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Abstract. In this paper, we introduce a regularization process of finding a common element
of a system of operator equations for inverse-strongly monotone operators in real Banach
spaces, and then give a convergence theorem. The convergence rates of regularized solutions
are estimated by using a regularization parameter-choice that is based upon the generalized
discrepancy principle. Further, we consider an iterative regularization method of zero order

for solving system of inverse-strongly monotone operator equations in real Hilbert spaces.

1. INTRODUCTION

Let X be a real reflexive Banach space having property E-S (i.e. weak and
norm convergences of any sequence in X imply its strong convergences). Let
X and its dual space be strictly convex. For the sake of simplicity, the norms
of X and X* are denoted by the same symbol ||.|. We write (z*, z) instead of
z*(x) for z* € X* and = € X.

Let Aj : X — X* be a family of hemicontinuous monotone operators defined
on X, fje X*,j=1,..,N. Set S ={z € X : Aj(z) = f;}. It is easy to see
that S; is closed convex subset in X (see [10]). Assume that S = ﬂ;-vzlSj # 0.
We consider the following problem

finding an element z° € S. (1.1)
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Without additional conditions on A; such as the strongly or uniformly
monotone property, each equation A;(xz) = f; is an ill-posed problem. By
this, we mean that the solution set S; does not depend continuously on the
data (Aj, fj). Therefore, to find a solution of this equation, we have to use
stable methods. One of these methods is the Tikhonov regularization in the
form (see [1])

h §
Aj(z) + U (z — 24) = f; (1.2)
where a > 0 is a regularization parameter, U® is the generalized duality map-

ping of X, A? is a monotone bounded hemicontinuous operator on X, (A;L, ff )
are approximation of (A;, f;) in the sense that

1A} (@) = A;(@)]l < hg(lel), 1S5 = fill <6 (1.3)

with levels (h,d) — 0, g(t) is a non-negative bounded function for ¢ > 0 and
Zx is in X which plays the role of a criterion of selection.

Let 7 = (h, ). For each j, equation (1.2) has a unique solution 1’?’T and if
hja, d/a, a— 0 then 3" — x; € Sj with z,-minimal norm (see [1]), i.e.

oy =2l = mip o =]l 5= 1,... .

In this paper, we consider the more general problem, that is to find a com-
mon element z], of the solution sets of equations involving inverse-strongly
monotone operators such that 27, — 2% € S as h,§,a — 0 and estimate the
value of ||z7, — 2°|| based on regularization parameter choice by the general-
ized discrepancy principle. Moreover, we propose an iterative regularization
method of zero order that is a parallel algorithm. This algorithm generates
a sequence {z,} from an arbitrary initial zyg € H, where H is a real Hilbert
space. The sequence {z,} is shown to converge to 2° € S.

We now recall some definitions (see [5, 13]).

Definition 1.1. An operator A : D(A) = X — X* is called inverse-strongly
monotone if

(A(z) = A(y), = —y) = mal|A(z) = AW)II°, Yo,y € X, ma >0, (14)
where m 4 is a positive constant.

Definition 1.2. An operator U® : X — X* is called the generalized duality
mapping of X if

U*(2) = {z" € X" : (a",2) = """ M|zl = [l=]°}, s > 2.
Assume that the generalized duality mapping U® satisfies the following con-
dition
({U(z) = U(y),x —y) > muz —y|* Yo,y € X, (1.5)
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where my is a positive constant. It is well-known that when X is a Hilbert
space then U® = I, s = 2 and mg = 1, where I denotes the identity operator
in the setting space (see [2]).

2. MAIN RESULT

For approximations to a solution of (1.1), we introduce the following regu-
larized problem of finding an z], € X such that (see Nguyen Buong [9])

N
> (A aD) - f1) + U (] — 2.) = 0,
2 (2.1)

)\1:0<)\j<)\j+1<1, 7j=2,....N—1.
We have the following result.

Lemma 2.1. Let X be an E-S space with strictly convexr dual space X*,
A? : X — X* be a monotone bounded hemicontinuous operator for all h > 0,
U®: X — X* be a generalized duality mapping and ff € X* for all 6 > 0.
Then Problem (2.1) has an unique solution x], for all o > 0.

