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Abstract. In this article, we introduce additional stability results of quartic Lie ∗-derivations

by using direct method and alternative fixed point method.

1. Introduction

In 1940, Ulam [17] raised the question concerning the stability of group

homomorphisms. Let G be a group and let G
′

be a metric group with the
metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a mapping

f : G→ G
′

satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G, then there exists a homomorphism F : G → G
′

with
d(f(x), F (x)) < ε for all x ∈ G? The case of approximately additive map-
pings was solved by Hyers [6] under the assumption that X and Y are Banach
spaces. Hyers method used in [6], which is often called the direct method, has
been applied for studying the stability of various functional equations. Most
popular technique of proving the stability of functional equations except for
direct method is the fixed point method [2, 3, 13].
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In 1999, Rassias [14] has studied the Hyers–Ulam stability problem of the
quartic functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) + 24f(y), (1.1)

of which the general solution is called the quartic mapping.
Let X and Y be vector spaces. Now, we introduce some basic concepts

concerning 4-additive symmetric mappings [8]. A mapping A4 : X4 → Y
is called 4-additive if it is additive in each variable. A mapping A4 is said
to be symmetric if A4(x1, x2, x3, x4) = A4(xσ(1), xσ(2), xσ(3), xσ(4)) for every
permutation {σ(1), σ(2), σ(3), σ(4)} of {1,2,3,4}. If A4 is 4-additive symmetric
mapping, thenA4(x) := A4(x, x, x, x) will denote the diagonal of the 4-additive
symmetric mapping A4. Then it follows A4(qx) = q4A4(x) for all x ∈ X and
all q ∈ Q. In general, we refer that the generalized concepts of n-additive
symmetric mappings are found in [16] and [18]. In 2003, Chung and Sahoo
[4] obtained the general solution of the equation (1.1) by using the properties
of the form A(x, x, x, x), where the function A : R4 → R is symmetric and
additive in each variable. Recently, Kang and Koh [8] have established general
solution of the following functional equation

f(ma+ b)− f(a−mb) +
1

2
m(m2 + 1)f(a− b) + (m4 − 1)f(b) (1.2)

=
1

2
m(m2 + 1)f(a+ b) + (m4 − 1)f(a),

for all vectors a, b in a complex normed ∗-algebra, where m(m 6= 0,±1) is
a fixed integer, and then they have investigated the generalized Hyers–Ulam
stability of the equation associated with approximate quartic Lie ∗-derivations.
First of all, it is known from [8] that a mapping f : X → Y with f(0) = 0 is a
solution of the equation (1.2) if and only if f is of the form f(x) = A4(x) for
all x ∈ X, and thus it is quartic.

In this paper, we introduce to investigate additional stability results and
refined stability theorems of the quartic functional equation (1.2) associated
with quartic Lie ∗-derivations by using direct method and alternative fixed
point method.

2. Stability for Approximate Quartic Lie ∗-Derivations

In this section, we will research the Hyers–Ulam stability of the quartic Lie
∗-derivation by using directed method and a fixed point method. Let A be a
complex normed ∗-algebra and M a Banach A-bimodule with linear involution
∗. At the same time we denote ‖ · ‖ as norms on a normed ∗-algebra A and a
Banach A-bimodule M. A mapping f : A→M is called quartic homogeneous
if it satisfies f(µa) = µ4f(a) for all a ∈ A and µ ∈ C. A quartic homogeneous
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mapping f : A→M is called a quartic derivation if

f(xy) = f(x)y4 + x4f(y)

for all x, y ∈ A. A quartic homogeneous mapping f is called a quartic Lie
derivation if

f([x, y]) = [f(x), y4] + [x4, f(y)]

for all x, y ∈ A, where [x, y] := xy − yx. In addition, a quartic Lie derivation
f is called a quartic Lie ∗-derivation if it satisfies f(x∗) = f(x)∗ for all x ∈ A.

Recently, the related properties of various derivations in different algebraic
structures have been investigated by many authors [1, 9, 10, 11].

Throughout the paper, let n0 be a positive integer and

T1
1
n0

:= {exp(iθ) : 0 ≤ θ ≤ 2π

n0
}.

