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Abstract. In this paper we establish the stability of the functional equation

f(x− y) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ G,

where G is an abelian group.

1. Introduction

In many studies concerning functional equations related to the Cauchy equa-
tion f(xy) = f(x)f(y), the main tool is a kind of stability problem inspired by
the famous problem proposed in 1940 by Ulam [23]. More precisely, given a
group G and a metric group H with metric d, it is asked if for every function
f : G→ H, such that the function (x, y) 7→ f(xy)−f(x)f(y) is bounded, there
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exists a homomorphism χ : G→ H such that the function x 7→ d(f(x), χ(x))
is bounded.

The first affirmative answer to Ulam’s question was given in 1941 by Hyers
[14], under the assumption that G and H are Banach spaces. After Hyers’s
result a great number of papers on the subject have been published, general-
izing Ulam’s problem and Hyers’s result in various directions. The interested
reader should refer to [6, 7, 8, 9, 12, 13, 17, 19, 20] for a thorough account on
the subject of the stability of functional equations.

In this paper we will investigate the stability problem for the trigonometric
functional equation

f(x− y) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ G (1.1)

on abelian groups.
Székelyhidi [22] proved the Hyers-Ulam stability for the functional equation

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ G

and cosine functional equation

g(xy) = g(x)g(y)− f(x)f(y), x, y ∈ G

on amenable group G. Chung, Choi and Kim [10] studied the Hyers-Ulam
stability of

f(x+ σ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ G
where σ : G→ G is an involution.

Recently, in [3, 4] the authors obtained the stability of the functional equa-
tions

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ G,

f(xσ(y)) = f(x)g(y) + g(x)f(y), x, y ∈ G,

f(xσ(y)) = f(x)f(y)− g(x)g(y), x, y ∈ G
and

f(xσ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ G
on amenable groups, where σ : G→ G is an involutive automorphism.

The aim of the present paper is to extend the previous results to the func-
tional equation (1.1) on abelian groups.

2. Definitions and notations

Throughout this paper (G,+) denotes an abelian group with the identity
element e. We denote by B(G) the linear space of all bounded complex-valued
functions on G.
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Let V be a linear space of complex-valued functions on G. We say that the
functions f1, · · ·, fn : G→ C are linearly independent modulo V if

λ 1 f1 + · · ·+ λ n fn ∈ V
implies that λ 1 = · · · = λ n = 0 for any λ 1, · · ·, λ n ∈ C. We say that the linear
space V is two-sided invariant if f ∈ V implies that the function x 7→ f(x+ y)
belongs to V for any y ∈ G.

If I is the identity map of G we say that V is (−I)-invariant if f ∈ V
implies that the function x 7→ f(−x) belongs to V. The space B(G) is an
obvious example of a linear space of complex-valued functions on G which is
two-sided invariant and (−I)-invariant.

Let f : G→ C be a function. We denote respectively by

fe(x) :=
f(x) + f(−x)

2
, x ∈ G

and

fo(x) :=
f(x)− f(−x)

2
, x ∈ G

the even part and the odd part of f .

3. Basic results

In this section we present some general stability properties of the functional
equation (1.1). Throughout this section we let V denote a two-sided invariant
and (−I)-invariant linear space of complex-valued functions on G.

Lemma 3.1. Let f, g, h : G→ C be functions. Suppose that the functions

x 7→ f(x− y)− f(x)g(y)− g(x)f(y)− h(x)h(y)

and
x 7→ f(x− y)− f(y − x) (3.1)

belong to V for all y ∈ G. Then we have the following statements:

(1) fo ∈ V.

(2) The following functions ϕ1, ϕ2, ϕ3 : G×G→ C
fe(x)go(y) + ge(x)fo(y) + he(x)ho(y) = ϕ1(x, y), (3.2)

go(x)fe(y) + ho(x)he(y) = ϕ2(x, y), (3.3)

f(x+ y)− f(x− y) + 2fo(x)go(y) + 2go(x)fo(y) + 2ho(x)ho(y)

= ϕ3(x, y)
(3.4)

are such that the functions x 7→ ϕ1(x, y), x 7→ ϕ1(y, x), x 7→ ϕ2(x, y),
x 7→ ϕ3(x, y) and x 7→ ϕ3(y, x) belong to V for all y ∈ G.
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Proof. By setting y = e in (3.1) we get that the function x 7→ f(x) − f(−x)
belongs to V which proves (1).

Let ψ be the function defined on G×G by

ψ(x, y) = f(x− y)− f(x)g(y)− g(x)f(y)− h(x)h(y). (3.5)

From (3.5) we can verify easily that

ψ(x, y) = fe(x− y) + fo(x− y)− fe(x)g(y)

− fo(x)g(y)− g(x)f(y)− h(x)h(y).
(3.6)

Now let
φ(x, y) := ψ(x, y)− fo(x− y) + fo(x)g(y). (3.7)

Then by using (3.6) and (3.7) we get

fe(x− y) = fe(x)g(y) + g(x)f(y) + h(x)h(y) + φ(x, y). (3.8)

Since fe is an even function on the abelian group G, we have

fe(x− y) = fe(−(x− y)) = fe((−x)− (−y)).

Hence, by applying (3.8) to the pair (−x,−y), we obtain

fe(x− y) = fe(x)g(−y) + g(−x)f(−y) + h(−x)h(−y) + φ(−x,−y). (3.9)

Subtracting equation (3.9) from (3.8) we get that

2fe(x)go(y) + g(x)f(y)− g(−x)f(−y) + h(x)h(y)− h(−x)h(−y)

= φ(−x,−y)− φ(x, y).
(3.10)

For the pair (−x, y) the identity (3.10) becomes

2fe(x)go(y) + g(−x)f(y)− g(x)f(−y) + h(−x)h(y)− h(x)h(−y)

= φ(x,−y)− φ(−x, y).
(3.11)

By adding (3.10) and (3.11) we obtain

4fe(x)go(y) + 2ge(x)[f(y)− f(−y)] + 2he(x)[h(y)− h(−y)]

= φ(−x,−y)− φ(x, y) + φ(x,−y)− φ(−x, y).

