assume that if $\left\{x_{n}\right\}$ is a non-decreasing sequence in X such that $x_{n} \rightarrow x$, then $x_{n} \precsim x$, for all $n \in \mathbb{N}$. Suppose that (3.1) hold for all $x, y \in X$ with $x \precsim y$. If there exist $x_{0} \in X$ with $x_{0} \precsim T x_{0}$, then T has a fixed point.

Proof. We take the similar approach as Theorem 3.1 and prove that $\left\{x_{n}\right\}$ is non-decreasing sequence such that $x_{n} \rightarrow z \in X$. Then $x_{n} \precsim z$, for all $n \in \mathbb{N}$. From inequality (3.1), we have

$$
\begin{aligned}
d\left(x_{n+1}, T z\right)= & d\left(T x_{n}, T z\right) \\
\precsim & \alpha d\left(x_{n}, z\right)+\beta\left[\frac{d\left(x_{n}, T x_{n}\right) d\left(x_{n}, T z\right)+d(z, T z) d\left(z, T x_{n}\right)}{d\left(x_{n}, T z\right)+d\left(z, T x_{n}\right)}\right] \\
& +\gamma d\left(x_{n}, T x_{n}\right)+\delta d(z, T z)+\lambda\left[d\left(x_{n}, T z\right)+d\left(z, T x_{n}\right)\right] \\
= & \alpha d\left(x_{n}, z\right)+\beta\left[\frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n}, T z\right)+d(z, T z) d\left(z, x_{n+1}\right)}{d\left(x_{n}, T z\right)+d\left(z, x_{n+1}\right)}\right] \\
& +\gamma d\left(x_{n}, x_{n+1}\right)+\delta d(z, T z)+\lambda\left[d\left(x_{n}, T z\right)+d\left(z, x_{n+1}\right)\right]
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ and using (3.5), we have

$$
\begin{aligned}
d(z, T z) \precsim & \alpha d(z, z)+\beta\left[\frac{d(z, z) d(z, T z)+d(z, T z) d(z, z)}{d(z, T z)+d(z, z)}\right] \\
& +\gamma d(z, z)+\delta d(z, T z)+\lambda[d(z, T z)+d(z, z)] \\
\precsim & \delta d(z, T z)+\lambda d(z, T z)=(\delta+\lambda) d(z, T z)
\end{aligned}
$$

Since $(\delta+\lambda)<1$, it is contradiction unless $d(z, T z)=0$. Therefore $T z=z$ and hence z is fixed point of T.

If we set $\beta=\gamma=\delta=0$ in inequality (3.1) of Theorem 3.1 then we get following Corollary.
Corollary 3.3. Let (X, \precsim) be a partially ordered set and suppost that there exist a complex valued b-metric d on X such that (X, d) is a complete complex valued b-metric space. Let the mapping $T: X \rightarrow X$ be a continuous and nondecreasing mapping. Suppose there exist non-negative real numbers α and λ with $\alpha+2 s \lambda<\frac{1}{s}$ such that, for all $x, y \in X$ with $x \precsim y$,

$$
d(T x, T y) \precsim \alpha d(x, y)+\lambda[d(x, T y)+d(y, T x)]
$$

If there exist $x_{0} \in X$ with $x_{0} \precsim T x_{0}$, then T has a fixed point.
Example 3.4. Let $X=\left\{0, \frac{1}{2}, 2\right\}$ and partial order \precsim is defined as $x \precsim y$ if and only if $x \geq y$. Let the complex valued b-metric d be given by $d(x, y)=$ $|x-y|^{2}(1+i)$ for all $x, y \in X$. Let $s=2$ and $T: X \rightarrow X$ be defined as below:

$$
T(0)=0 \quad \text { and } \quad T\left(\frac{1}{2}\right)=0 .
$$

Take $x=\frac{1}{2}, y=0, T(0)=0$ and $T\left(\frac{1}{2}\right)=0$ in Corollary 3.3, then we have

$$
\begin{aligned}
d(T x, T y)=0 & \precsim \alpha\left|\frac{1}{2}-0\right|^{2}(1+i)+\lambda\left[\left|\frac{1}{2}-0\right|^{2}+|0-0|^{2}\right](1+i) \\
& =(\alpha+\lambda) \frac{1+i}{4} .
\end{aligned}
$$

This implies that $\alpha+\lambda \geq 0$. If we take $\alpha=\lambda=\frac{1}{16}$, then all the conditions of Corollary 3.3 are satisfied and of course 0 is the fixed point of T.

