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Abstract. In this paper, we introduce the following functional equation
k

S0 () st G- ) = ks

=0

where k € Nand j = [%] We achieve the general solution of the above functional equation.

1. INTRODUCTION AND PRELIMINARIES

Aczél [1] and Kannappan [6] have treated systematically the following Cauchy
equations. We assume that f : R — R satisfying

flxxy) = f(z)o f(y) (1.1)
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such that % or o are addition '+’ or multiply ’.”. If * and o is equal to 47,

then the equation (1.1) is said an additive functional equation. The addi-
tive functional equation is one of equations that have been extensively stud-
ied or explored and was solved by, among numerous authors, Aczél, Banach,
Gauss, Hamel, Kuczma, Legendre and others, under various hypotheses of the
function, domain, and range. For additional information, we refer interesting
reader to Kannappan [8] and Kuczma [9].

Among the normed linear spaces, inner product spaces play an important
role. The interesting question when a normed linear space is an inner prod-
uct space led to several characterizations of inner product spaces starting with
Fréchet [3], Jordan and von Neumann [5], etc. Functional equations are instru-
mental in many characterizations. The basic algebraic (norm) condition that
makes the normed linear space an inner product space is the parallelogram
identity, also known as the J ordan-von Neumann identity (or the Appolonius
law),

lz + ylI* + o — yll* = 2[|=]* + 2]yl

for x,y € X where X is a normed linear spaces. This translates into a func-
tional equation well known as the quadratic functional equation,

flx+y)+ flx—y)=2f(z) +2f(y) (1.2)

for z,y € X where X is a normed linear spaces. Many authors have studied the
quadratic functional equation (1.2) under various hypotheses of the function,
domain and range (see [7, 8, 10, 11, 15]).

In 2001, Rassias [14] introduced the cubic functional equation

flx+2y) = 3f(x+y)+3f(x) — flx —y) =6f(y) (1.3)

and investigated the solution and the Ulam-Hyers stability problem for these
cubic mappings. It is easy to show that the function f(z) = 2? satisfies the
functional equation (1.3), which is called a cubic functional equation and every
solution of the cubic functional equation is said to be a cubic mapping.

The quartic functional equation

flx+2y) + flz —2y) =4Af(x +y) +4f(z —y) +6f(z) +24f(y) (1.4)

was introduced by Rassias [13]. It is easy to show that the function f(z) = x*

is a solution of (1.4). Every solution of the quartic functional equation is said
to be a quartic mapping.

Xu et al. [16] have proved the general solutions and stability of the quintic
functional equation

flx+3y) = 5f(x+2y) +10f(z +y) — 10f(z) +5f(x —y) — f(z —2y)
= 120/(y) (1.5)
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and the sextic functional equation
flx+3y)—6f(zr+2y)+15f(x+y) —20f(x) + 15f(x — y)
—6f(x —2y) + f(x + 3y) = 7201 (y). (1.6)
Since f(x) = x° is a solution of (1.5), we say that it is a quintic functional
equation. Similarly, f(z) = 2% is a solution of (1.6), and we say that it is a
sextic functional equation. Every solution of the quintic or sextic functional

equation is said to be a quintic or sextic mapping, respectively.
We extensively generalize the above results. Assume that k¥ € N and j =

[%} We introduce the following functional equation.
k o
S (4 ) fekG-im =R (17)
=0

If we set k =1,2,3,4,5 or 6 in the functional equation (1.7), then we get the
additive functional equation, the quadratic functional equation (1.2), the cu-
bic functional equation (1.3), the quartic functional equation (1.4), the quintic
functional equation (1.5) or the sextic functional equation (1.6), respectively.
See [2, 4, 12, 17] for more information on functional equations.

In this paper, we find the general solution of the functional equation (1.7).

2. SOLUTION OF THE FUNCTIONAL EQUATION (1.7)

In the rest of this paper, unless otherwise explicitly stated, we will assume
that f : R - R, k € N and j = [2}}]. We start our work with the following
lemmas.