Hence the identity (3.2) can be written as follows where

ϕ1(x, y) :=
1

4
[φ(−x,−y)− φ(x, y) + φ(x,−y)− φ(−x, y)].

By using (3.7) and the identity above we get, by an elementary computation,
that

ϕ1(x, y) =
1

4
[ψ(−x,−y)− ψ(x, y) + ψ(x,−y)

− ψ(−x, y) + 2fo(x− y)− 2fo(x+ y)].
(3.12)

By interchanging x and y in (3.2) we obtain

go(x)fe(y) + fo(x)ge(y) + ho(x)he(y) = ϕ1(y, x),
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and then we get

ϕ2(x, y) := ϕ1(y, x)− fo(x)ge(y), x, y ∈ G. (3.13)

On the other hand, by replacing y by −y in (3.5) we get that

ψ(x,−y) = f(x+ y)− f(x)g(−y)− g(x)f(−y)− h(x)h(−y). (3.14)

By subtracting the result of equation (3.5) from the result of equation (3.14)
we obtain

f(x+ y)− f(x− y))

= −2f(x)go(y)− 2g(x)fo(y)− 2h(x)ho(y) + ψ(x,−y)− ψ(x, y)

= −2fe(x)go(y)− 2fo(x)go(y)− 2ge(x)fo(y)− 2go(x)fo(y)

− 2he(x)ho(y)− 2ho(x)ho(y) + ψ(x,−y)− ψ(x, y)

= −2fo(x)go(y)− 2go(x)fo(y)− 2ho(x)ho(y)

− 2[fe(x)go(y) + ge(x)fo(y) + he(x)ho(y)] + ψ(x,−y)− ψ(x, y)

= −2fo(x)go(y)− 2go(x)fo(y)− 2ho(x)ho(y)

− 2ϕ1(x, y) + ψ(x,−y)− ψ(x, y).

Thus identity (3.4) can be written as follows:

ϕ3(x, y) := −2ϕ1(x, y) + ψ(x,−y)− ψ(x, y). (3.15)

Since x and y are arbitrary, by using the fact that the functions x 7→ ψ(x, y),
x 7→ f(x − y) − f(y − x) and fo belong to the two-sided invariant and (−I)-
invariant linear space V of complex-valued functions on G for all y ∈ G,
and taking (3.12), (3.13) and (3.15) into account, we deduce the rest of the
proof. �

Lemma 3.2. Let f, g, h : G → C be functions. Suppose that f and h are
linearly independent modulo V, and that ho 6∈ V. If the functions

x 7→ f(x− y)− f(x)g(y)− g(x)f(y)− h(x)h(y)

and

x 7→ f(x− y)− f(y − x)

belong to V for all y ∈ G. Then we have the following statements:

(1)

he = γ fe (3.16)

and

go = −γ ho − η fo, (3.17)

where γ , η ∈ C are constants.
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(2) Moreover, if fo 6= 0, then

ge = η fe + ϕ, (3.18)

where ϕ ∈ V and ϕ(−x) = ϕ(x) for all x ∈ G.

Proof. Since f and h are linearly independent modulo V then f 6∈ V. Accord-
ing to Lemma 3.1(1) we have fo ∈ V, then fe 6∈ V and consequently fe 6= 0.
Therefore, there exists y0 ∈ G such that fe(y0) 6= 0. By setting y = y0 in (3.3)
we derive that there exist a constant γ ∈ C and a function b1 ∈ V such that

go = −γ ho + b1. (3.19)

When we substitute this in (3.3) we obtain

(−γ ho(x) + b1(x))fe(y) + ho(x)he(y) = ϕ2(x, y),

which implies

(he(y)− γ fe(y))ho(x) = ϕ2(x, y)− fe(y)b1(x).

So, x and y being arbitrary, we deduce that the function

x 7→ (he(y)− γ fe(y))ho(x)

belongs to V for all y ∈ G. As ho 6∈ V we get (3.16).
On the other hand we get, from (3.2), (3.16) and (3.19), that

ϕ1(x, y) = fe(x)b1(y) + ge(x)fo(y) (3.20)

for all x, y ∈ G.
If fo 6= 0 then from (3.20) there exist a constant η ∈ C and a function ϕ ∈ V

such that ge = η fe + ϕ and ϕ(−x) = ϕ(x) for all x ∈ G. This is the result
(2) of Lemma 3.2. When we substitute this in the identity (3.20) we get, by
a simple computation, that ϕ1(x, y) = fe(x)[b1(y) + η fo(y)] + ϕ(x)fo(y) for
all x, y ∈ G. As the functions ϕ and x 7→ ϕ1(x, y) belong to V for all y ∈ G,
we deduce that the function x 7→ fe(x)[b1(y) + η fo(y)] belongs to V for all
y ∈ G. Thus, taking into account that fe 6∈ V we infer that b1 = −η fo.

If fo = 0 then we get from (3.20), and noticing that fe 6∈ V, that b1 = 0.
Hence, in both cases we have b1 = −η fo. By substituting this back into (3.19)
we obtain (3.17). This completes the proof. �

Proposition 3.3. Let m : G → C be a nonzero multiplicative function such
that m(−x) = m(x) for all x ∈ G. Then the solutions f, h : G → C of the
functional equation

f(x+ y) = f(x)m(y) +m(x)f(y) + h(x)h(y), x, y ∈ G (3.21)



The stability of a cosine-sine functional equation on abelian groups 601

such that f(−x) = f(x), h(−x) = −h(x) for all x ∈ G and h 6= 0 are the pairs

f =
1

2
a2m and h = am,

where a : G→ C is a nonzero additive function.

Proof. It is simple to check that the indicated functions are solutions of the
functional equation. It is thus left to show that any solutions f, h : G → C
can be written in the indicated forms. Replacing y by −y in (3.21) yields the
functional equation

f(x− y) = f(x)m(y) +m(x)f(y)− h(x)h(y),

because f and m are even functions, and h is an odd function. By (3.21) we
get that

f(x+ y) + f(x− y) = 2f(x)m(y) + 2m(x)f(y).

