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Abstract. In this paper, we consider a variational inclusion problem involving XOR-

operation with its resolvent equation problem involving XOR-operation. We suggest separate

iterative algorithms for solving both the problems. The existence and convergence results are

proved for variational inclusion problem and for corresponding resolvent equation problem

in ordered Hilbert spaces. We claim that results of this paper are new and refinement of

previously known results.

1. Introduction

Many extensions and generalizations of variational inequalities came into
existence to study a number of problems related to mechanics, physics, op-
timization and control, nonlinear programming, elasticity, basic sciences and
applied sciences, etc., see for example [1, 5, 6, 8, 9] and references therein. Pro-
jection methods can not be used to solve mixed variational inequalities which
contain nonlinear terms. To over come this difficulty in 1994, Hassouni and
Moudafi [10] introduced and studied variational inclusions containing mixed
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variational inequalities as special cases. He used resolvent operator methods
to solve variational inclusions.

The resolvent operator techniques for solving variational inclusions are use-
ful and used to establish an equivalence between variational inclusions and
resolvent equations. The resolvent equation techniques are used to develop
applicable numerical techniques for solving variational inclusions and several
other equivalent problems.

Li with his co-authors [11, 12, 13, 14], Ahmad with his co-authors [2, 3]
considered and studied ordered variational inequalities(inclusions) using XOR-
operation with some other related concepts.

The study of this paper is focused to solve a variational inclusion problem
with its corresponding resolvent equation problem involving XOR-operation.
We use the resolvent operator which involves XOR-operation. The results of
this paper are quite new related to ordered variational inclusion problems.

2. Preliminaries

Throughout the paper, we assume Hp to be a real ordered positive Hilbert
space with its norm ‖·‖ and inner product 〈·, ·〉, d is the metric induced by the
norm ‖ · ‖, 2Hp (respectively, C(Hp)) is the family of nonempty (respectively,
compact) subsets of Hp, and D(., .) is the Hausdörff metric on C(Hp).

For the presentation of this paper, we need the following concepts and
results, most of them can be found in [7, 13, 14].

Definition 2.1. A nonempty closed convex subset C of Hp is said to be a
cone if,

(i) for any x ∈ C and any λ > 0, λx ∈ C,
(ii) if x ∈ C and −x ∈ C, then x = 0.

(iii) the cone C is called normal, if there exists a constant λN > 0 such
that 0 ≤ x ≤ y implies ‖x‖ ≤ λN‖y‖, for all x, y ∈ Hp,

(iv) for any x, y ∈ Hp, x ≤ y if and only if y − x ∈ C,
(v) x and y are said to be comparable to each other, if either x ≤ y or

y ≤ x holds and is denoted by x ∝ y.

Definition 2.2. For any x, y ∈ Hp, let lub{x, y} denotes least upper bound
and glb{x, y} denotes greatest lower bound of the set {x, y}. Suppose lub{x, y}
and glb{x, y} for the set {x, y} exist, then some binary operations are defined
below:

(i) x ∨ y = lub{x, y},
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(ii) x ∧ y = glb{x, y},
(iii) x⊕ y = (x− y) ∨ (y − x),
(iv) x� y = (x− y) ∧ (y − x).

The operations ∨,∧, ⊕ and � are called OR, AND, XOR and XNOR opera-
tions, respectively.

Lemma 2.3. If x ∝ y, then lub{x, y} and glb{x, y} exist, x − y ∝ y − x and
0 ≤ (x− y) ∨ (y − x).

Lemma 2.4. For any natural number n, x ∝ yn and yn → y∗ as n→∞, then
x ∝ y∗.

Proposition 2.5. Let ⊕ be an XOR-operation and � be an XNOR-operation.
Then the following relations hold:

(i) x� x = 0, x� y = y � x = −(x⊕ y) = −(y ⊕ x),
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0,
(iii) (λx)⊕ (λy) = |λ|(x⊕ y),
(iv) 0 ≤ x⊕ y, if x ∝ y,
(v) if x ∝ y, then x⊕ y = 0 if and only if x = y,
(vi) (x+ y)� (u+ v) ≥ (x� u) + (y � v),
(vii) (x+ y)� (u+ v) ≥ (x� v) + (y � u),

(viii) if x, y and w are comparable to each other, then (x ⊕ y) ≤ (x ⊕ w) +
(w ⊕ y),

(ix) αx ⊕ βx = |α − β|x = (α ⊕ β)x, if x ∝ 0, ∀ x, y, u, v, w ∈ Hp and
α, β, λ ∈ R.

Proposition 2.6. Let C be a normal cone in Hp with constant λN . Then for
each x, y ∈ Hp, the following relations hold:

(i) ‖0⊕ 0‖ = ‖0‖ = 0,
(ii) ‖x ∨ y‖ ≤ ‖x‖ ∨ ‖y‖ ≤ ‖x‖+ ‖y‖,
(iii) ‖x⊕ y‖ ≤ ‖x− y‖ ≤ λN‖x⊕ y‖,
(iv) if x ∝ y, then ‖x⊕ y‖ = ‖x− y‖.