In order to verify the Theorem 3.1, take the same values as above in Theorem 3.1, we have

$$
d(T x, T y)=0 \precsim \alpha\left(\frac{1+i}{4}\right)+\beta\left(\frac{1+i}{4}\right)+\gamma\left(\frac{1+i}{4}\right)+\delta(0)+\lambda\left(\frac{1+i}{4}\right) .
$$

The above inequality is satisfied for $\alpha=\beta=\delta=\frac{1}{6}$ and $\gamma=\lambda=0$ with $s(\alpha+\beta+\gamma)+\delta+s(s+1) \lambda<1$, then all the conditions of Theorem 3.1 are satisfied and of course 0 is the fixed point of T.

4. Conclusion

In this paper, we establish some fixed point theorems for generalized contractions involving rational expressions in the setting of complex valued b metric spaces. We give one example in support of our results. Our results extend and generalize some well known existing results.

Acknowledgments: The authors are thankful to the learned referee for his/her deep observations and their suggestions, which greatly helped us to improve the paper significantly.

References

[1] A. Aiman Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, The Sci. World Jour., 2014 (2014), Article ID 587825, 6 pages.
[2] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in Complex valued Metric Spaces, Numer. Funct. Anal. Opti., 32(3) (2011), 243-253.
[3] A.K. Dubey, Complex valued b-metric spaces and common fixed point theorems under rational contractions, J. Complex Anal., 2016 (2016), Article ID 9786063, 7 pages.
[4] A.K. Dubey, Common fixed point results for contractive mappings in complex valued b-metric spaces, Nonlinear Funct. Anal. Appl., 20(2) (2015), 257-268.
[5] A.K. Dubey and M. Tripathi, Common fixed point theorem in complex valued b-metric space for rational contractions, J. Inf. Math. Sci., 7(3) (2015), 149-161.
[6] A.K. Dubey, Manjula Tripathi and M.D. Pandey, Common fixed point results for rational type contraction in complex valued b-metric spaces, Int. J. Pure Appl. Math., 116(2) (2017), 447-456.
[7] A.K. Dubey, U. Mishra and M. Tripathi, Common fixed point of mappings satisfying rational inequality in complex valued b-metric spaces, Comm. Math. Appl., 8(3) (2017), 289-300.
[8] A.K. Dubey, M. Tripathi and R.P. Dubey, Various fixed point theorems in complex valued b-metric spaces, Int. Jour. Engg. Math., 2016 (2016), Article ID7072606, 7 pages.
[9] H.K. Nashine, M. Imdad and M. Hasan, Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 42-50.
[10] K.P.R. Rao, P.R. Swamy and J.R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Research, 1(1) (2013), 1-8.
[11] F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math.with Appl., 64 (2012), 1866-1874.
[12] D. Singh, O.P. Chauhan, N. Singh and V. Joshi, Common fixed point theorems in complex valued b-metric spaces, J. Math. Comput. Sci., 5(3) (2015), 412-429.
[13] W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequalities and Appl., 2012 (2012), doi: 10.1186/1029-242X-2012-84.
[14] W. Sintunavarat, Y.J. Cho and P. Kumam, Ursyhon integral equations approach by common fixed point in complex valued metric spaces, Adv. Differ. Equ., 2013:49 (2013), 1-14.

[^0]: ${ }^{0}$ Received December 3, 2018. Revised March 15, 2019.
 ${ }^{0} 2010$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: Partially ordered, complex valued b-metric spaces, fixed point, Cauchy sequence.
 ${ }^{0}$ Corresponding author: U. Mishra(mishra.urmila@gmail.com).