Proof. Since A? is a monotone bounded hemicontinuous operator so it is a
maximal monotone (see [5]). This implies that Zjvzl ot A? + aU? is also
maximal monotone and coercitive (see [5, 6]). Then Theorem 1.7.4 in [3]
guaranties the solvability of equation (2.1) in the sense of inclusion. Let z],
be a solution of (2.1). It is unique because the operator Z;VZI ot A;‘ +aU? is
strictly monotone. O

The solution z7, satisfying (2.1) will be view as the regularized solution of
problem (1.1).

Theorem 2.1. Let X and X* be strictly convex spaces, A; be a inverse-
strongly monotone, A;? be a monotone bounded hemicontinuous operator, and
U®: X — X* a generalized duality mapping. Assume that (1.3) and (1.5)
hold. If

h+46
o'

— 0 as a — 0, (2.2)

then the sequence {xl} of solutions of the equation (2.1) converges strongly in
X to 20 € S with x.-minimal norm.
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Proof. For x € S, it follows from (1.1) and (2.1) that

Za (A} (x) = [} = Aj(@) + fi, 20 — @)

+a(Us(x], —xy) — U’(x — z4), 2],

=a(U%(x — x4),x — x).

—:L‘>

Using (1.5) we obtain

N
amy|lzg, —al|® <Y N (AR (2]) = AJ () + AJ(x) = Aj(2) + f; =[], @ — @)
j=1
+ (U (x — x4), 2 — x).
It follows from (1.3) and the monotonicity of A;L that

T S ]' T S T
myllzg —2l” < —N(hg(llell) + )z — 23]l + {U%(z — @),z —25). (23)

07

Now from (2.2) and (2.3) we conclude that the sequence {z],} is bounded. So
there exists a subsequence {xg}, where 8 C a and v = (I/,§') C 7, which
weakly converges to some element £ € X. We also have

K+
B

First, we prove that & € S;. Indeed, for an arbitrary « € X, by virtue of the
monotonicity of A’? and the property of U® and (2.1) we have

<A?/() f1>95—905> <Ah(95,8) ff/ax—%)
—Zﬁ)\ Ah f 7375 >

—i—B(US( TG — Ts), T — T)

—0as a—0.

N
> " BN(AN (2) = £ a2l — @) + BU (@ — 2.), 2% — ).
j=2
Letting a — 0, and so 8 — 0 and v — 0, we obtain from the last inequality
and (1.3) the limit inequality
<A1($)—f17$—§7>207 Vo e X.

Consequently, by Minty’s lemma 2 € S; (see [14]). Now, we shall prove that
& € Sj, j =2..,N. Indeed, by (2.1) and making use of the monotonicity of
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N
Ag? , it follows that

(A (2%) — fQ,xg—HZﬁA (AN (2%) — £ 2l — )

7=3
+ Bl_AQ(US(xE — T4), T — )

LAV () - AV () + A (2) — Ay(@) + o f w8

5/\
51 A2
<73 (Wg(llz]l) + ")l — 2gll, Vo €Sy
After letting @ — 0 we obtain
(A2(Z) — fo, 2 —x) <0, Vzebs. (2.4)

Let & be an element in S; N Sy. It follows from (2.4) that
0= (A2(Z) — fo, T — ) > (A2(Z) — fo, T — &) > 0.
Hence,
(A2(Z) — f2, & — &) = 0= (A2(T) — f2, @ — T).
Consequently (Aa(z) — A2(2),& — &) = 0. Using the inverse-strongly mono-
tonicity of As we have
0= (A2(%) — A2(&), % — &) > ma, [|A2(F) — A2(@)|* > 0.
Therefore,
Ag(Z) — f2 = Az(Z) — fa =0.

So, T € S,.

Set S; = ﬁk 1Sk- Then, S; is also closed convex, and S; # (). Now, suppose

that & € S;, and we need to show that Z belongs to Si+1. Again, by virtue of
(2.1) for x € S;, we can write

(A (2 ) — fz+17 25/\ (A ( 51 ,:UE»—:U)

J=1i+2
BN — ), 2 — )

= > BTN AY (@) - S - )

k=1
< ; NI AY (2) - Ap(w) + fi — £ @ — @)
=1

N(Hg(llzll) + ') l= = 2]

Q\'—‘
>~
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Therefore, by letting « — 0 we have
(Aiy1(2) = fip1, & —2) <0, VYzeb,.

By an argument analogous to the previous one, we get & € S;11, which means
that z € S.
On the other hand, it follows from (2.3) that

(U(x —xy),z —2) >0, Vzelbs.