For a given mapping f : A→M we denote the following abbreviations

∆µf(a, b) := f(mµa+ µb)− f(µa−mµb) +
µ4

2
m(m2 + 1)f(a− b)

+µ4(m4 − 1)f(b)− µ4

2
m(m2 + 1)f(a+ b)

−µ4(m4 − 1)f(a),

QDf(a, b) := f([a, b])− [f(a), b4]− [a4, f(b)]

for all a, b ∈ A, µ ∈ T1
1
n0

, where m ∈ Z(m 6= 0,±1) is fixed.

The following theorem is an alternative stability result of the quartic func-
tional equation (1.2) associated with quartic Lie ∗-derivations by using direct
method, which is similarly verified as in the proof of [8, Theorem 3.2].

Theorem 2.1. Suppose that there exist a mapping f : A→M with f(0) = 0
and two functions φ1 : A3 → [0,∞), φ2 : A2 → [0,∞) such that

‖∆µf(a, b) + f(c∗)− f(c)∗‖ ≤ φ1(a, b, c), (2.1)

‖QDf(a, b)‖ ≤ φ2(a, b), (2.2)

in which

Φ(a, b, c) :=

∞∑
j=0

φ1(m
ja,mjb,mjc)

m4j
<∞, (2.3)

lim
k→∞

φ2(m
ka,mkb)

m8k
= 0

for all µ ∈ T1
1
n0

and all a, b, c ∈ A. Furthermore, if for each fixed a ∈ A the

mapping r 7→ f(ra) from R to M is continuous, then there exists a unique
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quartic Lie ∗-derivation L : A→M such that

‖f(a)− L(a)‖ ≤ 1

m4
Φ(a, 0, 0) (2.4)

for all a ∈ A.

On the other hand, we introduce to investigate another stability result of
the quartic functional equation (1.2) associated with quartic Lie ∗-derivations
by using direct method, which is an additional main stability theorem.

Theorem 2.2. Suppose that there exist a mapping f : A → M and two
functions φ1 : A3 → [0,∞), φ2 : A2 → [0,∞) such that

‖∆µf(a, b) + f(c∗)− f(c)∗‖ ≤ φ1(a, b, c), (2.5)

‖QDf(a, b)‖ ≤ φ2(a, b), (2.6)

in which

Φ1(a, b, c) :=
∞∑
j=1

m4jφ1

( a

mj
,
b

mj
,
c

mj

)
<∞, (2.7)

lim
k→∞

m8kφ2(
a

mk
,
b

mk
) = 0

for all µ ∈ T1
1
n0

and all a, b, c ∈ A. In addition, if for each fixed a ∈ A the

mapping r 7→ f(ra) from R to M is continuous, then there exists a unique
quartic Lie ∗-derivation L : A→M such that

‖f(a)− L(a)‖ ≤ 1

m4
Φ1(a, 0, 0) (2.8)

for all a ∈ A.

Proof. At first, we note f(0) = 0 by letting a, b, c := 0 because of φ1(0, 0, 0) =
0. After putting b = c := 0 and µ = 1 in the inequality (2.5), we see

‖f(a)−m4f(
a

m
)‖ ≤ φ1(

a

m
, 0, 0) (2.9)

for all a ∈ A. By induction, it follows that for any positive integers n the
following inequality

‖f(a)−m4nf(
a

mn
)‖ ≤ 1

m4

n∑
j=1

m4jφ1(
a

mj
, 0, 0) (2.10)

holds for all a ∈ A, and hence one deduces

‖m4tf(
a

mt
)−m4kf(

a

mk
)‖ ≤ 1

m4

t∑
j=k+1

m4jφ1(
a

mj
, 0, 0) (2.11)
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for all integers t > k ≥ 0 and all a ∈ A, which tends to zero as k →∞. Hence,
{m4kf( a

mk )}∞k=0 is a Cauchy sequence in the complete space M , and so we can
define a mapping L : A→M as

L(a) = lim
k→∞

m4kf(
a

mk
) (2.12)

for all a ∈ A. Then, we claim the mapping L is quartic. In fact, we figure out
that

‖∆µL(a, b)‖ = lim
k→∞

m4k‖∆µf(
a

mk
,
b

mk
)‖ (2.13)

≤ lim
k→∞

m4kφ1(
a

mk
,
b

mk
, 0) = 0

for all a, b ∈ A and µ ∈ T1
1
n0

. On taking µ = 1 in the inequality (2.13), one

should conclude that the mapping L is quartic. In addition, taking n → ∞
in the inequality (2.10), we notices that the quartic mapping L satisfies the
approximation (2.8) near f .