Notice that m(x) 6= 0 for all x ∈ G, because m is a nonzero multiplicative
function on the group G. Moreover since m(−x) = −m(x) for all x ∈ G we
have

m(x+ y) = m(x− y) = m(x)m(y)

for all x, y ∈ G. Thus, by dividing both sides of (3.21) by m(x + y) we get
that F := f/m satisfies the classical quadratic functional equation

F (x+ y) + F (x− y) = 2F (x) + 2F (y).

Hence from [21, Theorem 13.13] we derive that F has the form F (x) = Q(x, x),
x ∈ G, where Q : G×G→ C is a symmetric, bi-additive map. Hence

f(x) = Q(x, x)m(x) (3.22)

for all x ∈ G. Substituting this in (3.21) and dividing both sides by m(x+y) =
m(x)m(y), and using that Q is a symmetric, bi-additive map we derive that

2Q(x, y) = H(x)H(y) (3.23)

for all x, y ∈ G with H := h/m. Since, H is a nonzero function on G, because
h is, we get that there exists y0 ∈ G such that H(y0) 6= 0. Hence, by setting
y = y0 in the last identity and dividing both sides by H(y0), and taking into
account that Q is bi-additive, we deduce that H = a, where a : G → C is
additive. So h = am.

Notice that a is nonzero. On the other hand, by replacing H by a in (3.23)
and setting x = y we deduce that Q(x, x) = 1

2a
2(x) for all x ∈ G. When we

substitute this in (3.22) we get that f = 1
2a

2m. This completes the proof. �
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Proposition 3.4. Let f, g, h : G→ C be functions. Suppose that f and h are
linearly independent modulo B(G). If the function

(x, y) 7→ f(x+ y)− f(x)g(y)− g(x)f(y)− h(x)h(y)

is bounded then we obtain one of the following possibilities:

(1) 
f = −λ2f0 + λ2b,

g = 1+ρ2

2 f0 + ρ g0 + 1−ρ2
2 b,

h = λ ρ f0 + λ g0 − λ ρ b,
where b : G → C is a bounded function, ρ ∈ C, λ ∈ C \ {0} are con-
stants and f0, g0 : G→ C are functions satisfying the cosine functional
equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y), x, y ∈ G;

(2)  f = λ2M + am+ b,
g = βλ (1− 1

2βλ )M + (1− βλ )m− 1
2β

2am− 1
2β

2b,
h = λ (1− βλ )M − λm− βam− βb,

where m : G → C is a nonzero bounded multiplicative function, M :
G → C is a non bounded multiplicative function, a : G → C is
a nonzero additive function, b : G → C is a bounded function and
β ∈ C, λ ∈ C \ {0} are constants;

(3) 
f = 1

2a
2m+ 1

2a1m+ b,
g = −1

4β
2a2m+ βam− 1

4β
2a1m+m− 1

2β
2b,

h = −1
2βa

2m+ am− 1
2βa1m− β b,

where m : G→ C is a nonzero bounded multiplicative function, a, a1 :
G → C are additive functions such that a is nonzero, b : G → C is a
bounded function and β ∈ C is a constant;

(4) f(x+y) = f(x)m(y)+m(x)f(y)+(a(x)m(x)+ b(x))(a(y)m(y)+ b(y))
for all x, y ∈ G,

g = −1

2
β2f + (1 + βa)m+ βb

and

h = −βf + am+ b,
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where m : G → C is a nonzero bounded multiplicative function, a :
G → C is a nonzero additive function, b : G → C is a bounded func-
tion and β ∈ C is a constant;

(5) f(x+ y) = f(x)g(y) + g(x)f(y) + h(x)h(y) for all x, y ∈ G.

Proof. We proceed as in the proof of [4, Lemma 3.4]. �

4. Stability of equation (1.1)

In this section we prove the main result of the present paper.

Theorem 4.1. f, g, h : G→ C be functions. The function

(x, y) 7→ f(x− y)− f(x)g(y)− g(x)f(y)− h(x)h(y)

is bounded if and only if one of the following assertions holds:

(1) f = 0, g is arbitrary and h ∈ B(G);

(2) f, g, h ∈ B(G);

(3) 
f = αm− α b,
g = 1−αλ2

2 m+ 1+αλ2

2 b− λϕ,
h = αλm− αλ b+ ϕ,

where m : G→ C is a multiplicative function such that m(−x) = m(x)
for all x ∈ G or m ∈ B(G), b, ϕ : G → C are bounded functions and
α ∈ C \ {0}, λ ∈ C are constants;

(4) 
f = f0,

g = −λ2

2 f0 + g0 − λ b,
h = λ f0 + b,

where b : G → C is a bounded function, λ ∈ C is a constant and
f0, g0 : G→ C are functions satisfying the functional equation

f0(x− y) = f0(x)g0(y) + g0(x)f0(y), x, y ∈ G;

(5) 
f = −λ2f0 + λ2b,

g = 1+ρ2

2 f0 + ρ g0 + 1−ρ2
2 b,

h = λ ρ f0 + λ g0 − λ ρ b,
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where b : G → C is a bounded function, ρ ∈ C, λ ∈ C \ {0} are con-
stants and f0, g0 : G→ C are functions satisfying the cosine functional
equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y), x, y ∈ G,

such that f0(−x) = f0(x) and g0(−x) = g0(x) for all x ∈ G;

(6)  f = λ2f0 − λ2b,
g = 1

2fo + 1
2b,

h = λ g0,

where b : G→ C is a bounded function, λ ∈ C \ {0} is a constant and
f0, g0 : G→ C are functions satisfying the cosine functional equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y), x, y ∈ G,

such that f0(−x) = f0(x) and g0(−x) = −g0(x) for all x ∈ G;

(7)  f = 1
2a

2m+ b,
g = m,
h = −iam,

where m : G → C is a nonzero bounded multiplicative function, a :
G → C is a nonzero additive function and b : G → C is a bounded
function such that m(−x) = m(x) and b(−x) = −b(x) for all x ∈ G;