Lemma 2.1. For any 1 <1 < j, we have

g(_l)d(2z‘+ki—d)<dﬁ1)+(_1)i<];):<2ki> (2.1)

%i<_1)d_l<2ilid>(dﬁl>_<2¢k—1)' (2.2)

d=1

and

Proof. Consider the following identity.
(1—2)F1+2)F = (1 - 22 (2.3)

It is obvious that the coefficient of 22 of the right side of the functional

equation (2.3) is equal to
Ok
co(4) (2.0
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and the coefficient of 2% of the left side of the functional equation (2.3) is

equal to )
f:(—nd( .y ) < y ) (2.5)

d=0
It follows from (2.4) and (2.5) that

S (Lt ) (B (h) e

Then by (2.6), we obtain (2.1).
For second assertion, we consider the functional equation (2.3) again. The
coefficient of 22~! of the left side of (2.3) is equal to

25:1(_1)%21—]2—1)(];)'

d=0
On the other hand, the coefficient of 2%~! of the right side of (2.3) is equal

to zero. Thus we have Z?j;ol(—l)d ( 9 _Z 3 ) ( Z > = 0. Therefore, we

<2i]€—1):§(_1)d<2z’—]2—1)(Z)'

So we conclude that (2.2) holds. O

have

Lemma 2.2. For any 1 <1 < j, we have

<—1>i{<?)—<k_’§+1>}+§—1>d(2¢+’§_d)
X{<dﬁl>+<dﬁ3>}:<2ki>+(2ik—2>

§(_1)d_1<2iﬁd){<dﬁl)+<dﬁ3)}

d=1

:<2z'k—1>+<2z‘k—3>‘ (28)

Proof. Replacing 2i by 2i — 2 in (2.1) and adding the outcome to (2.1), we
obtain (2.7). Similarly, replacing 2i — 1 by 2i — 3 in (2.2) and adding the
outcome to (2.2), we get (2.8). O

(2.7)

and
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Lemma 2.3. Let k =2j—1. Then for all 1 <t <1i—2, we have the following
results:

(1) If j = 2i, then we have

2;“1w4{<k—%i1—d>"<k+mi3—d>}
k
N

(2.10)
k
+<d—3
:{<§>+<]E2>}{ g—£—2>_<j—£—3)}
(2) If j = 2i — 1, then we have
(1)j_%_1{<j—ltf—1 ) (j+lz+1 >}
+dé(_l)d{<k—gt—d>_<k+2ti4—d>} 2.11)
{<dﬁl>+
(
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g(_l)d_l ( —2tli - >_<k+2ti3—d>}

Proof. By (2.9), for all 1 <t <i— 2, we have

S (oabioa)- (reataa))
X{UJ( )

e (g e ) (8 )+ (a8s))
e e (g G ) (R

Note that < 2 ) = < kzﬁd ) forall0 <d <k and < Z ) =0 for all d > k.
The second term of the right hand of (2.13) can be written as follows.

:3(_1)d<d " 3){(d§1>+<dﬁ3>}
g) <2ti2)+(2kt>}

(2.13)
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Using (2.8), (2.13) and (2.14), we get

)}

k
k+2t+3

N—— —0 N

omplete.

Therefore, the proof of (2.9) is c

(2.10), (2.11) and (2.12).

Similarly, we can prove

< i —2, we have the following

= 2j. Then for all 1 <t

Lemma 2.4. Let k

esults.
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(1) If j = 2i, then we have

;(—1)d_1<dﬁl>{<k:—;ft—d)+<k‘+2tli2_d>} (2.15)
() (%)

and

(1)1 ( jl—ltf—l >
:dé(—l)d<dﬁl>{(k—2tk—1_d) (2.16)
+<k+2ti3—d>}

=<f~)<]~_2’1_1>-

(2) If j = 2i — 1, then we have

(—1)—t-1 < j_’z_ X > (2.17)
+Zfz:1(1>d< dﬁ1 ){(k—th—l—d)Jr<k+2tlj—3—d>}
—(5)(oas)

;(—1)d_1(dﬁl>{<k—;ft—d)+<k‘+2tli2_d>} (2.18)
“(5)Ga)
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Proof. Since k = 2j and j = 2i, by (2.15), for all 1 <t < i — 2, we have

i(l)dl<dkl){<k§td><k+2t112d>}
:zj:(_l)dl<dﬁl ) ( k—i—d) (2.19)
+ _Z (_1)d_1<dﬁl ><d—2kt—2>'

The second term of the right hand of (2.19) can be written as follows.

d::Z;Q(_l)d_l ( dﬁl ) ( d—2kt—2)

:_<2til)<g)+ i <_1)d_1(dﬁl>(d—2kt—2) (2.20)

d=2t+3

G e () ()

d=j+2
Using (2.2), (2.20) and (2.19), we get

i(_l)dl<dﬁl>{<k—2kt—d

d=1

() (§) e

_<k+2tﬁ—2—d)}

QU
i
X
R —~
2
[~
—_
N———
N
e
|
ISR
[
.
N——

o3 e () (endia)
SEBTORTIN.

