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Abstract. This paper mainly focuses on numerical techniques based on the Adomian De-

composition Method (ADM) and Direct Homotopy Analysis Method (DHAM) for solving

Fredholm integro-differential equations of the second kind. The reliability of the methods

and reduction in the size of the computational work give this methods wider applicability.

Convergence analysis of the exact solution of the proposed methods will be established.

Moreover, we proved the uniqueness of the solution. To illustrate the methods, an example

is presented.

1. Introduction

In this paper, we consider Fredholm integro-differential equation of the form:

k∑
j=0

pj(x)u(j)(x) = f(x) + λ

∫ b

a
K(x, t)G(u(t))dt (1.1)
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with the initial conditions

u(r)(a) = br, r = 0, 1, 2, · · · , (k − 1), (1.2)

where u(j)(x) is the jth derivative of the unknown function u(x) that will be
determined, K(x, t) is the kernel of the equation, f(x) and pj(x) are analytic
functions, G is nonlinear function of u, a, b, λ, and br are real finite constants.

The Fredholm integro-differential equations arise in many scientific appli-
cations. It was also shown that these equations can be derived from boundary
value problems. Erik Ivar Fredholm (1866–1927) is best remembered for his
work on integral equations and spectral theory [6, 7, 8, 9, 10, 11].

In recent years, many authors focus on the development of numerical and
analytical techniques for integro-differential equations. For instance, we can
remember the following works: Abbasbandy and Elyas [1] studied some appli-
cations on variational iteration method for solving system of nonlinear Volterra
integro-differential equations, Alao et al. [2] used Adomian decomposition
and variational iteration methods for solving integro-differential equations,
Behzadi et al. [3] solved some class of nonlinear Volterra-Fredholm integro-
differential equations by homotopy analysis method, to the antisymmetric flow
over a stretching sheet by Ariel et al. [4], to the Helmholtz equation and
fifth-order KdV equation by Rafei and Ganji [25], for the thin film flow of a
fourth grade fluid down a vertical cylinder by Siddiqui et al. [26], to the non-
linear Volterra-Fredholm integral equations by Hamoud and Ghadle [12, 13],
to integro-differential equation [5, 14], to system of Fredholm integral equa-
tions [24]. Moreover, many methods for solving integro-differential equations
have been studied by several authors [15, 16, 17, 18, 19, 20, 21, 22].

The main objective of the present paper is to study the behavior of the
solution that can be formally determined by semi-analytical approximated
methods as the ADM and DHAM. Moreover, we proved the uniqueness results
of the Fredholm integro-differential equation (1.1), with the initial conditions
(1.2).

2. Adomian decomposition method (ADM)

Now, we can rewrite Eq.(1.1) in the form:

pk(x)uk(x) +

k−1∑
j=0

pj(x)uj(x) = f(x) + λ

∫ b

a
K(x, t)G(u(t))dt. (2.1)

Then

uk(x) =
f(x)

pk(x)
+ λ

∫ b

a

K(x, t)

pk(x)
G(u(t))dt−

k−1∑
j=0

pj(x)

pk(x)
uj(x).
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To obtain the approximate solution, we integrating (k)-times in the interval
[a, x] with respect to x we obtain,

u(x) = L−1
(
f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr + λL−1

(∫ b

a

K(x, t)

pk(x)
G(u(t))dt

)

−
k−1∑
j=0

L−1
(
pj(x)

pk(x)
u(j)n (x)

)
, (2.2)

where L−1 is the multiple integration operator given as follows:

L−1(·) =

∫ b

a

∫ b

a
· · ·
∫ b

a
(·)dxdx · · · dx (k − times).

Now we apply ADM

G(u(t)) =
∞∑
n=0

An, (2.3)

where An; n ≥ 0 are the Adomian polynomials determined formally as follows:

An =
1

n!

[ dn
dµn

G(
∞∑
i=0

µiui)
]∣∣∣
µ=0

. (2.4)

The Adomian polynomials were introduced in [16] as:

A0 = G(u0);

A1 = u1G
′
(u0);

A2 = u2G
′
(u0) +

1

2!
u21G

′′
(u0);

A3 = u3G
′
(u0) + u1u2G

′′
(u0) +

1

3!
u31G

′′′
(u0), · · · .

The standard decomposition technique represents the solution of u as the
following series:

u =

∞∑
i=0

ui. (2.5)
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By substituting (2.3) and (2.5) in Eq. (2.2) we have

∞∑
i=0

ui(x) = L−1
(
f(x)

pk(x)

)
+
k−1∑
r=0

1

r!
(x− a)rbr

+λ

∞∑
i=0

L−1
(∫ b

a

K(x, t)

pk(x)
Ai(t)dt

)

−
∞∑
i=0

k−1∑
j=0

L−1
(
pj(x)

pk(x)
u
(j)
i (x)

)
.