S; is closed convex, so is S. Replacing x by tZ + (1 —t)x, t € (0,1) in the last
inequality, dividing by (1 — ¢) and letting ¢ to 1, we obtain

(US(& —x4),x — &) >0, Vrels.

Hence [|Z — zy| < ||z — x|, Vo € S. Because of the convexity and the
closedness of S, and the strictly convexity of X we deduce that & = x°. So, all
sequence {27} converges weakly to z°. Tt follows from (2.3) that the sequence
{27} converges strongly to 2°. This completes the proof. g

Now, we consider the problem of choosing & = «(h, ) such that

=0.

h+9
li h.d) =0 and 1
m, a(h,0) =0 and lim ~75—

)

To solve this problem, we use the function for selecting & = «(h,d) by gen-
eralized discrepancy principle, i.e. the relation & = «a(h,d) is constructed on
the basis of the following equation

p(a) = (h+6)Pa~7, p,q> 0, (2.5)

with p(a) = a(c+||2% — 2.||* 1), where 2% is the solution of (2.1) with o = @,
c is some positive constant. Note that the generalized discrepancy principle
was presented in [11] for linear ill-posed problems and then it was developed
for nonlinear ones in [7]. We have the following results.

Lemma 2.2. Let X be an E-S space with a strictly conver dual space X*,
A? : X — X* be a monotone bounded hemicontinuous operator and U® : X —
X* with condition (1.5) holds. Then the function p(a) = a(c+ ||zl — z.])
is single-valued and continuous for o > oy > 0, where x], is the solution of

(2.1).

Proof. Single-valued solvability of the equation (2.1) implies the continuity
property of the function p(«). Let ag,as > g be arbitrary (ap > 0). It
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follows from (2.1) that

Zal Al(an ) — £, 2, — al,) + oy (UP(al, — ), 2], —af,)
ZQQ Ah f]a a2—$;1>+012<US(33;2—13*)727;2—.’E;1>
N A
+Za2 (Alah,) = £, 20, —al,) + >0y’ (Ala] ) — f2,a7, —al,) =0,
Jj=1

where z7,, and x],, are solutions of (2.1) with & = a1 and o = . Using the

monotonicity of A;” we have

ar(U(zg, — xx) = U(2g, — ), 20, — 24,)

1 a2

< (ag—oq)(US(:UT — ), Tl — Tl

[e%1 a2>
+Z T 0))(A(aT,) — £, —an,).

It follows from (1.5) and the last inequality that

_ a9 — & _
myllas, — o, |t < 120l e

N |a,\j OéAj‘

— h )
D EUC SR
j=1

Obviously, x], — z],, as a1 — ao. It means that the function ||z, — z.| is

continuous on [ag; +00). Therefore, p(«) is also continuous on [ag; +00). O

Theorem 2.2. Let X and X* be strictly convex spaces, A;-‘ be a monotone
bounded hemicontinuous operator, U® : X — X* be a duality mapping. As-
sume that (1.3) and (1.5) hold. Then
(i) There ezists at least a solution & of the equation (2.5);
(ii) Let T — 0. Then
(1) & — 0;

h+46
(2) If 0 < p < q then + — 0, 2% — 2% € S with x.-minimal norm and

there exits constants C’l,Cg > 0 such that for sufficiently small h,§ > 0 the
relation

Cy < (h+ 5)poz_l_q(h,5) <y
holds.
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Proof. (i) For 0 < a < 1, it follows from (2.1) that

N
S 0N (Al @]) — f1.a] — 2} + U (@], — @), ], — @) = 0.
j=1

Hence,

a(U (g = @), 25 — )

N
<3 M (Al (w) - 2. — a7)
j=1

N
=D oM (AN (@) = Aj@s) + Aj(@s) = fi+ fi = e - 2h).
j=1

We invoke (1.3), (1.5) and the last inequality to deduce that
allzf, — @7 < N(hg(llaal) + 14;(xs) = fll +6). (2.6)
It follows from (2.6) and the form of p(a) that
alp(a) = a' (e + ||z — 2.7
= ca! T 4 olal|z] — x|
< o'+ a?N (hg([la]) + 1145 () = £l +6).
Therefore, lim a?p(a) = 0.
a—+0

On the other hand,

lim afp(a) >c¢ lim o't = +oo.
a——+00 a——+00

Since p(«) is continuous, there exists at least one & which satisfies (2.5).
ii) It follows from (2.5) and the form of p(a&) that
& < YO+ (4 5)p/(+a),
Therefore, & — 0 as 7 — 0.
If 0 < p < g, it follows from (2.5) and (2.6) that
h+461°
{ ha ] = [(h+0)Pa—]ar?