(8) f(x− y) = f(x)g(y) + g(x)f(y) + h(x)h(y) for all x, y ∈ G;

(9) 
f = F0 + ϕ,
g = −1

2δ
2F0 +G0 + δ H0 − ρϕ,

h = −δ F0 +H0 − δ ϕ,
where ρ ∈ C, δ ∈ C \ {0} are constants and the functions F0, G0, H0 :
G → C are of the forms (6)-(7) under the same constraints, with
F0(−x) = F0(x), G0(−x) = G0(x), H0(−x) = −H0(x), ϕ(−x) =
−ϕ(x) for all x ∈ G, such that

(i) b(−x) = b(x) for all x ∈ G and ρ = 1+λδ2

2λ2
if F0, G0 and H0 are

of the form (6),
(ii) b = 0 and ρ = 1

2δ
2 if F0, G0 and H0 are of the form (7).

Proof. To study the stability of the functional equation (1.1) we will discuss
two cases according to whether f and h are linearly independent modulo B(G)
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or not.

Case A: f and h are linearly dependent modulo B(G). We split the discussion
into the cases h ∈ B(G) and h 6∈ B(G).

Subcase A.1: h ∈ B(G). Then the function

(x, y) 7→ f(x− y)− f(x)g(y)− g(x)f(y)

is bounded. Since the groupG is abelian it is an amenable group. So, according
to [3, Theorem 3.3], we have of the following assertions:

(1) f = 0, g is arbitrary and h ∈ B(G). The result occurs in (1) of
Theorem 4.1.

(2) f, g, h ∈ B(G). The result occurs in (2) of Theorem 4.1.
(3) f = am + b and g = m, where a : G → C is an additive function,

m : G → C is a bounded multiplicative function and b : G → C is a
bounded function such that m(−x) = m(x) and a(−x) = a(x) for all
x ∈ G. Then 2a(x) = a(x) + a(−x) = a(x − x) = a(e) = 0 for all
x ∈ G. Hence a(x) = 0 for all x ∈ G. We deduce that f, g, h ∈ B(G).
This is the result (2) of Theorem 4.1.

(4) f = αm−α b, g = 1
2 m+ 1

2 b, where α ∈ C\{0} is a constant, b : G→ C
is a bounded function and m : G→ C is a multiplicative function such
that m(−x) = m(x) for all x ∈ G or m ∈ B(G). This is the result (3)
of Theorem 4.1 for λ = 0.

(5) f(x − y)) = f(x)g(y) + g(x)f(y) for all x, y ∈ G. Therefore, taking
into account that h ∈ B(G), we obtain the result (4) of Theorem 4.1
for λ = 0.

Subcase A.2: h 6∈ B(G). Then f 6∈ B(G). Indeed if f ∈ B(G) then the
functions x 7→ f(x)g(y) and x 7→ f(x − y) belong to B(G) for all y ∈ G.
As the function x 7→ ψ(x, y) belongs to B(G) for all y ∈ G we get that the
function x 7→ g(x)f(y) + h(x)h(y) belongs to B(G) for all y ∈ G. So, taking
into account that h 6∈ B(G), we get that there exist a constant α ∈ C \ {0}
and a function k ∈ B(G) such that

h = αg + k. (4.1)

Substituting (4.1) in (3.5) we get, by an elementary computation, that

ψ(x, y) = f(x− y)− k(x)k(y)− g(x)[f(y) + αh(y)]− g(y)[f(x) + αk(x)]

for all x, y ∈ G. It follows that the function x 7→ g(x)[f(y) + αh(y)] belongs
to B(G) for all y ∈ G, so that h = − 1

αf or g ∈ B(G). Hence, taking (4.1) into
account, we get that h ∈ B(G), which contradicts the assumption on h. We
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deduce that f 6∈ B(G). Since f and h are linearly dependent modulo B(G) we
deduce that there exist a constant λ ∈ C \ {0} and a function ϕ ∈ V such that

h = λ f + ϕ. (4.2)

When we substitute (4.2) in (3.5) we obtain by an elementary computation

ψ(x, y) + ϕ(x)ϕ(y) = f(x− y)− f(x)φ(y)− φ(x)f(y) (4.3)

for all x, y ∈ G, where

φ := g +
λ2

2
f + λϕ. (4.4)

Since the functions ψ and ϕ are bounded we derive from (4.3) that the function
(x, y) 7→ f(x− y)− f(x)φ(y)−φ(x)f(y) is also bounded. Hence, according to
[3, Theorem 3.3] and taking (4.2) into account and that h 6∈ B(G), we have
one of the following possibilities:

(1) f = am + b and φ = m, where a : G → C is an additive function,
m : G → C is a bounded multiplicative function and b : G → C is a
bounded function such that m(−x) = m(x) and a(−x) = a(x) for all
x ∈ G. As in Case A.1(3) we prove that the result (2) of Theorem 4.1
holds.

(2) f = αm−α b, φ = 1
2m+ 1

2b, where α ∈ C\{0} is a constant, b : G→ C
is a bounded function and m : G→ C is a multiplicative function such
that m(−x) = m(x) for all x ∈ G or m ∈ B(G). So, by using (4.4) and
(4.2) we get that

g =
1

2
m+

1

2
b− λ2

2
(αm− αb)− λϕ =

1− αλ2

2
m+

1 + αλ2

2
b− λϕ

and h = αλm− αλ b+ ϕ. The result occurs in (3) of Theorem 4.1.
(3) f(x − y) = f(x)φ(y) + φ(x)f(y) for all x, y ∈ G. By putting f0 := f

and g0 := φ we get the result (4) of Theorem 4.1.