The components u0, u1, u2, · · · are usually determined recursively by

u0 = L−1
(
f(x)

pk(x)

)
+
k−1∑
r=0

1

r!
(x− a)rbr,

u1 = λL−1
(∫ b

a

K(x, t)

pk(x)
A0(t)dt

)
−
k−1∑
j=0

L−1
(
pj(x)

pk(x)
u
(j)
0 (x)

)
,

un+1 = λL−1
(∫ b

a

K(x, t)

pk(x)
An(t)dt

)
−
k−1∑
j=0

L−1
(
pj(x)

pk(x)
u(j)n (x)

)
, n ≥ 1.

Then, u(x) =
∑n

i=0 ui as the approximate solution.

3. Direct homotopy analysis method (DHAM)

Consider Fredholm integro-differential equation (1.1) and substitute the ker-
nel K(x, t) = g(x)h(t) we obtain

k∑
j=0

pj(x)u(j)(x) = f(x) + λg(x)

∫ b

a
h(t)G(u(t))dt.

To obtain the approximate solution, we integrating (k)-times in the interval
[a, x] with respect to x we obtain,

u(x) = L−1
(
f(x)

pk(x)

)
+
k−1∑
r=0

1

r!
(x− a)rbr + λL−1

(
g(x)

pk(x)

∫ b

a
h(t)G(u(t))dt

)

−
k−1∑
j=0

L−1
(
pj(x)

pk(x)
u(j)n (x)

)
, (3.1)
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Setting

Q =

∫ b

a
h(t)G(u(t))dt

F = L−1
(
f(x)

pk(x)

)
+
k−1∑
r=0

1

r!
(x− a)rbr −

k−1∑
j=0

L−1
(
pj(x)

pk(x)
u(j)n (x)

)
,(3.2)

then, Eq. (3.1) can be written as

u(x) = F (x) + λL−1
(
g(x)

pk(x)
Q

)
.

We define the nonlinear homotopy operator as [23]:

N [u(x)] = u(x)− F (x)− λL−1
(
g(x)

pk(x)
Q

)
.

The corresponding mth-order deformation equation is as follows:

L[um(x)− χmum−1(x)] = BH(x)Rm(
−−−−−→
um−1(x)),

where

Rm(
−−−−−→
um−1(x)) = um−1(x)− F (x)(1− χm)− λL−1

(
g(x)

pk(x)
Q

)
(3.3)

and

χm =

{
1, m > 1,

0, m ≤ 1.

Choosing the auxiliary linear operator L[u] = u, we obtain

u0(x) : Choosing initial guess,

u1(x) = BH(x)
[
u0(x)− L−1

(
f(x)

pk(x)

)
−
k−1∑
r=0

1

r!
(x− a)rbr

−λL−1
(
g(x)

pk(x)

∫ b

a
h(t)G(u0(t))dt

)
+

k−1∑
j=0

L−1
(
pj(x)

pk(x)
u
(j)
0 (x)

)]
,

um(x) = χmum−1(x) +BH(x)
[
um−1(x)

−λL−1
(
g(x)

pk(x)

∫ b

a
h(t)G(um−1(t))dt

)
+

k−1∑
j=0

L−1
(
pj(x)

pk(x)
u
(j)
m−1(x)

)]
,m > 1, (3.4)
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with auxiliary function H(x) and auxiliary parameter B. Then, u(x) =∑m
i=0 ui as the approximate solution.

4. Uniqueness results

In this section, we shall give the uniqueness results of Eq. (1.1), with the
initial conditions (1.2) and prove it. We can be written equation (1.1) in the
form of:

u(x) = L−1
[ f(x)

pk(x)

]
+

k−1∑
r=0

(x− a)r

r!
br + λ1L

−1
[ ∫ b

a

1

pk(x)
K(x, t)G(un(t))dt

]
−L−1

[ k−1∑
j=0

pj(x)

pk(x)
u(j)(x)

]
,

and

L−1
[ ∫ b

a

1

pk(x)
K(x, t)G(un(t))dt

]
=

∫ b

a

(x− t)k

k!pk(x)
K(x, t)G(un(t))dt,

k−1∑
j=0

L−1
[pj(x)

pk(x)

]
u(j)(x) =

k−1∑
j=0

∫ b

a

(x− t)k−1pj(t)
k − 1!pk(t)

u(j)(t)dt.