«

= [Ge+ aflag -z a?

< 6! TP+ GIPN (hy(|lwall) + 14 (22) = fill +6).

p
lim [h —i_ 5} =0.
h,6—0 o
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By Theorem 2.1 the sequence x, converges to 2° € S with z,-minimal norm
as h,d — 0.
Clearly,

(h+0)Pa~ 1" =a""p(@) = (¢ + [laF — =),
therefore there exists a positive constant Cy in the theorem. On the other
hand, because ¢ > 0 there exists a positive constant C7 in the theorem. This
completes the proof. O

To estimate the convergence rates for the sequence {27}, we assume that
there exists a positive constant 7 such that

141 (y) = Ax(2) = Ay (2)(y — )l < 7llAs(y) — As(@)ll, Ve esS,  (27)

and y belongs to some neighbourhood of S.

Note that, Hanke, Neubauer and Scherzer [12] gave a first convergence anal-
ysis of the Landweber iteration method for a class of nonlinear operators with
(2.7) when 7 < 1/2. The use of this assumption to estimate the convergence
rates of the regularized solutions of ill-posed inverse-strongly monotone varia-
tional inequalities in Banach space was considered in [8].

Theorem 2.3. Let X and X™ be strictly convexr spaces, A;-‘ be a monotone
bounded hemicontinuous operator, U® : X — X* be a duality mapping. As-
sume that (1.3) and (1.5) hold and,

(i) Ay is Fréchet continuously differentiable with (2.7) for x = 2;

(ii) there exists z € X such that Ay (2°)*z = U*(2° — x.);

(iii) the parameter & = a(h,d) is chosen by (2.5) with 0 < p < q.
Then,

. f1+q—p Aop
T2 =0((h+ 6™ = .
o =) = O((h+0/%), mm{ s<1+q>’s<1+q>}

Proof. Replacing x by ¥ in (2.3) we obtain
my ||z — 2°)|* < éN(hg(onll) +0) 2% — af | + (U (2" — z,), 2% — ). (2.8)
Using conditions (i), (i) we can write
(U*(2® = 2.),2” — 2F) = (2, A1 («") («” — 27))
< Iz (F + D) Ar(@F) — A (2°)]
< |I2l1(7 + 1) (Rg(ll25 1) + AT (25) — £21| + )

N (2.9)
< el + 1) [ZMHA?@;) _f

=2

+allaf — w7+ hg(ll2Z]) + 6
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Combining with (2.8), the inequality (2.9) becomes

°II® < =N (hg(ll2°]]) + ) [l2® — 2|

QI\H

myl||lxh —x
2+ 1) {}j MIARGE) - £ (210

+awg—mw*+wmwaw+ﬂ.

Now, it follows from Theorem 2.2 that
& < Cl—l/(1+q)(h +5)p/(ta),
and
M < Cy(h + )t Pal
< CoCy VD (4 5)1 P/ (%a),
Therefore,
my g —a®||* < Cr(h + 6)' 7 0F D20 — aZ | + Co(h + 6) 2P/,

where Cj,i = 1,2 are the positive constants. Using the implication

a,b,c>0, s>t a® <ba'+c=a° = O(bS/(S_t) + o),

we obtain
lzg — 2| = O((h + 6)").
O

Remark 2.1. If « is chosen a priory such that a ~ (h+0)7, 0 < n < 1, it
follows from (2.10) that

L—n Ao
-1 s

m;—wuzo«h+®myy2:mm{

And now, we consider the following iterative regularization method of zero
order, where z,41 is defined by

N
it = 20— | SOV (Ay) — )+ nlen — )| o€ H,(201)

j=1
where H is a real Hilbert space, {a,} and {8,} are sequences of positive
numbers.
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We consider the operator equation

Z an’ (Aj(z) — fi) + an(z — z4) = 6. (2.12)

Theorem 2.4. Let X and X* be strictly convex spaces, A; : X — X* be
a monotone bounded hemicontinuous operator and inverse-strongly monotone.
Assume that (1.3) holds. Then

(i) For each a, >0, Problem (2.12) has a unique solution xn,

(ii) If 0 <an <1, ap, — 0 asn — +oo, then lim x, = 2° € S with z,

TL‘) oo
-minimal norm and

e — 2] = 0(‘“‘“’)
(67%

where Tp4+1 1s a solution of (2.12) when o, is replaced by cuyy1.