Definition 2.7. Let A : Hp → Hp be a single-valued mapping. Then

(i) A is said to be a comparison mapping, if for each x, y ∈ Hp, x ∝ y
then A(x) ∝ A(y), x ∝ A(x) and y ∝ A(y),

(ii) A is said to be strongly comparison mapping, if A is a comparison
mapping and A(x) ∝ A(y) if and only if x ∝ y, for any x, y ∈ Hp.

Definition 2.8. A single-valued mapping A : Hp → Hp is said to be β-ordered
compression mapping, if A is a comparison mapping and

A(x)⊕A(y) ≤ β(x⊕ y), for 0 < β < 1.
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Definition 2.9. Let T : Hp → C(Hp) be a set-valued mapping. Let M :
Hp → 2Hp be a set-valued mapping. Let f, g, A : Hp → Hp be single-valued
mappings. Then

(i) T is said to be D-Lipschitz-type-continuous, if for any x, y ∈ Hp, x ∝ y,
there exists a constant λT > 0 such that

D(T (x), T (y)) ≤ λT ‖x⊕ y‖.

(ii) M is said to be a comparison mapping, if for any vx ∈ M(x), x ∝ vx,
and if x ∝ y, then for vx ∈M(x) and vy ∈M(y), vx ∝ vy, for all x, y ∈
Hp,

(iii) a comparison mapping M is said to be α-non-ordinary difference map-
ping, if for each x, y ∈ Hp, vx ∈M(x) and vy ∈M(y) such that

(vx ⊕ vy)⊕ α(x⊕ y) = 0.

(iv) the comparison mapping M is said to be α-non-ordinary difference
mapping with respect to A, if

(vx ⊕ vy)⊕ α(A(x)⊕A(y)) = 0.

(v) the comparison mapping M is said to be θ-ordered rectangular, if there
exists a constant θ > 0, for any x, y ∈ Hp, there exist vx ∈ M(x) and
vy ∈M(y) such that

〈vx � vy,−(x⊕ y)〉 ≥ θ‖x⊕ y‖2, for all x, y ∈ Hp,

holds.
(vi) a comparison mapping M is said to be λ-XOR-ordered strongly mono-

tone mapping, if x ∝ y, then there exists a constant λ > 0 such that

λ(vx ⊕ vy) ≥ x⊕ y, for all x, y ∈ Hp, vx ∈M(x), vy ∈M(y).

(vii) the comparison mapping M is said to be θ-ordered rectangular with
respect to f and g, if

〈vx�vy,−[(f(x), g(x))⊕(f(y), g(y))]〉 ≥ θ‖(f(x), g(x))⊕(f(y), g(y)‖2,

for all x, y ∈ Hp,
(viii) λ-XOR-ordered strongly with respect to f and g, if

λ(vx ⊕ vy) ≥ [(f(x), g(x))⊕ (f(y), g(y))],

for all x, y ∈ Hp, vx ∈M(x), vy ∈M(y).

Definition 2.10. Let A, f, g : Hp→ Hp be the single-valued mappings. The
mapping A is called a β-ordered compression mapping with respect to f and
g, if A is a comparison mapping and

(A(x)⊕A(y)) ≤ β2[(f(x), g(x))⊕ (f(y), g(y))], 0 < β2 < 1, for all x, y ∈ Hp.
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Definition 2.11. Let A, f, g : Hp → Hp be the single-valued mappings and
M : Hp → 2Hp be a set-valued mapping and M is a XOR-α-non-ordinary
difference mapping if M is an α-non-ordinary difference mapping and [A ⊕
λM(f, g)](Hp) = Hp, for λ, α > 0.

Definition 2.12. Let A, f, g : Hp → Hp be the single-valued mappings, M :
Hp × Hp → 2Hp be a set-valued mapping and M is a XOR-α-non-ordinary
difference mapping. Then the resolvent operator J Aλ,M(f,g) associated with

A, f and g is defined as:

J Aλ,M(f,g)(x) = [A⊕ λM(f, g)]−1(x), for all x ∈ Hp and α, λ > 0.

Proposition 2.13. Let f, g : Hp → Hp be the one-one single-valued mappings
and A : Hp → Hp be a β-ordered compression mapping with respect to f and
g. Let M : Hp × Hp → 2Hp be a set-valued θ-ordered rectangular mapping
with respect to f and g. Then the resolvent operator J Aλ,M(f,g) : Hp → Hp is

single-valued, for θλ > β and λ > 0.

Proof. For any u ∈ Hp and a constant λ > 0, let x, y ∈ [A ⊕ λM(f, g)]−1(u),
Then, let

vx =
1

λ
(u⊕A(x)) ∈M(f(x), g(x))

and

vy =
1

λ
(u⊕A(y)) ∈M(f(y), g(y)).