+ :g 0 (G5 ) ()
—(220) (0) - () G )+ ()

:<§><j—2kt—1>'
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Therefore, the proof of (2.15) is complete.
Similarly, we can prove (2.16), (2.17) and (2.18). O

Lemma 2.5. Assume f satisfies the functional equation (1.7). Then we have
the following statements

(1) £(0)=0.

(2) If k = 2j, then we have f(—z) = f(z).
(3) If k=25 — 1, then we have f(—x) = —f(x).

Proof. Letting = y = 0 in (1.7), we get zfo(—l)i( ’: >f(0) = KkI£(0).

Then we conclude 0 = (1 — 1)¥f(0) = k!f(0). Thus we obtain f(0) = 0.
Suppose k = 2j. Replacing z =0 and y = x in (1.7), we find

k
Sy ( k ) £ (G~ i)x) = K (2). (2.21)

7
=0

Also, if we let x =0 and y = —z in (1.7), then we get

1

k
Sy ( ki ) F (=0 = i)a) = Kif(—a). (2.22)
1=0

By (2.21) and (2.22), we get

I
‘M?T

f-0) =0 (5 ) 6= )

1

I
|
—
=
RN
B
S~—
~
<
|
$
&
I
=
~
—~
~

Therefore, we obtain f(—z) = f(z).
In the same manner, we can prove f(—xz) = —f(x) if k =25 — 1. O

Lemma 2.6. Assume f satisfies (1.7), and that k = 2j — 1. Then we have
the following results.
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1>1 and j > 2i, we have

n steps and for

(1) For eve

() (ata)

(2.23)

=
7N PN o\ —
Y P + N
o ™ > TN
= ~ = < |
— S~— N——— VN =
N + + A~ ~—
PN P — R — -+
IR L
~ = | e | = T e s —
- B S N + e |
N—— ~__ nﬂ 2 ‘e~ s
+ ~— ~— N —— —
| | — X
N /N M~ ~ | ~— /~
— 3 ~= =z — T A~ o —
< | | _ = N e 4+ o/ — < | (x\
= e < | N - = o = =
~ + + T I~ = | 2 | e
= = B L ==
[a\] — e —
7N S~—
~—— ~_— e | - o I ~ o
T T d N R | + — x|
+ 4 — —_ — ~ N— | M~ | ~
= S = | + ~— S e — 3
) | - ! 3 ~— ~ ~— e | ((
S = Yy~ Z,F\I/ = + m/.i\né(( ~ — T
N K e - S
-~ S = QW (.Z__ — _I_. =3 ~_ = —
—
e 3T mz.m P S+ P o\ N B
= & = & = 7 42:( n = Lz oy —
+ + + + + X + _ + + + X Il
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(2) For odd steps and for i >0 and j > 2i + 1, we have

jill(—l)d< 2i—1j1+2 ) <( dﬁl )+<df3 ))f((k:—%)x)
n

e s
+ {} S (o) () + (45s)
+(—1)T(< >+< ﬁl>>}f((k—2r+1)x)
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Replacing (z,y) by (0,2z) in (1.7) and by f(—z) = —f(z), we have

k
( ]S > f(2jz) +;(—1)t ( I: >f(2(j — ta) - kf(2) (2.25)
—0

By f(—z) = —f(z), we can rewrite the right of (2.25) as follows.

<lg>f(2jx)—{k‘!+(—1)j<<j§1>_<j—kii1 ))}f(%)
(226)

Ee(()-(4)reo-omo

Replacing (z,y) by (jz,x) in (1.7), and multiplying the result by < ]S >, we
get

k-1
( : ) {f(ij) + 3 -1y ( " )f((k:—t—i— 1)) — (K +1)f(:c)} — 0. (2.27)

It follows from (2.26) and (2.27) that

k—1

(g)(k!Jrl)f(x)—(g)Z(—l)t(I;>f((k—t+l)x)

o ) i (2.28)
DI (( t ) - ( e )) 73 —t)) =0,
The first summation of (2.28) can be written as follows.
kf(—l)ﬁ( V) skt
= (2.29)

:§< 2"1 )f((k—2r+1)x)—§(—1)t< 25111 >f((k—28)af).

s=0
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By (2.28) and (2.29), we conclude
) (-G

which proves (2.24) for i = 1.
Note that if ag > a1, then Y731 F(i) = 0. Replacing (z,y) by ((j — 1)z, z)

in (1.7), and multiplying the result by ( ]f >, we get

(F) {f(kaa) +§<—1>t (5 ) re-om -0 ( ] >)f(w)} o)

=0.