Proof. (i) By an argument analogous to that used in the proof of the equation
(2.1), we deduce that the equation (2.12) has a unique solution denoted by
Ty
(ii) The proof of the first part is anologus to Theorem 2.1.

Let 41 be a solution of (2.12) when «, is replaced by a,41. It follows
from (2.12) that

Zan f]vxn $n+1> +an<xn — Tx, Tn _mn+1>
+ Z Oén+1 $n+1> fj7 Tp4+1 — xn> + ant1 <xn+1 — Ly, Tp41 — $n>
+ Z ay’ (A = fisTn1 — @n) + Z ay’ (A — fir@n — Tng1) = 0.

Because of the monotonicity of A; and the last inequality, we obtain

N
A Aj
Z(anj - Oén{H)<A](LEn) - fjaxn - xn+1> + an<$n — Ts, Tp — xn+1>

+ Qnt1 <xn+1 — Ty, T+l — xn) <0.
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Hence,

an<xn — Tn41,Tn — wn+1> < (an - an+1)<xn+1 — Ty, Tn4+1 — $n>

N
A Aj
+ > (o0’ — o ){Aj(@n) = [ @ns1 — Tn).
j=2
So
o — a1 KX A
_ 1 ) )
”xn - xn—i—l“ < naiwufn—i-l - l‘*H + OT Z |Oln] - an]+1|7 (2'13)
n n

=2
where K is a positive constant such that K = maxa<j<n || 4;(zn) — fjl]-
On the other hand, it follows from (2.12) that

N

)\.
D A (A (@ns1) = [, Tnp1 — T) + Qni1 (Tng1 — T, Tpgr — )
7j=1

N
Aj
= a (Aj(ant1) — A(2) + f5 — fjs Tng1 — )
j=1

+ i1 {Tpt1 — Tuy g1 —x) =0, Yz € S.

Using the monotone property of A; the last equality have the form

N
)\.
Un41{Tnt1 = T, Tl — T) = Z anh(Aj(l‘nH) —Aj(z), 2 — Tni1)
7=1

<0, Vx € S.

Therefore,

|xnt1 — || < [|Jz — 24|, YV € S. (2.14)
Combining (2.13), (2.14) and the Lagrange’s mean-value theorem for the dif-
ferentiable function ¢(v) = 7, 0 < v < 1, v € [1;400) on [oy; apt1] we
get

st — 2| < MM7
Qp
where
M = ||2° — 2| + K(N - 1).
The proof is complete. O

We need the following result (see [4]).

Lemma 2.3. Let {uy},{ax}, {br} be the sequences of positive numbers satis-
fying the following conditions:
(1) ups1 < (1 —ap)up + b, 0<ap <1,
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(ii) 3 a =400, lim — =0.
k=1

Then, lim wu; = 0.
k—4o00

Theorem 2.5. Assume that {a,} and {5} in the problem (2.11) satisfy the

following conditions:
(i) 1>a, \ 0, B, =0 asn— +oo ;

i) lim = anl oy By,
n—-+oo ﬁna% n—+00 Ay

o0
(111) Y anBy = +o00.
n=1
Then {z,} generated from (2.11) converges in H to 2° € S as n — +oo.

Proof. First, we have ||z, — 2°|| < ||z, — zn|| + ||z — 2°||. The second term in
right-hand side of this estimate tends to zero as n — oo, by Theorem 2.3. So
we only have to proof that z, approximates x,, as n — oo.

Let A, = ||z, — zp|. Obviuously,
Ant1 = llznt1 — Tl
(2.15)

N
<||zn —xn — Bn |:ZO[T>7\,]'(A]'(Z7L) - f]) + an(zn - SU*):| H
=1

+ ||$TL+1 - 'rnHa

where
2

o — T — B [iaﬁjmj(zn) — [ + an(zn — x*)]

2

N
> aw (4(z0) = ;) + anlzn — 22)

J=1

N
- 2Bn<zn — T, Za?ﬂ (Aj(zn) = f) + an(zn — )

Jj=1

- {jﬁ;akmﬂxn) - 1)+ anlen )| )