Using (i) and (ii) of Proposition 2.5, we have

vx � vy =
1

λ
(u⊕A(x))� 1

λ
(u⊕A(y))

=
1

λ
[(u⊕A(x))� (u⊕A(y))]

= − 1

λ
[(u⊕A(x))⊕ (u⊕A(y))]

= − 1

λ
[(u⊕ u)⊕ (A(x)⊕A(y))]

= − 1

λ
[0⊕ (A(x)⊕A(y))]

≤ − 1

λ
[A(x)⊕A(y)].

Then, we have

vx � vy ≤ −
1

λ
[A(x)⊕A(y)]. (2.1)
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Since M is θ-ordered rectangular mapping with respect to f and g. A is β-
ordered compression mapping with respect to f and g and using (2.1), we
have

θ‖(f(x),g(x))⊕ (f(y), g(y))‖2

≤ 〈vx � vy,−[(f(x), g(x))⊕ (f(y), g(y))]〉

≤ 〈− 1

λ
[A(x)⊕A(y)],−[(f(x), g(x))⊕ (f(y), g(y))]〉

≤ 1

λ
〈A(x)⊕A(y), [(f(x), g(x))⊕ (f(y), g(y))]〉

≤ β

λ
〈(f(x), g(x))⊕ (f(y), g(y)), (f(x), g(x))⊕ (f(y), g(y))〉

=
β

λ
‖(f(x), g(x))⊕ (f(y), g(y))‖2,

that is,

θ‖(f(x), g(x))⊕ (f(y), g(y))‖2 ≤ β

λ
‖(f(x), g(x))⊕ (f(y), g(y))‖2.

Hence we have (
θ − β

λ

)
‖(f(x), g(x))⊕ (f(y), g(y))‖2 ≤ 0,

for θλ > β, which implies that

‖(f(x), g(x))⊕ (f(y), g(y))‖ = 0.

It follows that

(f(x), g(x))⊕ (f(y), g(y)) = 0,

it implies that

(f(x), g(x)) = (f(y), g(y)).

Therefore, we have

f(x) = f(y), g(x) = g(y).

Since f and g are one-one mappings, it follows that, x = y. Hence the resolvent
operator J Aλ,M(f,g) is single-valued, for θλ > β. �

Proposition 2.14. Let the set-valued mapping M : Hp × Hp → 2Hp be an
λ-XOR-ordered strongly monotone with respect to f , g. Let A : Hp → Hp
be a strongly comparison mapping with respect to JHλ,M(f,g) and suppose that

(f(x), g(x)) ⊕ (f(y), g(y)) ∝ x ⊕ y. Then the resolvent operator J Aλ,M(f,g) :

Hp → Hp is a comparison mapping.
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Proof. For any x, y ∈ Hp, let

v∗x =
1

λ
[x⊕A(J Aλ,M(f,g)(x))] ∈M(f(J Aλ,M(f,g)(x)), g(J Aλ,M(f,g)(x))) (2.2)

and

v∗y =
1

λ
[y ⊕A(J Aλ,M(f,g)(y))] ∈M(f(J Aλ,M(f,g)(y)), g(J Aλ,M(f,g)(y))). (2.3)

Since M is a λ-XOR-ordered strongly monotone mapping with respect to f
and g, (f(x), g(x))⊕ (f(y), g(y)) ∝ x⊕ y, using (2.2), (2.3), we have

(f(x), g(x))⊕ (f(y), g(y)) ≤ λ(v∗x ⊕ v∗y)

≤
[
(x⊕A(J Aλ,M(f,g)(x)))⊕ (y ⊕A(J Aλ,M(f,g)(y)))

]
≤ (x⊕ y)⊕

[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
.

Hence we have

0 ≤
[
(f(x), g(x))⊕ (f(y), g(y))⊕ (x⊕ y)

]
⊕
[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
,

it implies that

0 ≤
[
(x⊕ y)⊕ (x⊕ y)

]
⊕
[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
.

That is,

0 ≤
[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
.

it means that

0 ≤
[
A(J Aλ,M(f,g)(x))−A(J Aλ,M(f,g)(y))

]
∨
[
A(J Aλ,M(f,g)(y))−A(J Aλ,M(f,g)(x))

]
.

Therefore, it implies that either

0 ≤
[
A(J Aλ,M(f,g)(x))−A(J Aλ,M(f,g)(y))

]
or

0 ≤
[
A(J Aλ,M(f,g)(y))−A(J Aλ,M(f,g)(x))

]
.

Thus, we have

A(J Aλ,M(f,g)(x)) ≥ A(J Aλ,M(f,g)(y))

or

A(J Aλ,M(f,g)(y)) ≥ A(J Aλ,M(f,g)(x)).
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It follows that

A(J Aλ,M(f,g)(x)) ∝ A(J Aλ,M(f,g)(y)).