We set,

Ψ(x) = L−1
[ f(x)

pk(x)

]
+
k−1∑
r=0

(x− a)r

r!
br.

Before starting and proving the main results, we introduce the following
hypotheses:

(H1): There exist two constants α and γj > 0, j = 0, 1, · · · , k such
that, for any u1, u2 ∈ C(J,R)

|G(u1))−G(u2))| ≤ α |u1 − u2|

and ∣∣Dj(u1)−Dj(u2)
∣∣ ≤ γj |u1 − u2| ,

we suppose that the nonlinear terms G(u(x)) and Dj(u) = ( dj

dxj
)u(x) =∑∞

i=0 γij , (Dj is a derivative operator), j = 0, 1, · · · , k, are Lipschitz
continuous.

(H2): we suppose that for all a ≤ t ≤ x ≤ b, and j = 0, 1, · · · , k,∣∣∣∣λ(x− t)kK(x, t)

k!pk(x)

∣∣∣∣ ≤ θ1,

∣∣∣∣λ(x− t)kK(x, t)

k!

∣∣∣∣ ≤ θ2,
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∣∣∣∣ ≤ θ3, ∣∣∣∣(x− t)k−1pj(t)(k − 1)!

∣∣∣∣ ≤ θ4,
(H3): There exist three functions θ∗3, θ

∗
4, and γ∗ ∈ C(D,R+), the set of

all positive function continuous onD = {(x, t) ∈ R×R : 0 ≤ t ≤ x ≤ 1}
such that

θ∗3 = max |θ3| , θ∗4 = max |θ4| , and γ∗ = max |γj | .
(H4): Ψ(x) is bounded function for all x in J = [a, b].

Theorem 4.1. Assume that (H1)–(H4) hold. If

0 < ψ = (αθ1 + kγ∗θ∗3)(b− a) < 1, (4.1)

Then there exists a unique solution u(x) ∈ C(J) to Eqs. (1.1)− (1.2).

Proof. Let u1 and u2 be two different solutions of Eqs. (1.1)− (1.2). Then∣∣∣u1 − u2∣∣∣ =
∣∣∣ ∫ b

a

λ(x− t)kK(x, t)

pk(x)k!
[G(u1)−G(u2))]dt

−
k−1∑
j=0

∫ b

a

(x− t)k−1pj(t)
pk(t)(k − 1)!

[Dj(u1)−Dj(u2))]dt
∣∣∣

≤
∫ b

a

∣∣∣λ(x− t)kK(x, t)

pk(x)k!

∣∣∣∣∣∣G(u1)−G(u2))
∣∣∣dt

−
k−1∑
j=0

∫ b

a

∣∣∣(x− t)k−1pj(t)
pk(t)(k − 1)!

∣∣∣∣∣∣Dj(u1)−Dj(u2))
∣∣∣dt

≤ (αθ1 + kγ∗θ∗3)(b− a)|u1 − u2|,
we get (1 − ψ)|u1 − u2| ≤ 0. Since 0 < ψ < 1, so |u1 − u2| = 0. therefore,
u1 = u2 and the proof is completed. �

5. Illustrative example

In this section, we present the numerical techniques based on ADM and
DHAM to solve Fredholm integro-differential equations. To show the effi-
ciency of the present methods for our problem in comparison with the exact
solution we report absolute error.

Example 5.1. Consider the following Fredholm integro-differential equation.

u′(x) = ex(1 + x)− x+

∫ 1

0
xu(t)dt,
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with the initial condition

u(0) = 0,

and the the exact solution is u(x) = xex.

Table 1. Numerical Results of the Example 5.1

x Exact ADM DHAM
0.1 0.1103782 0.1103782 0.1105170
0.2 0.2442805 0.2437249 0.2442805
0.3 0.4049576 0.4037076 0.4049576
0.4 0.5967298 0.5945076 0.5967298
0.5 0.8243606 0.8208884 0.8233606
0.6 1.0932712 1.0882712 1.0932712
0.7 1.4096268 1.4028213 1.4096268
0.8 1.7804327 1.7715438 1.7804327
0.9 2.2136428 2.2023928 2.2136428

6. Discussion and conclusion

We discussed the ADM and DHAM for solving Fredholm integro-differential
equations of the second kind. To assess the accuracy of each method, the test
example with known exact solution are used. In this work, the above methods
have been successfully employed to obtain the approximate solution of a Fred-
holm integro-differential equation. The results show that these methods are
very efficient, convenient and can be adapted to fit a larger class of problems.
The comparison reveals that although the numerical results of these methods
are similar approximately, Table 1. shows that the numerical results obtained
with DHAM coincide with the exact solutions.
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