Case B: f and h are linearly independent modulo B(G). Then f 6∈ B(G).
Moreover, according to Lemma 3.1(1), we have fo ∈ B(G) and then fe 6= 0.
It follows from (3.3), with ϕ2 satisfying the same constraint in Lemma 3.1,
that if ho ∈ B(G) then go ∈ B(G). So we will discuss the following subcases:
ho ∈ B(G) and ho 6∈ B(G).
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Subcase B.1: ho ∈ B(G). Let x, y ∈ G be arbitrary. From (3.5) we get,
by using (3.2) and (3.3), that

fe(x− y) = [fe(x) + fo(x)][ge(y) + go(y)]

+ [ge(x) + go(x)][fe(y) + fo(y)]

+ [he(x) + ho(x)][he(y) + ho(y)]

− fo(x− y) + ψ(x, y)

= fe(x)ge(y) + ge(x)fe(y) + he(x)he(y)

+ [fe(x)go(y) + ge(x)fo(y) + he(x)ho(y)]

+ [fo(x)ge(y) + go(x)fe(y) + ho(x)he(y)]

+ fo(x)go(y) + go(x)fo(y) + ho(x)ho(y)

− fo(x− y) + ψ(x, y)

= fe(x)ge(y) + ge(x)fe(y) + he(x)he(y)

+ fo(x)go(y) + go(x)fo(y) + ho(x)ho(y)

− fo(x− y) + ϕ1(x, y) + ϕ1(y, x) + ψ(x, y).

Thus, x and y being arbitrary, by using the fact that the functions fo, go,
ho and ψ are bounded, and taking (3.12) into account, we deduce from the
identity above that the function (x, y) 7→ fe(x−y)−fe(x)ge(y)−ge(x)fe(y)−
he(x)he(y) is bounded, so is the function (x, y) 7→ fe(x + y) − fe(x)ge(y) −
ge(x)fe(y)−he(x)he(y). Moreover since the functions f and h are linearly in-
dependent modulo B(G) and fo, ho ∈ B(G) we get that fe and he are linearly
independent. Hence, according to Proposition 3.4 we are lead to one of the
following possibilities:

(1) 
fe = −λ2f0 + λ2b,

ge = 1+ρ2

2 f0 + ρ g0 + 1−ρ2
2 b,

he = λ ρ f0 + λ g0 − λ ρ b,
where b : G→ C is a bounded function, ρ ∈ C, λ ∈ C \ {0} are constants and
f0, g0 : G→ C are functions satisfying the cosine functional equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y), x, y ∈ G.

Notice that f0 6∈ B(G) because fe = −λ2 f0+λ2 b, fe 6∈ B(G) and b ∈ B(G).
Since fe and he are linearly independent modulo B(G) so are the functions
f0 and g0. Indeed, if not then there exist a constant α ∈ C and a function
ϕ ∈ B(G) such that g0 = αf0 + ϕ. Hence

he = λ ρ f0 + λ (αf0 + ϕ)− λ ρ b = λ (ρ+ α)f0 + b1,
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where b1 := λϕ− λ ρ b belongs to B(G). Then

λhe + (ρ + α)fe = λ b1 + λ2(ρ + α)b,

which implies that the function λhe+(ρ+α)fe belongs to B(G). This contra-
dicts the fact that fe and he are linearly independent modulo B(G) because
λ 6= 0. Hence f0 and g0 are linearly independent modulo B(G).

On the other hand let ψ1 := fo, ψ2 := go and ψ3 := ho. The identity (3.2)
implies

ϕ1(x, y) = (−λ2f0(x) + λ2b(x))ψ2(y)

+ (
1 + ρ2

2
f0(x) + ρ g0(x) +

1− ρ2

2
b(x))ψ1(y)

+ (λ ρ f0(x) + λ g0(x)− λ ρ b(x))ψ3(y)

= f0(x)[−λ2ψ2(y) +
1 + ρ2

2
ψ1(y) + λ ρψ3(y)]

+ g0(x)[ρψ1(y) + λψ3(y)]

+ b(x)[λ2ψ2(y) +
1− ρ2

2
ψ1(y)− λ ρψ3(y)],

for all x, y ∈ G. So, taking (3.12) into account and that the functions ψ, b, ψ1,
ψ2 and ψ3 are bounded, we deduce from the identity above that the function

x 7→ f0(x)[−λ2 ψ2(y) +
1 + ρ2

2
ψ1(y) + λ ρψ3(y)] + g0(x)[ρψ1(y) + λψ3(y)]

belongs to B(G) for all y ∈ G. Since f0 and g0 are linearly independent modulo
B(G) we get that

−λ2ψ2(y) +
1 + ρ2

2
ψ1(y) + λ ρψ3(y) = 0

and

ρψ1(y) + λψ3(y) = 0

for all y ∈ G, from which we derive by a small computation that ψ2 = 1−ρ2
2λ2

ψ1

and ψ3 = − ρ
λ ψ1. As f = fe+fo = fe+ψ1, g = ge+go = ge+ψ2 = ge+ 1−ρ2

2λ2
ψ1

and h = he + ho = he + ψ3 = he + 1−ρ2
2λ2

ψ1, we deduce that

(I)


f = −λ2 f0 + λ2 b+ ψ1,

g = 1+ρ2

2 f0 + ρ g0 + 1−ρ2
2 b+ 1−ρ2

2λ2
ψ1,

h = λ ρ f0 + λ g0 − λ ρ b− ρ
λ ψ1.

Moreover, since fe, ge and he are even functions, and ψ1 = fo, we get that
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
ψ1(−x) = −ψ1(x)
−f0(−x) + b(−x) = −f0(x) + b(x)
1
2f0(−x) + ρ g0(−x) + 1

2b(−x) = 1
2f0(x) + ρ g0(x) + 1

2b(x),
ρ f0(−x) + g0(−x)− ρ b(−x) = ρ f0(x) + g0(x)− ρ b(x),

which implies f0(−x) = f0(x), g0(−x) = g0(x), b(−x) = b(x) and ψ1(−x) =
−ψ1(x) for all x ∈ G. Thus we obtain, by writing b instead of b+ 1

λ2
ψ1 in (I),

the result (5) of Theorem 4.1.