Since A is a strongly comparison mapping with respect to J Aλ,M(f,g). There-

fore J Aλ,M(f,g)(x) ∝ J Aλ,M(f,g)(y), that is, the resolvent operator J Aλ,M(f,g) is a

comparison mapping. �

Proposition 2.15. Let M : Hp × Hp → 2Hp be a λ-XOR-α-non-ordinary
difference mapping with respect to A and J Aλ,M(f,g) and A : Hp → Hp be a

strongly comparison mapping such that

A(J Aλ,M(f,g)(x))⊕ (A(J Aλ,M(f,g)(y)) ∝ J Aλ,M(f,g)(x)⊕ J Aλ,M(f,g)(y).

Then the following condition holds for αλ > µ, µ ≥ 1,

J Aλ,M(f,g)(x)⊕ J Aλ,M(f,g)(y) ≤ µ

(αλ⊕ µ)
(x⊕ y), for all x, y ∈ Hp,

that is, the resolvent operator J Aλ,M(f,g) is Lipschitz-type-continuous.

Proof. Let v∗x and v∗y are same as in (2.2) and (2.3). Then

v∗x ⊕ v∗y =
[ 1

λ
(x⊕A(J Aλ,M(f,g)(x)))⊕ 1

λ
(y ⊕A(J Aλ,M(f,g)(y)))

]
=

1

λ

[
(x⊕ y)⊕ (A(J Aλ,M(f,g)(x)))⊕ (A(J Aλ,M(f,g)(y)))

]
≤ µ

λ

[
(x⊕ y)⊕ (A(J Aλ,M(f,g)(x)))⊕ (A(J Aλ,M(f,g)(y)))

]
, (2.4)

for µ ≥ 1. Since M is an α-non-ordinary difference mapping with respect to
A and J Aλ,M(f,g) using (2.4), we have

α
[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
= v∗x ⊕ v∗y ,

and hence

α
[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
≤ µ

λ

[
(x⊕ y)⊕ (A(J Aλ,M(f,g)(x))⊕ (A(J Aλ,M(f,g)(y)))

]
.

Therefore, we have

αλ

µ

[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
≤
[
(x⊕ y)⊕ (A(J Aλ,M(f,g)(x))⊕ (A(J Aλ,M(f,g)(y)))

]
,

it follows that[αλ
µ
⊕ 1
][
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
≤ (x⊕ y).
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Since

A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y)) ∝ J Aλ,M(f,g)(x)⊕ J Aλ,M(f,g)(y),

we have

(αλ
µ
⊕ 1
)[
J Aλ,M(f,g)(x)⊕ J Aλ,M(f,g)(y)

]
≤
(αλ
µ
⊕ 1
)[
A(J Aλ,M(f,g)(x))⊕A(J Aλ,M(f,g)(y))

]
≤ (x⊕ y).

It follows that,

J Aλ,M(f,g)(x)⊕ J Aλ,M(f,g)(y) ≤
( µ

αλ⊕ µ

)
(x⊕ y).

Thus the resolvent operator J Aλ,M(f,g) is Lipschitz-type-continuous. �

Remark 2.16. The Proposition 2.13, Proposition 2.14 and Proposition 2.15
are proved by taking M to be a bi-mapping with respect to the mappings f
and g. Already existing concepts related to XOR-operation are generalized
for bi-mapping M with respect to the mappings f and g.

3. Formulation of the problem and existence of solutions

Let Hp be a real ordered positive Hilbert space. Let P : Hp × Hp → Hp,
f, g : Hp → Hp be the single-valued mappings, T, S : Hp → C(Hp) and
M : Hp × Hp → 2Hp be the set-valued mappings. We consider the following
problem: Find x ∈ Hp, a ∈ T (x) and b ∈ S(x) such that

0 ∈ P (a, b)⊕M(f(x), g(x)). (3.1)

We call problem (3.1) as variational inclusion problem involving XOR-operation.

Below we mention some special cases of problem (3.1).

(i) If M(f(x), g(x)) = M(x), then the problem (3.1) reduces to the prob-
lem of finding x ∈ Hp, a ∈ T (x), b ∈ S(x) such that

0 ∈ P (a, b)⊕M(x). (3.2)

Problem (3.2) is studied by Ahmad et.al [4].
(ii) If T is single-valued, S ≡ 0, P (a, b) = P (x) and M(f(x), g(x)) =

M(x), then problem (3.1) becomes the problem of finding x ∈ Hp such
that

0 ∈ P (x)⊕M(x). (3.3)

Problem (3.3) is studied by I.Ahmad et.al [3].
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(iii) If P ≡ 0, M(f(x), g(x)) = M(x), then from the problem (3.1) we can
obtain the problem of finding x ∈ Hp such that

0 ∈M(x). (3.4)

Problem (3.4) is introduced and studied by Li [13].

We remark that for suitable choices of operators involved in the formulation
of Problem (3.1), one can obtain many previously studied problems studied
by Li et al. [11, 12, 13, 14] and Ahmad et al. [2, 3].

The following lemma is a fixed point formulation of problem (3.1), which
can be proved easily by using the definition of resolvent operator defined by
(2.12).