Now, we prove L is quartic homogeneous. It follows from the inequality
(2.13) that ∆µL(a, 0) = 0, which yields

L(µa) = µ4L(a)

for all µ ∈ T1
1
n0

and a ∈ A, and so, in turn, we lead to

L(νa) = ν4L(a)

for all ν = T1 and all a ∈ A. Under the assumption the mapping r 7→ f(ra)
from R to M is continuous, one establishes

L(ra) = r4L(a) (2.14)

for all r ∈ R and all a ∈ A by the same reasoning as in the paper [7, 5]. Thus,
for any ω ∈ C(ω 6= 0) it follows that

L(ωa) = L
(
|ω| ω
|ω|

a
)

= |ω|4
( |ω|
ω

)4
L(

ω

|ω|
a)

= |ω|4
( ω
|ω|

)4
L(a) = ω4L(a)

for all a ∈ A, from which we conclude that L is quartic homogeneous.
To prove that L is a quartic Lie ∗-derivation, replacing a by a

mk and b by
b
mk in the inequality (2.6), one obtains

‖QDL(a, b)‖ = lim
k→∞

‖m8kQDf(
a

mk
,
b

mk
)‖

≤ lim
k→∞

m8kφ2(
a

mk
,
b

mk
) = 0
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for all a, b ∈ A, which means that L is a quartic Lie derivation. At this time,
by replacing a = b := 0 and c := c

mk in the inequality (2.5), we have

‖m4kf(
c∗

mk
)−m4kf(

c

mk
)∗‖ ≤ m4kφ1(0, 0,

c

mk
),

which yields

L(c∗) = L(c)∗

for all c ∈ A. Therefore, L is a quartic Lie ∗-derivation satisfying the approx-
imation (2.8).

Finally, we will show that the quartic Lie ∗-derivation satisfying the in-
equality (2.8) is unique. Thus, we assume L′ : A → M is another quartic Lie
∗-derivation satisfying the approximation (2.8). Then

‖L(a)− L′(a)‖ = m4k‖L(
a

mk
)− L′( a

mk
)‖

≤ m4k
(
‖L(

a

mk
)− f(

a

mk
)‖+ ‖f(

a

mk
)− L′( a

mk
)‖
)

≤ m4k 2

m4

∞∑
j=1

m4jφ1(
a

mj+k
, 0, 0)

=
2

m4

∞∑
j=k+1

m4jφ1(
a

mj
, 0, 0),

which tends to zero as k →∞. Hence the uniqueness of L was proved. �

Corollary 2.3. Let θi(i = 1, 2), rj be positive real numbers with rj > 4(j =
1, · · · , 5). Suppose that a mapping f : A→M satisfies the followings

‖∆µf(a, b) + f(c∗)− f(c)∗‖ ≤ θ1(‖a‖r1 + ‖b‖r2 + ‖c‖r3),

‖QDf(a, b)‖ ≤ θ2(‖a‖2r4 + ‖b‖2r5)

for all µ ∈ T1
1
n0

and all a, b, c ∈ A. Then there exists a unique quartic Lie

∗-derivation L : A→M such that

‖f(a)− L(a)‖ ≤ θ1
|m|r1 −m4

‖a‖r1

for all a ∈ A.