(2)  fe = λ2M + am+ b,
ge = βλ (1− 1

2βλ )M + (1− βλ )m− 1
2β

2 am− 1
2β

2 b,
he = λ (1− βλ )M − λm− β am− β b,

where m : G → C is a nonzero bounded multiplicative function, M : G → C
is a non bounded multiplicative function, a : G → C is a nonzero additive
function, b : G→ C is a bounded function and β ∈ C, λ ∈ C\{0} are constants.
Then β f e + he = βλ2M + β am+ β b+ λ (1− βλ )M − λm− β am− β b =
λ (M −m). So that

M(−x)−m(−x) = M(x)−m(x) (4.5)

for all x ∈ G. Moreover, since fe and ge are even functions, and

a(−x) + a(x) = a(−x+ x) = a(e) = 0

for all x ∈ G, we get that

λ2M(−x)− a(x)m(−x) + b(−x) = λ2M(x) + a(x)m(x) + b(x) (4.6)

and

βλ (1− 1

2
βλ )M(−x) + (1− βλ )m(−x) +

1

2
β2 a(x)m(−x)− 1

2
β2 b(−x)

= βλ (1− 1

2
βλ )M(x) + (1− βλ )m(x)− 1

2
β2 a(x)m(x)− 1

2
β2 b(x),

(4.7)

for all x ∈ G. By multiplying (4.6) by 1
2β

2 and adding the result to (4.7) we
get that

βλ (M(x)−m(x))− βλ (M(−x)−m(−x)) +m(x)−m(−x) = 0

for all x ∈ G. We deduce, by taking (4.5) into account, that m(−x) = m(x)
and M(−x) = M(x) for all x ∈ G. When we substitute this back into (4.6)
we get that

−a(x)m(x) + b(−x) = a(x)m(x) + b(x)

for all x ∈ G. Hence a(x) = −bo(x)m(−x) for all x ∈ G. As b and m
are bounded functions we derive that the additive function a is bounded, so
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a(x) = 0 for all x ∈ G, which contradicts the condition on a. Therefore the
present case does not occur.

(3) 
fe = 1

2a
2m+ 1

2a1m+ b,
ge = −1

4β
2 a2m+ β am− 1

4β
2 a1m+m− 1

2β
2 b,

he = −1
2β a

2m+ am− 1
2β a1m− β b,

where m : G→ C is a nonzero bounded multiplicative function, a, a1 : G→ C
are additive functions such that a is nonzero, b : G→ C is a bounded function
and β ∈ C is a constant.

Notice that β f e + he = am and 2ge = β2 fe + 2β he + 2m, then m and
am are even functions. As seen earlier we have a(−x) = −a(x) for all x ∈ G.
Hence −a(x)m(x) = a(x)m(x) for all x ∈ G, so a = 0, which contradicts the
condition on a. We conclude that the present possibility does not occur.

(4)

fe(x+ y) = fe(x)m(y) +m(x)fe(y) + (a(x)m(x) + b(x))(a(y)m(y) + b(y))

for all x, y ∈ G,

ge = −1

2
β2 fe + (1 + β a)m+ β b

and
he = −β f e + am+ b,

where m : G→ C is a nonzero bounded multiplicative function, a : G→ C is
a nonzero additive function, b : G → C is a bounded function and β ∈ C is a
constant.

The second and the third identities above imply

m = −1

2
β2 fe + ge − β he,

from which we deduce that m(−x) = m(x) for all x ∈ G. Moreover the third
identity above implies that the function am+ b is even. Since a(−x) = −a(x)
for all x ∈ G, we get that

−a(x)m(x) + b(−x) = a(x)m(x) + b(x)

for all x ∈ G. Hence a = −bom. As b and m are bounded functions and a
is an additive function we deduce that a = 0, which contradicts the condition
on a. We conclude that the present possibility does not occur.

(5) fe, ge and he satisfy the functional equation

fe(x+ y) = fe(x)ge(y) + ge(x)fe(y) + he(x)he(y) (4.8)

for all x, y ∈ G.
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If fo = 0 then fe = f . Moreover, taking into account that fe and he are
linearly independent, we derive from (3.2) that go = 0 and ho = 0, hence
ge = g and he = h. So the functional equation (4.8) becomes f(x − y) =
f(x)g(y) + g(x)f(y) + h(x)h(y) for all x, y ∈ G. This is the result (8) of
Theorem 4.1.

If fo 6= 0 then, according to (3.2), there exist two constants α, β ∈ C and
an even function b ∈ B(G) such that

ge = α f e + β he + b. (4.9)

By substituting (4.9) into (4.8) we get, by a similar computation to the one
of Case A of the proof of [4, Lemma 3.4], that

fe(x+ y) = (2α− β2)fe(x)fe(y) + fe(x)b(y) + b(x)fe(y)

+ [β f e(x) + he(x)][β fe(y) + he(y)]
(4.10)

for all x, y ∈ G. We have the following subcases:

Subcase B.1.1: 2α 6= β2. Proceeding exactly as in Subcase A.1 of the
proof of [4, Lemma 3.4] we get that

fe = −λ2f0 + λ2b,

ge = 1+ρ2

2 f0 + ρ g0 + 1−ρ2
2 b,

he = λ ρ f0 + λ g0 − λ ρ b.

So we go back to the possibility (1) and then obtain the result (5) of Theorem
4.1.