Lemma 3.1. The variational inclusion problem (3.1) involving XOR-operation
has a solution x ∈ Hp, a ∈ T (x) and b ∈ S(x) such that

x = J Aλ,M(f,g)[λP (a, b)⊕A(x)],

where λ > 0 is a constant.

Based on Lemma 3.1, we construct the following algorithm for finding the
solution of problem (3.1).

Algorithm 3.2. Let A, f, g : Hp → Hp, P : Hp ×Hp → Hp be single-valued
mappings, and T, S : Hp → C(Hp), M : Hp × Hp → 2Hp be the set-valued
mappings.

Given x0 ∈ Hp, a0 ∈ T (x0), b0 ∈ S(x0) and using Lemma 3.1, let

x1 = (1− α)x0 + α[J Aλ,M(f(x0),g(x0))
(λP (a0, b0)⊕A(x0))].

Since a0 ∈ T (x0), b0 ∈ S(x0), by Nadler [15], there exists a1 ∈ T (x1), b1 ∈ S(x1)
and using Proposition 2.6, we have

‖a0 ⊕ a1‖ ≤ ‖a0 − a1‖ ≤ D(T (x0), T (x1)),

‖b0 ⊕ b1‖ ≤ ‖b0 − b1‖ ≤ D(S(x0), S(x1)).

Let

x2 = (1− α)x1 + α[J Aλ,M(f(x1),g(x1))
(λP (a1, b1)⊕A(x1))].

Again by Nadler [15], there exists a2 ∈ T (x2) and b2 ∈ S(x2) such that

‖a1 ⊕ a2‖ ≤ ‖a1 − a2‖ ≤ D(T (x1), T (x2)),

‖b1 ⊕ b2‖ ≤ ‖b1 − b2‖ ≤ D(S(x1), S(x2)).
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Continuing the above process inductively, we compute

xn+1 = (1− α)xn + α[J Aλ,M(f(xn),g(xn))
(λP (an, bn)⊕A(xn))], (3.5)

an+1 ∈ T (xn+1); ‖an+1 ⊕ an‖ ≤ ‖a1 − a2‖ ≤ D(T (xn+1), T (xn)),(3.6)

bn+1 ∈ S(xn+1); ‖bn+1 ⊕ bn‖ ≤ ‖b1 − b2‖ ≤ D(S(xn+1), S(xn)), (3.7)

where λ > 0, α ∈ [0, 1] and n = 0, 1, 2, . . . .

Now, we prove the following existence and convergence results for variational
inclusion problem involving XOR-operation (3.1).

Theorem 3.3. Let Hp be a real ordered positive Hilbert space and C ⊆ Hp be
a normal cone with constant λN . Let A, f, g : Hp → Hp, P : Hp×Hp → Hp be
the single-valued mappings and T, S : Hp → C(Hp), M : Hp × Hp → 2Hp be
the set-valued mappings such that A is a β-ordered compression mapping with
respect to f and g, strongly comparison mapping with respect to J Aλ,M(f,g), M is

a θ-ordered rectangular mapping with respect f and g, λ-XOR-ordered strongly
monotone with respect to f and g, XOR-α-non-ordinary difference mapping
with respect to A and J Aλ,M(f,g), T is δT -D-Lipschitz-type-continuous and S

is a δS-D-Lipschitz-type-continuous mapping,f and g are one-one mappings.
If (f(x), g(x)) ⊕ (f(y), g(y)) ∝ (x ⊕ y), A(J Aλ,M(f,g)(x)) ⊕ (AJ Aλ,M(f,g)(y)) ∝
J Aλ,M(f,g)(x)) ⊕ J Aλ,M(f,g)(y), xn+1 ∝ xn, n=0,1,2,.... and if the following

conditions are satisfied:

0 <
[
λN [(1− α) + αξ] + λNαθ

′ |λ|(β′pδT + β
′′
p δS) + λNαθ

′
β
]
< 1, (3.8)

and

‖J Aλ,M(f(xn),g(xn))
(x)⊕ J Aλ,M(f(xn−1),g(xn−1))

(x)‖ ≤ ξ‖xn ⊕ xn−1‖, (3.9)

where θ
′

=
µ

αλ⊕ µ
,

then the variational inclusion problem involving XOR-operation (3.1) is solv-
able.

Proof. From Algorithm 3.2 and Proposition 2.5, we evaluate

0 ≤ xn+1 ⊕ xn
=

[
(1− α)xn + α

(
J Aλ,M(f(xn),g(xn))

[λP (an, bn)⊕A(xn)]
)]

⊕
[
(1− α)xn−1 + α

(
J Aλ,M(f(xn−1),g(xn−1))

[λP (an−1, bn−1)⊕A(xn−1)]
)]

= (1− α)(xn ⊕ xn−1) + α
(
J Aλ,M(f(xn),g(xn))

[λP (an, bn)⊕A(xn)]

⊕J Aλ,M(f(xn−1),g(xn−1))
[λP (an−1, bn−1)⊕A(xn−1)]