The summation of (2.31) can be written as follows.

i(—l)t ( ’; ) f((k—t)z) = jf(—nt < 2"; ) £ (k= 2s)z)

t=1 s=
e (2.32)

—;(—N( 0 >f((k:—2r+1)x).

It follows from (2.30), (2.31) and (2.32) that

(o= (5) (44 )}
() -(5) () (5o
() (1) (5)) e
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-2

S E)-(2) e ()-(2))
(oo (5 ()5 ()

<.

which proves (2.23) for i« = 1. Here, assume that the induction hypothesis
is true for the even step ( ., (2.23)) and prove the odd step 2i + 1 (i.e.,
(2.24)). Replacing (z,y) by (j — 2i)z,x) in (1.7), and multiplying the result

(£ T

((3)(a e ) b ()

Sr((a b () e
)-(ata )

The first summation of (2.33) can be written as follows.

< f((k—t—2i+1)z)

.

d
<2 - (k4
=0.

N |

k—4i+1
) <—1)t< lf )f((k—t—Qi—i—l)x)
t=1
j—max{2,}
- Z < 2 ﬁ 2 > fl(k—=2r+1)x) (2.34)
r=i+1
j—i—1

_ Z <28_2H1 )f((st)x).

By (2.33), (2.23) and (2.34), we obtain (2.24).
On the other hand, assume that the induction hypothesis is true for the
odd step 2i 4+ 1 (i.e., (2.24)) and prove the even step 2i (i.e., (2.23)).
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Replacing (x,y) by ((j — 2¢ — 1)z, z) in (1.7), and multiplying the result by

<< 22']11 > + ( gik_l >>,weget
<< 22‘]11 > + ( zik_l )) {£((k —20)2)

S 42 1 ) k—t— 2i)z)

v (
<(2’L+d+1)<2i—]zz—1>>f((d+1)x) (2:35)
_<k! (aif0) - (250)) )

=0.

211

The first summation of (2.35) can be written as follows.
k—4i—1
f k .
> (§)r(- -2
t=1
j—maz{2,i+1} 1
= > ( os 2 )f((k—2s)x) (2.36)
s=i+1
j—max{2,i+1} k
— Z <2T_2Z._1>f((k:—2r+1)x).

r=i+1
By (2.35), (2.24) and (2.36), we obtain (2.23). O

Lemma 2.7. Assume f satisfies (1.7) and that k = 2j. Then

(1) for odd steps and for i > 1 and j > 2i — 1, we have
2i—1
. k k ,
{;(—1)‘1 L < o > ( i > }f((k:—22+1)x)
j—max{l,i—1} 2i—1 2 &
+ E;rl Z (28_d><d_1>f((k:—28—|—1)x)
j—max{2,i} 2i—1

+ Z {(D’“( ﬁ)*Z(l)d_l<2r+k1—d><dﬁl>}

d=1
< f (k- 2r)a)
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21—4  21—1
k k k
_1\d+t _
3 {3 << d—t—3> <t+d+1 )) < d—1>
t=1 d=1
1,

M _1j<jfl)+2§(—1)d_l(dﬁ1) (2.37)

BB () (o) ( ) e



502 H. K. Fahandari, H. Majani, S. Y. Jang and C. Park

Proof. We prove the assertion by induction. Assume that f satisfies (1.7).
Replacing (z,y) by (0,2z) in (1.7), we have

k—1

2< ]8 )f(ka:) +Z(—1)t( ’; )f(2(j —t)z) —klf(22) =0.  (2.39)

t=1

By f(—z) = f(z), the summation of (2.39) can be written as follows.

> (3)seu-1m- > (§)reu-om
+;;<1>t (§)reu- t)xj_l "
- Z( v (§)re6-00+ > (§)re6-00
:{i( o' (5 ) re-on
By (2.39) and (2.40), we conclude
( : )f(kx)— {’;!+(—1>J‘ ( e )}f@x)
- (2.41)

Jj—2
k
t ; =
# () ) 7600 =0,
t=1
Replacing (z,y) by (jz,x) in (1.7), and multiplying the result by < ]g ), we

find

2

< § ) {f(km)+l;il(—1)t< )f((k—t)a:)— (k:H— < kﬁl )) f(x)}
=0.

The summation of (2.42) can be written as follows.