Subcase B.1.2: 2α = β2. By similar computations to the ones in Subcase
A.1 of the proof of [4, Lemma 3.4] we get that there exist a constant η ∈ C
such that

H(x+ y) = H(x)m(y) +m(x)H(y) + η H(x)H(y) (4.11)

for all x, y ∈ G and

b = m (4.12)

where η ∈ C, H := β f e+he and m ∈ B(G) is an even multiplicative function.
If η = 0 then H satisfies the functional equation

H(x+ y) = H(x)m(y) +m(x)H(y)

for all x, y ∈ G. As fe and he are linearly independent modulo B(G) we have
H 6= 0, hence m is a nonzero multiplicative function on the group G. So, from
the functional equation above we deduce that there exists an additive function
a : G → C such that H = am. Since H is even so is a, hence a = 0 which
contradicts the fact that H 6= 0.
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If η 6= 0 then, by multiplying both sides of (4.11) by η and adding m(x+ y)
to both sides of the obtained identity, we get, by a small computation, that

m(x+ y) + η2H(x+ y) = [m(x) + η H(x)][m(y) + η H(y)]

for all x, y ∈ G. So there exist an even multiplicative function M : G → C
and a constant λ ∈ C\{0} such that H = λ(M −m). By substituting this into
(4.10) and taking (4.12) into account we obtain

fe(x+ y) = fe(x)m(y) +m(x)fe(y) + λ2(M(x)−m(x))(M(y)−m(y))

= fe(x)m(y) +m(x)fe(y) + λ2M(x+ y)

− λ2M(x)m(y)− λ2m(x)M(y) + λ2m(x+ y)

for all x, y ∈ G. Since m is a nonzero multiplicative function on the group G
we have m(x) 6= 0 for all x ∈ G. So, by dividing both sides of the functional
equation above we get that

fe(x+ y)− λ2M(x+ y)

m(x+ y)
+λ2 = [

fe(x)− λ2M(x)

m(x)
+λ2]+[

fe(y)− λ2M(y)

m(y)
+λ2]

for all x, y ∈ G, hence there exists an additive function a : G→ C such that

fe(x)− λ2M(x)

m(x)
+ λ2 = a(x)

for all x ∈ G. Since fe, M and m are even functions so is the additive
function a, then a(x) = 0 for all x ∈ G. Hence fe = λ2(M − m). Then
fe = λH = λβ fe + λhe, which contradicts the linear independence modulo
B(G) of fe and he. We conclude that the Subcase B.1.1 does not occur.

Subcase B.2: ho 6∈ B(G). Since B(G) is a two-sided invariant and (−I)-
invariant linear space of complex-valued functions on G, then we deduce, ac-
cording to Lemma 3.2, that he = γ fe and go = −γ ho − η fo, where γ, η ∈ C
are two constants. We split the discussion into the cases γ = 0 and γ 6= 0.

Subcase B.2.1: γ = 0. Then, from Lemma 3.1(1), (3.16) and (3.17), we
deduce that ho = h and go ∈ B(G). So we get, from the identities (3.4) and
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(3.5), that

f(x+ y) = f(x)g(y) + g(x)f(y) + h(x)h(y)− 2fo(x)go(y)− 2go(x)fo(y)

− 2h(x)h(y) + ψ(x, y) + ϕ3(x, y)

= [fe(x) + fo(x)][ge(y) + go(y)] + [ge(x) + go(x)][fe(y) + fo(y)]

− h(x)h(y)− 2fo(x)go(y)− 2go(x)fo(y) + ψ(x, y) + ϕ3(x, y)

= fe(x)ge(y) + ge(x)fe(y)− h(x)h(y) + (fe(x)go(y) + ge(x)fo(y))

+ (go(x)fe(y) + fo(x)ge(y))− fo(x)go(y)− go(x)fo(y) + ψ(x, y)

+ ϕ3(x, y)

for all x, y ∈ G. Hence, taking into account that he = 0, and by using (3.2)
and (3.15), a small computation shows that

fe(x+ y) = fe(x)ge(y) + ge(x)fe(y) + k(x)k(y) + Ψ(x, y) (4.13)

for all x, y ∈ G, where

k := ih (4.14)

and

Ψ(x, y) := ψ(x,−y) +ϕ1(y, x)−ϕ1(x, y)−fo(x+y)−fo(x)go(y)−go(x)fo(y)
(4.15)

for all x, y ∈ G. As the functions fo, go and ψ are bounded we deduce, from
(3.12), (4.13) and (4.15), that the function

(x, y) 7→ fe(x+ y)− fe(x)ge(y)− ge(x)fe(y)− k(x)k(y)

is bounded. Hence, according to Proposition 3.4 we obtain one of the following
possibilities:
(1) 

fe = −λ2 f0 + λ2 b,

ge = 1+ρ2

2 f0 + ρ g0 + 1−ρ2
2 b,

k = λ ρ f0 + λ g0 − λ ρ b,
where b : G→ C is a bounded function, ρ ∈ C, λ ∈ C \ {0} are constants and
f0, g0 : G→ C are functions satisfying the cosine functional equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y), x, y ∈ G.

Since fe and ge are even functions, k is an odd function and λ 6= 0 we get
that

f0(−x)− b(−x) = f0(x)− b(x), (4.16)

f0(−x) + 2ρ g0(−x) + b(−x) = f0(x) + 2ρ g0(x) + b(x) (4.17)

and

ρ (f0(−x)− b(−x)) + g0(−x) = −ρ (f0(x)− b(x))− g0(x) (4.18)
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for all x ∈ G. The identity (4.16) implies

fo0 = bo. (4.19)

By using this and the identity k = λ ρ f0+λ g0−λ ρ b, and taking into account
that k is an odd function we obtain

k = λ go0. (4.20)

By multiplying both sides of (4.16) by ρ and subtracting (4.18) from the result
we deduce that

ge0 = −ρ (f0 − b). (4.21)

Moreover, we derive from (4.17) that

2ρ (g0(x)− g0(−x)) = −(f0(x)− f0(−x))− (b(x)− b(−x))

for all x ∈ G, which implies, by taking (4.19) into account, that

ρ go0 = −bo. (4.22)

From (4.20), (4.22) and (4.14) we get that

ρ h = λ ibo. (4.23)

Since b is a bounded function on G we deduce from (4.23) that ρ h is also a
bounded function. As h 6∈ B(G) we get that ρ = 0. It follows that

(II)

 fe = −λ2 f0 + λ2 b,
ge = 1

2f0 + 1
2 b,

k = λ g0.