)
. (3.10)
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Using Lipschitz-type-continuity of the resolvent operator J Aλ,M(f,g), Proposi-

tion 2.6 and (3.9) we have

‖xn+1 ⊕ xn‖

≤ λN
∥∥∥(1− α)(xn ⊕ xn−1) + α

[
J Aλ,M(f(xn),g(xn))

[λP (an, bn)⊕A(xn)]

⊕ J Aλ,M(f(xn−1),g(xn−1))
[λP (an−1, bn−1)⊕A(xn−1)]

]∥∥∥
= λN

∥∥∥(1− α)(xn ⊕ xn−1) + α
[
J Aλ,M(f(xn),g(xn))

[λP (an, bn)⊕A(xn)]

⊕ J Aλ,M(f(xn),g(xn))
[λP (an−1, bn−1)⊕A(xn−1)]

⊕ J Aλ,M(f(xn),g(xn))
[λP (an−1, bn−1)⊕A(xn−1)]

⊕ J Aλ,M(f(xn−1),g(xn−1))
[λP (an−1, bn−1)⊕A(xn−1)]

]∥∥∥
≤ λN (1− α)‖xn ⊕ xn−1‖+ λNα

∥∥J Aλ,M(f(xn),g(xn))
[λP (an, bn)⊕A(xn)]

⊕ J Aλ,M(f(xn),g(xn))
[λP (an−1, bn−1)⊕A(xn−1)]

∥∥
+ λNα

∥∥J Aλ,M(f(xn),g(xn))
[λP (an−1, bn−1)⊕A(xn−1)]

⊕ J Aλ,M(f(xn−1),g(xn−1))
[λP (an−1, bn−1)⊕A(xn−1)]

∥∥
≤ λN (1− α)‖xn ⊕ xn−1‖+ λNαθ

′ |λ|
∥∥[P (an, bn)⊕ P (an−1, bn−1)]

⊕ [A(xn)⊕A(xn−1)]
∥∥+ λNαξ‖xn ⊕ xn−1‖

≤ λN [(1− α) + αξ]‖xn ⊕ xn−1‖+ λNαθ
′ |λ|
∥∥P (an, bn)⊕ P (an−1, bn−1)

∥∥
+ λNαθ

′ |λ|
∥∥A(xn)⊕A(xn−1)

∥∥. (3.11)

Since P is β
′
p-strongly compression mapping in the first argument and β

′′
p -

strongly compression mapping in the second argument, T is δT -D-Lipschitz-
type-continuous, S is δS-D-Lipschitz-type-continuous and using Proposition
2.6, we have

‖P (an, bn)⊕ P (an−1, bn−1)‖ = ‖P (an, bn)⊕ P (an−1, bn)

⊕ P (an−1, bn)⊕ P (an−1, bn−1)‖
≤ ‖(P (an, bn)⊕ P (an−1, bn))

− (P (an−1, bn)⊕ P (an−1, bn−1))‖
≤ ‖P (an, bn)⊕ P (an−1, bn)‖

+ ‖P (an−1, bn)⊕ P (an−1, bn−1)‖

≤ β′p‖an ⊕ an−1‖+ β
′′
p ‖bn ⊕ bn−1‖
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≤ β′pD(T (xn), T (xn−1)) + β
′′
pD(S(xn), S(xn−1))

≤ β′pδT ‖xn − xn−1‖+ β
′′
p δS‖xn − xn−1‖

= (β
′
pδT + β

′′
p δS)‖xn − xn−1‖. (3.12)

Since A is β-ordered compression mapping and using Proposition 2.6, we have

‖A(xn)⊕A(xn−1)‖ ≤ ‖β[(xn)⊕ (xn−1)]‖
= β‖(xn)⊕ (xn−1)‖
≤ β‖xn − xn−1‖. (3.13)

Using (3.12), (3.13), (3.11) becomes

‖xn+1 ⊕ xn‖ ≤ λN [(1− α) + αξ]‖xn ⊕ xn−1‖

+ λNαθ
′ |λ|(β′pδT + β

′′
p δS)‖xn − xn−1‖

+ λNαθ
′
β‖xn − xn−1‖

≤ λN [(1− α) + αξ]‖xn − xn−1‖

+ λNαθ
′ |λ|(β′pδT + β

′′
p δS)‖xn − xn−1‖

+ λNαθ
′
β‖xn − xn−1‖

≤ γ(θ)‖xn − xn−1‖. (3.14)

where γ(θ) =
[
λN [(1 − α) + αξ] + λNαθ

′ |λ|(β′pδT + β
′′
p δS) + λNαθ

′
β
]

and

θ
′

=
(

µ
αλ⊕µ

)
. By condition (3.8) it is clear that 0 < γ(θ) < 1, thus {xn} is a

Cauchy sequence in Hp. Since Hp is a complete space, there exists an x in Hp
such that xn → 0, as n→∞.