Proof. On taking φ1(a, b, c) = θ1(‖a‖r1+‖b‖r2+‖c‖r3) and φ2(a, b) = θ2(‖a‖2r4+
‖b‖2r5) in Theorem 2.2 for all a, b, c ∈ A, we obtain the desired results. �

Now, we recall the following theorem which is related to the alternative of
fixed point theory [12, 15].
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Theorem 2.4. (The alternative of fixed point [12], [15]). Suppose that we
are given a complete generalized metric space (Ω, d) and a strictly contractive
mapping T : Ω → Ω with Lipschitz constant l. Then for each given x ∈ Ω,
either

d(Tnx, Tn+1x) =∞ for all n ≥ 0

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;
(2) the sequence (Tnx) is convergent to a fixed point y∗of T ;
(3) y∗ is the unique fixed point of T in the set 4 = {y ∈ Ω|d(Tn0x, y) <
∞};

(4) d(y, y∗) ≤ 1
1−ld(y, Ty) for all y ∈ 4.

The following theorem is an alternative stability result of the quartic func-
tional equation (1.2) associated with quartic Lie ∗-derivations by using direct
method, which is similarly verified as in the proof of [8, Theorem 3.7].

Theorem 2.5. Suppose that there exist a mapping f : A→M with f(0) = 0
and two functions φ1 : A3 → [0,∞), φ2 : A2 → [0,∞) such that

‖∆µf(a, b) + f(c∗)− f(c)∗‖ ≤ φ1(a, b, c),

‖QDf(a, b)‖ ≤ φ2(a, b),

in which there are constants li(i = 1, 2) ∈ (0, 1) satisfying

φ1(ma,mb,mc) ≤ m4l1φ1(a, b, c),

φ2(ma,mb) ≤ m8l2φ2(a, b)

for all µ ∈ T1
1
n0

and all a, b, c ∈ A. In addition, if for each fixed a ∈ A the

mapping r 7→ f(ra) from R to M is continuous, then there exists a unique
quartic Lie ∗-derivation L : A→M such that

‖f(a)− L(a)‖ ≤ 1

m4(1− l1)
φ1(a, 0, 0)

for all a ∈ A.

Using the fixed point method, we investigate another stability result of the
quartic functional equation (1.2) associated with quartic Lie ∗-derivations.

Theorem 2.6. Suppose that there exist a mapping f : A → M and two
functions φ1 : A3 → [0,∞), φ2 : A2 → [0,∞) such that

‖∆µf(a, b) + f(c∗)− f(c)∗‖ ≤ φ1(a, b, c), (2.15)

‖QDf(x, y)‖ ≤ φ2(x, y) (2.16)
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in which there are constants li(i = 1, 2) ∈ (0, 1) satisfying

φ1(
a

m
,
b

m
,
c

m
) ≤ l1

m4
φ1(a, b, c), (2.17)

φ2(
a

m
,
b

m
) ≤ l2

m8
φ2(a, b)

for all µ ∈ T1
1
n0

and all a, b, c ∈ A. In addition, if for each fixed a ∈ A the

mapping r 7→ f(ra) from R to M is continuous, then there exists a unique
quartic Lie ∗-derivation L : A→M such that

‖f(a)− L(a)‖ ≤ l1
m4(1− l1)

φ1(a, 0, 0) (2.18)

for all a ∈ A.

Proof. Above all, we note f(0) = 0 because of φ1(0, 0, 0) = 0 by (2.17). Now,
consider the following function space

Ω := {g : A→M, g(0) = 0},

which is equipped with the generalized metric d on Ω as follows:

d(g, h) := inf{λ ∈ (0,∞) : ‖g(a)− h(a)‖ ≤ λφ1(a, 0, 0) ∀a ∈ A}.

Then, it is not difficult to prove that (Ω, d) is a complete generalized metric
space. Additionally, we consider a mapping T : Ω→ Ω defined as

T (g)(a) = m4g(
a

m
) (2.19)

for all a ∈ A. Then, it follows that for any λ with d(g, h) ≤ λ, where g, h ∈ Ω,

‖g(a)− h(a)‖ ≤ λφ1(a, 0, 0),

from which we get

‖T (g)(a)− T (h)(a)‖ = m4‖g(
a

m
)− h(

a

m
)‖

≤ m4λφ1(
a

m
, 0, 0)