= |lzn — 5L'n||2 + 6721
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< (1 - QBnOKn)HZn - -rnHQ

e 2 (2.16)

N
> aw (4(z0) = ;) + anlza — 2.)
j=1

Since A; is inverse-strongly monotone, A; is Lipschitz continuous, and

2

N
S an’(Aj(z0) = £5) + an(zn — 2.)
j=1

2

N N
Z@:\zj (Aj(zn) - fj) + an(zn — T4) — Z a:\lj (AJ(:U”) o fﬂ) — (T — @)
i=1 =t

al A 1 2 al A 1

§<Z%J —|lzn — an) +apllzn — @l + 205 Y 0’ ——|1z0 — @
: mA; ° uyy
j=1 J j=1 J

SCHZW, _JUnH2a

where ¢ is positive constant. Combining (2.15), (2.16), the last inequality and
the Theorem 2.3 yields that

2 2 12 |41 — an
Apt1 < | AZ(1 =280 + ¢B;) + MT'
n
By taking the squares of the both sides of the last inequality and then applying
the elementary estimate (see [4])
1

o fn

(a+b)2 < (14 apfn)a® + (1+ )b?

we obtain that
2 2 2 2 2 3
As 1 S AZ(L = Bpoan + ¢B;, — 205,85 + canfBy)
1 « — ap|?
+(1+ )M2| TL+12 n|
Bnan (0%
The conditions of Lemma 2.3 for the numerical sequence {A,, } are true because
of (2.17) and conditions (i) — (zi7) with
ap = apfn — CB?L + 20‘%57% - canﬁg
1 |1 — o |?
by = (1 M2 .
n= 0t g a2

n
The proof is complete. O

(2.17)

Remark 2.2. The sequences (3, = (1 + n)*l/2 and a, = (14+n)"P,0<2p <
1/N satisfy all conditions in Theorem 2.5.
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3. NUMERICAL EXAMPLE

We now apply the obtained results of the previous sections to solve the
convex optimization problem: find an element z° € H such that

0;(2°) = géi;}goj(m) j=1..,N, (3.1)

where ¢; is weakly lower semi-continuous proper convex function on a real
Hilbert space H.
We consider the case, when the function ¢; : L?[0,1] — RU{+o00} is defined

1
by ¢j(z) = f(§<Bj$,iL‘>), j=1,2, where f: R — R is chosen as follows

0 , t<by,
t —bp)?
ft) = (21/0) , b <t <bo+v,
t—m—g L t>botu,

with v > 0 is sufficiently small, and B; : L?[0,1] — L?[0,1] are difined by
1

Bjx(t) = [ k;(t, s)x(s)ds,
0

ft(l=s) , if t<s,
kl(t’s)_{ s(1—t) , if s<t,
and
(1 —s)2st? (1= $)2t3(1 + 2s)
2 6 ; 5
+(;ﬁ, if >,
Fa(ts) =\ @201 - 5)(1—-1)2  2(1—1)3(2s - 3)
+
2 6 Re
+(S —Y) , if t<s.

6

Then z° is a solution to the problem (3.1) if and only if 2° € S with A;(z) =

1
f’(§<le"a$>)Bj($)-
We apply the iterative regularization method (2.11) as follow

Zmal = Zm — Bm [[llzm + Aoz, + a%lzm], 20 € RM, (3.2)
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where A;(z) = f'(5(B;#,%)) B;() with
Bj = (Ck;(te, t1))di—1
F=(Z1, .., anm)7

~ 1
Ty ~ x(tk), k= 1,...,M, {= M

1
By choosing a,, = (14+m)™, 0 < p < 7 B = (14+m)"Y2 2z =

1073

(5, 5, ..., 5)T € RM and by = — V= 1072 we obtain the results.

m err 2% — 2|
32 | 0.00067782 0.0077909
64 |5.3403 x 10~° | 0.0010353
128 | 2.7676 x 107° | 8.9792 x 10~
256 | 8.6222 x 1078 | 4.6575 x 107°

1

Table 2.1: M =50, p = 9
m err 129 — 2]
32 0.00013731 0.001026

64 | 3.7047 x 1079 | 4.379 x 10~°
128 | 3.9267 x 1078 [ 7.2603 x 107
256 | 1.2199 x 10719 | 3.501 x 1077

1
Table 2.2: M =50, p= 8
In these tables, err = max |zl(€m_1) - z,(gm)| is error.
1<k<M
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