From (3.6)and (3.7) of Algorithm 3.2, it follows that

‖an+1 ⊕ an‖ ≤ ‖an+1 − an‖ ≤ D(T (xn+1), T (xn)) ≤ δT ‖xn+1 − xn‖, (3.15)

and

‖bn+1 ⊕ bn‖ ≤ ‖bn+1 − bn‖ ≤ D(S(xn+1), S(xn)) ≤ δS‖xn+1 − xn‖. (3.16)

It is clear from (3.15) and (3.16) that {an} and {bn} are also a Cauchy se-
quences in Hp and so that there exist a and b in Hp such that an → a and
bn → b, as n→∞. By using the continuity of operators P, f, g, A,M, T, S and
J Aλ,M(f,g), it follows that

x = J Aλ,M(f,g)[λP (a, b)⊕A(x)].

By Lemma 3.1, we conclude that (x, a, b) where x ∈ Hp, a ∈ T (x) and b ∈ S(x)
is a solution of variational inclusion problem involving XOR-operation (3.1).

�
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Remark 3.4. For suitable choices of operators involved in the formulation
of the Problem 3.1, Algorithm 3.2 and Theorem 3.3, one can obtain many
previously known results of [2, 3, 4, 12, 13, 14], etc..

4. Resolvent Equation Problem

In connection with variational inclusion problem involving XOR-operation
(3.1), we consider the following resolvent equation problem involving XOR-
operation: Find x, z ∈ Hp, a ∈ T (x) and b ∈ S(x) such that

P (a, b)⊕ λ−1RAλ,M(f,g)(z) = 0, (4.1)

where RAλ,M(f,g) = [I ⊕A(RAλ,M(f,g))] and J Aλ,M(f,g) = [A⊕ λM(f, g)]−1, λ > 0

is a constant. Problem (4.1) is called resolvent equation problem involving
XOR-operation.

Now we discuss the equivalence between variational inclusion problem in-
volving XOR-operation (3.1) and resolvent equation problem involving XOR-
operation (4.1).

Proposition 4.1. The variational inclusion problem involving XOR-operation
(3.1) has a solution x ∈ Hp, a ∈ T (x), b ∈ S(x) if and only if resolvent
equation problem involving XOR-operation has a solution x, z ∈ Hp, a ∈ T (x),
b ∈ S(x), where

x = J Aλ,M(f,g)(z) (4.2)

and

z = λP (a, b)⊕A(x), (4.3)

λ > 0 is a constant.

Proof. Let x ∈ Hp, a ∈ T (x), b ∈ S(x) be a solution of variational inclusion
problem involving XOR-operation (3.1). Then by the Lemma 3.1, it is a
solution of the following equation:

x = J Aλ,M(f,g)[λP (a, b)⊕A(x)].

It follows from (4.3) that, z = λP (a, b)⊕A(x), thus we have

x = J Aλ,M(f,g)(z).

By using the fact that RAλ,M(f,g) = [I ⊕A(J Aλ,M(f,g))], we have

z = λP (a, b)⊕A(x),

z ⊕A(J Aλ,M(f,g)(z)) = λP (a, b)⊕A(x)⊕A(x),
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that is,

z ⊕A(J Aλ,M(f,g))(z) = λP (a, b),[
I ⊕A(J Aλ,M(f,g))

]
(z) = λP (a, b),

thus we have P (a, b)⊕λ−1RAλ,M(f,g)(z) = 0, i.e the required resolvent equation

problem involving XOR-operation (4.1).

Conversely, suppose that x, z ∈ Hp, a ∈ T (x), b ∈ S(x) is a solution of
resolvent equation problem involving XOR-operation (4.1), that is, we have

λP (a, b)⊕RAλ,M(f,g)(z) = 0,

implies that

λP (a, b) = RAλ,M(f,g)(z)

= [I ⊕A(J Aλ,M(f,g))](z)

= z ⊕A(J Aλ,M(f,g)(z))

= λP (a, b)⊕A(x)⊕A[J Aλ,M(f,g)(λP (a, b)⊕A(x))].

That is, we have

A(x) = A[J Aλ,M(f,g)(λP (a, b)⊕A(x))].

Since A is one-one, we have

x = J Aλ,M(f,g)[λP (a, b)⊕A(x)].

Thus by Lemma 3.1, it follows that x ∈ Hp, a ∈ T (x), b ∈ S(x) is a solution
of variational inclusion problem involving XOR-operation (3.1). �

Based on Proposition 4.1, we suggest the following iterative algorithm for
computing the solution of resolvent equation problem involving XOR-operation
(4.1).