&+ T

S () £ 00 =S () ) (- 2ne)

_ st < 2 )f((k:25+1)x). (2.43)
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Tt follows from (2.41), (2.42) and (2.43) that
(e (W) ) s (Bvenr (G54 (W5)) e
k
; e 1)

(2.44)

which proves (2.37) for i = 1.
Replacing (z,y) by ((j—1)z, x) in (1.7) and multiplying the result by ( ]f >,

we get
< ’f > {f((k; —1)z) + g(—l)t ( l; ) ftk—t—1)z) o)

~w= ()= (wFy P} =0

The summation of (2.45) can be written as follows.

SEpe (§ ) s-i-n0 =S5 (L0, ) -2

(L >f((k¢—2r)x)- (2.46)

(o (Y
() () (oo

{ k

S (D) () e
+§{(‘f)<2r’f_l)—(;)ﬂ—l)’"(’j)}f((k—zrmx)
G () oo (G5 ) - (3) (5 )prea=o
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which proves (2.38) for ¢ = 1. Here assume that the induction hypothesis
is true for the even step 2i (i.e., (2.38)) and prove the odd step 2i + 1 (i.e.,
(2.37)).

Replacing (z,y) by ((j — 2i)z,z) in (1.7), and multiplying the result by

(Z),Weﬁnd

(;){f((k—%)x)Jrk;le (l;)f k—t—2i)z)
+2§(—1)d—1<< ]ZH >+<dk >>f((21+1—d)3:) (2.47)

(e (o )+ (a0 ) 100}

The first summation of (2.47) can be written as follows.

kf(—lf (5 )re-e—2i0- ) (55 ) fG= 2000

r=i+1

5> (ne_biy ) fGs-25410) (2.48)

s=1+1

By (2.47), (2.38) and (2.48), we obtain (2.37).
On the other hand, assume that the induction hypothesis is true for the odd
step 2i + 1 (i.e., (2.37)) and prove the even step 2i (i.e., (2.38)). Replacing

(2,9) by ((j — 2i + 1)z, z) in (1.7), and multiplying the result by ( 2i’“_ ).
we get

< Qik_ 1 > {f((k—2i+1)m)+k§1(—1)t ( ’Z ) F((k—t—2i+1)z)

£y (( LA ) + ( S )) £((2i — dyz) (2.49)

(o (5) ()
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The first summation of (2.49) can be written as follows.

k—4i+1
(—1)! < l; ) f((k—t—2i+1)z) (2.50)

- S <2£2i )f((k:2s+1)x)§< 27,_’;.“ >f((k27’)$)-

s=i+1 r=1

By (2.49), (2.37) and (2.50), we obtain (2.38). 0

In the following theorem, we investigate the general solution of the func-
tional equation (1.7).

Theorem 2.8. Assume that f satisfies the functional equation (1.7). Then
we have f(2x) = 2F f(x).

Proof. First, we assume that k = 25 — 1 and j = 2i with ¢ > 2. Using (2.23),
we have

—
|
N
N
Y
S0 R
N——
|
7N

™
|
SR
_I_
[
N—
N———

() (e
S () ()
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+{ Z<<d’%>+< "))
S (a8 ) =) (G5 )+ ()

By (2.7) and j = 2i, the coefficient of f(jz) in (2.51) can be written as follows,

Coefficient of f(jz) — < ]; > + ( jEQ ) . (2.52)

By (2.8) and k = 2j — 1, the coefficient of f ((k—2s)x) in (2.51) can be
written as follows.

1 :
SDA VD) B

= 2j — 1, the coefficient of f ((t +2)z) in (2.51) can be written by two
parts. By (2.9) and ¢t =2s — 1 with 1 < s <i— 2, we have
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Similarly, we determine the coefficients of (2.24). For k = 2j — 1 and j = 2i
we conclude

Coeff. of f(jx) = <jﬁ2>+<.]7€'>’

coett. of (- 12) = (5, )+ () ((F)- (%))

Coeff. of f((2s+ 1)x)

() ON(G i) -Gk

for1 <s<i-—2,
Coeff. of f((2r 4 2)x) (2.58)

:<<j52)+<§'>> ((j—2]i—2>_<j+2ﬁ~+2>>’

forl1<r<i-—2,

ot s (52 )+ (5)) (1) (142)

Coeff. of f(z)

()-GO (5))

Finally, by (2.51)—(2.58) and subtracting (2.24) from (2.23), we obtain

Elf(2z) = 2Rk f (x).

Therefore, we have f(2z) = 2¥ f(x). This is the end of proof in this case.
The proofs of the other situations, k = 25 — 1 with j = 2i + 1, k = 2§ with
j =2i and k = 2j with j = 2¢ — 1, can be obtained in the same way. g

o
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