≤ l1λφ1(a, 0, 0),

which implies d(Tg, Th) ≤ l1λ. Since λ is arbitrary with d(g, h) ≤ λ, one
concludes that

d(Tg, Th) ≤ l1d(g, h)
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for all g, h ∈ Ω. This means that T is a strictly contractive self-mapping on Ω
with Lipschitz constant l1. On taking µ = 1 and b = c := 0 in the inequality
(2.15), one obtains

‖f(a)−m4f(
a

m
)‖ ≤ φ1(

a

m
, 0, 0) ≤ l1

m4
φ1(a, 0, 0)

for all a ∈ A, and so d(f, Tf) ≤ l1
m4 . Now, applying Theorem 2.4 to the

function space (Ω, d), we know that there exists a fixed point L of T in Ω such
that

L(a) = m4L(
a

m
), and L(a) = lim

k→∞
m4kf(

a

mk
), (2.20)

d(f, L) ≤ 1

1− l1
d(f, Tf) ≤ l1

m4(1− l1)
for all a ∈ A, from which we conclude that the mapping L satisfies the ap-
proximate inequality (2.18) near f , and it is unique up to d(f, L) <∞.

On the other hand, replacing a by a
mk , b by b

mk and c = 0 in the inequality
(2.15), one has

m4k‖4µf(
a

mk
,
b

mk
)‖ ≤ m4kφ1(

a

mk
,
b

mk
, 0) ≤ lk1φ1(a, b, 0),

which tends to zero as k → ∞, and so, we get 4µL(a, b) = 0 for all a, b ∈ A
and all µ ∈ T1

1
n0

. Thus, the mapping L is a quartic homogeneous by the same

argument as in the proof of Theorem 2.2.
To prove that L is a quartic Lie ∗-derivation, replacing a by a

mk and b by
b
mk in the inequality (2.16), one obtains

‖QDL(a, b)‖ = lim
k→∞

‖m8kQDf(
a

mk
,
b

mk
)‖

≤ lim
k→∞

lk2φ2(a, b) = 0

for all a, b ∈ A, which means that L is a quartic Lie derivation. At this time,
by replacing a = b := 0 and c := c

mk in the inequality (2.5), we have

‖L(c∗)− L(c)∗‖ = lim
k→∞

‖m4kf(
c∗

mk
)−m4kf(

c

mk
)∗‖

≤ lim
k→∞

m4kφ1(0, 0,
c

mk
)

≤ lim
k→∞

lk1φ1(0, 0, c) = 0

for all c ∈ A. Therefore, the mapping L is a quartic Lie ∗-derivation satisfying
the approximation (2.18). �
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Corollary 2.7. Let θi(i = 1, 2), r be positive real numbers with r > 4. Suppose
that a mapping f : A→M satisfies

‖∆µf(a, b) + f(c∗)− f(c)∗‖ ≤ θ1(‖a‖r + ‖b‖r + ‖c‖r),
‖QDf(a, b)‖ ≤ θ2(‖a‖2r + ‖b‖2r)

for all µ ∈ T1
1
n0

and all a, b, c ∈ A. Then there exists a unique quartic Lie

∗-derivation L : A→M satisfying

‖f(a)− L(a)‖ ≤ θ1
|m|r −m4

‖a‖r

for all a ∈ A.

Proof. The proof follows from Theorem 2.6 by taking φ1(a, b, c) = θ1(‖a‖r +
‖b‖r + ‖c‖r) and φ2(a, b) = θ2(‖a‖2r + ‖b‖2r) for all a, b, c ∈ A. �

Remark 2.8. Under the same conditions (2.17) of Theorem 2.6, we observe
that

Φ1(a, b, c) =
∞∑
j=1

m4jφ1

( a

mj
,
b

mj
,
c

mj

)
≤

∞∑
j=1

lj1φ1(a, b, c)

=
l1

1− l1
φ1(a, b, c) <∞,

and

lim
k→∞

m8kφ2(
a

mk
,
b

mk
) ≤ lim

k→∞
lk2φ2(a, b) = 0

for all a, b, c ∈ A. Thus, applying Theorem 2.2 to Theorem 2.6, we also get
the desired stability result (2.18).
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