Algorithm 4.2. Using the same arguments as in Algorithm 3.1, for z0, x0 ∈
Hp, a0 ∈ T (x0), b0 ∈ S(x0), we compute the sequences {zn}, {xn} and {bn}
by the following iterative schemes:

xn+1 = J Aλ,M(f(xn),g(xn))
(zn+1), (4.4)

an+1 ∈ T (xn+1) : ‖an+1 ⊕ an‖ ≤ ‖an+1 − an‖ ≤ D(T (xn+1), T (xn)), (4.5)

bn+1 ∈ S(xn+1) : ‖bn+1 ⊕ bn‖ ≤ ‖bn+1 − bn‖ ≤ D(S(xn+1), S(xn)) (4.6)

and
zn+1 = λP (an, bn)⊕A(xn), (4.7)

where n = 0, 1, 2, 3, ... and λ > 0 is a constant.
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Proposition 4.3. If all the mappings and conditions are same as in Theorem
3.3 except condition (3.8) and if the following conditions are satisfied:

0 < γ(Θ
′
) < 1, (4.8)

where

γ(Θ
′
) =

[
|λ|(βp′ δT + βp′′ δS) + β

][ θ
′

1− ξ

]
, (4.9)

then the resolvent equation problem involving XOR-operation (4.1) has a so-
lution (z, x, a, b), z, x ∈ Hp, a ∈ T (x), b ∈ S(x). Moreover, the sequences
{zn}, {xn}, {an} and {bn} generated by the Algorithm 4.2 converge strongly
to z, x, a and b, the solution of resolvent equation problem involving XOR-
operation (4.1).

Proof. From Algorithm 4.2, we have

‖zn+1 ⊕ zn‖ = ‖[λP (an, bn)⊕A(xn)]⊕ [λP (an−1, bn−1)⊕A(xn−1)]‖
= ‖[λP (an, bn)⊕ λP (an−1, bn−1)]⊕ [A(xn ⊕A(xn−1))]‖
≤ ‖[λP (an, bn)⊕ λP (an−1, bn−1)]− [A(xn ⊕A(xn−1))]‖
≤ |λ|‖P (an, bn)⊕ P (an−1, bn−1)‖+ ‖A(xn)⊕A(xn−1)‖.

(4.10)

Using (3.12), (3.13), (4.10) becomes

‖zn+1 ⊕ zn‖ ≤ |λ|(βp′ δT + βp′′ δS)‖xn − xn−1‖+ β‖xn − xn−1‖. (4.11)

As zn+1 ∝ zn, n=0,1,2,.., (4.11) becomes

‖zn+1 − zn‖ ≤ [|λ|(βp′ δT + βp′′ δS) + β]‖xn − xn−1‖. (4.12)

From (4.4), Proposition (2.15) and condition (3.9) we have

‖xn ⊕ xn−1‖ =
∥∥J Aλ,M(f(xn),g(xn))

(zn)⊕ J Aλ,M(f(xn−1),g(xn−1))
(zn−1)

∥∥
=
∥∥J Aλ,M(f(xn),g(xn))

(zn)⊕ J Aλ,M(f(xn),g(xn))
(zn−1)

⊕ J Aλ,M(f(xn),g(xn))
)(zn−1)⊕ J Aλ,M(f(xn−1),g(xn−1))

(zn−1)
∥∥

≤
∥∥J Aλ,M(f(xn),g(xn))

(zn)⊕ J Aλ,M(f(xn),g(xn))
(zn−1)

∥∥
+
∥∥J Aλ,M(f(xn),g(xn))

)(zn−1)⊕ J Aλ,M(f(xn−1),g(xn−1))
(zn−1)

∥∥
≤ θ′‖zn − zn−1‖+ ξ‖xn − xn−1‖. (4.13)

As xn ∝ xn−1, n=0,1,2,... .,we have

‖xn − xn−1‖ ≤ θ
′‖zn − zn−1‖+ ξ‖xn − xn−1‖,

which implies that

(1− ξ)‖xn − xn−1‖ ≤ θ
′‖zn − zn−1‖.
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Hence we have

‖xn − xn−1‖ ≤
θ
′

(1− ξ)
‖zn − zn−1‖. (4.14)

Combining (4.12) and (4.14), we have

‖zn+1 − zn‖ ≤
[
|λ|(βp′δT + βp

′′δS) + β
][ θ

′

1− ξ

]
‖zn − zn−1‖, (4.15)

that is,

‖zn+1 − zn‖ ≤ γ(Θ
′
)‖zn − zn−1‖. (4.16)

Since γ(Θ
′
) < 1 by (4.8), it follows that {zn} is a Cauchy sequence in Hp, so

there exist z ∈ Hp such that zn → z as n → ∞. Also it follows from (4.14)
that {xn} is a Cauchy sequence in Hp, thus there exist x ∈ Hp such that
xn → x as n → ∞. It follows from (3.15) and (3.16) that {an} and {bn} are
also Cauchy sequences in Hp and so that there exist a and b in Hp such that
an → a, bn → b, as n→∞.

By using the continuity of the operations P, f, g, A,M, T, S,J Aλ,M(f,g) and

RAλ,M(f,g), we have

z = λP (a, b)⊕A(x). (4.17)

Using the same argument as in the proof of Theorem 3.3, we claim that z, x ∈
Hp, a ∈ T (x), b ∈ S(x) is a solution of resolvent equation problem involving
XOR-operation (4.1). �

Remark 4.4. We remark that the concept of resolvent equation with XOR-
operation is quite new and appeared first time in the literature.

Acknowledgments: The authors are highly thankful to the referees for their
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