Let ψ1 := go and ψ2 := fo. By using that he = 0, (3.2), the first and the
second identities in (II) we obtain

ϕ1(x, y) = (−λ2 f0(x) + λ2 b(x))ψ1(y) + (
1

2
fo(x) +

1

2
b(x))ψ2(y)

= f0(x)[−λ2 ψ1(y) +
1

2
ψ2(y)] + b(x)[λ2 ψ1(y) +

1

2
ψ2(y)],

for all x, y ∈ G. So, taking (3.12) into account and the that the functions ψ, b,
ψ1 and ψ2 are bounded, we deduce from the identity above that the function

x 7→ f0(x)[−λ2 ψ1(y) +
1

2
ψ2(y)]

belongs to B(G) for all y ∈ G. Since

fe = −λ2 f0 + λ2 b,

fe 6∈ B(G) and b ∈ B(G) we deduce that f0 6∈ B(G). Hence

−λ2 ψ1(y) +
1

2
ψ2(y) = 0
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for all y ∈ G, which implies that

ψ2 = 2λ2 ψ1.

Since

f = fe + fo = fe + ψ2 = fe + 2λ2 ψ1, g
e + go = ge + ψ1

we deduce, taking (4.14) and (II) into account, that

(III)

 f = −λ2 f0 + λ2 b+ 2λ2 ψ1,
g = 1

2f0 + 1
2 b+ ψ1,

h = −λi g0.

On the other hand, we get from the identities (4.22), (4.19), (4.21) and
ψ1 = go, that

b(−x) = b(x), f0(−x) = f0(x), g0(−x) = −g0(x) and ψ1(−x) = −ψ1(x)

for all x ∈ G, and ψ1 ∈ B(G). So we obtain, by writing b and λ instead of
b+ 2ψ1 and −λi respectively in (III), the result (6) of Theorem 4.1.

(2)  fe = λ2M + am+ b,
ge = βλ(1− 1

2βλ)M + (1− βλ)m− 1
2β

2 am− 1
2β

2 b,
k = λ(1− βλ)M − λm− β am− β b,

where m : G → C is a nonzero bounded multiplicative function, M : G → C
is a non bounded multiplicative function, a : G → C is a nonzero additive
function, b : G → C is a bounded function and β ∈ C, λ ∈ C \ {0} are
constants.

We have β k = −1
2β

2 fe + ge −m, which implies, taking into account that
k is an odd function, that β k = −mo. Hence β k ∈ B(G). As k 6∈ B(G) we
get that β = 0. Then ge = m and k = λ(M −m). Since λ 6= 0 we get that
m(−x) = m(x) and M(−x)−m(−x) = −M(x) +m(x) for all x ∈ G. So that
2m(x) = M(−x) + M(x) for all x ∈ G. Since m and M are multiplicative
functions we deduce, according to [21, Corollary 3.19], that m = M , which
contradicts the conditions m ∈ B(G) and M 6∈ B(G). Thus the present possi-
bility does not occur.

(3) 
fe = 1

2a
2m+ 1

2a1m+ b,
ge = −1

4β
2 a2m+ β am− 1

4β
2 a1m+m− 1

2β
2 b,

k = −1
2β a

2m+ am− 1
2β a1m− β b,
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where m : G→ C is a nonzero bounded multiplicative function, a, a1 : G→ C
are additive functions such that a is nonzero, b : G→ C is a bounded function
and β ∈ C is a constant.

Notice that β k = −1
2β

2 fe+ge−m. As in the possibility above we get that
β = 0. Hence we obtain

(IV )

 fe = 1
2a

2m+ 1
2a1m+ b,

ge = m,
k = am.

From the second identity of (IV ) we deduce that m(−x) = m(x) for all x ∈ G.
As fe(−x) = fe(x), a(−x) = −a(x) and a1(−x) = −a1(x) for all x ∈ G, we
deduce from the first identity of (IV ) that

1

2
a2(x)m(x)− 1

2
a1(x)m(x) + b(−x) =

1

2
a2(x)m(x) +

1

2
a1(x)m(x) + b(x)

for all x ∈ G. So
a1(x)m(x) = b(x)− b(−x)

for all x ∈ G, from which we get, taking into account that m(−x) = m(x) for
all x ∈ G and m is a nonzero multiplicative function on the group G, that
a1 = −2mbo. As m, b ∈ B(G) and a1 is an additive function we deduce that
a1 = 0 and b(−x) = b(x) for all x ∈ G. Hence the first identity of (IV )
becomes fe = 1

2a
2m+ b. So, taking into account that ge = m and he = 0, the

identity (3.2) becomes

ϕ1(x, y) = [
1

2
a2(x)m(x) + b(x)]go(y) +m(x)fo(y)

=
1

2
a2(x)m(x)go(y) + b(x)go(y) +m(x)fo(y),

for all x, y ∈ G. As the functions m, b, go and fo are bounded and m is a
nonzero multiplicative function on the group G, we deduce from the identity
above that the function

x 7→ a2(x)go(y)

belongs to B(G) for all y ∈ G. Since a2 is a non bounded function, because
of the fact that a is a nonzero additive function on G, we deduce that go = 0.
We infer from (IV ), taking (4.14) into account, and using that f = fe + fo

and g = ge + go, that

 f = 1
2a

2m+ b+ fo,
g = m,
h = −iam.
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By writing b instead of b + fo in the identities above we obtain the result
(7) of Theorem 4.1.

(4) fe satisfies the functional equation

fe(x+ y) = fe(x)m(y) +m(x)fe(y) + (a(x)m(x) + b(x))(a(y)m(y) + b(y))
(4.24)

for all x, y ∈ G,

ge = −1

2
β2 fe + (1 + β a)m+ β b

and
k = −β f e + am+ b,

where m : G→ C is a nonzero bounded multiplicative function, a : G→ C is
a nonzero additive function, b : G → C is a bounded function and β ∈ C is a
constant.

A simple computation shows that β k = −1
2β

2 fe + ge −m. Thus, as in the
possibility (2), we have β = 0. Hence

ge = m (4.25)

and
k = am+ b. (4.26)

From (4.24) and (4.26) we deduce that fe and k satisfy the functional equation

fe(x+ y) = fe(x)m(y) +m(x)fe(y) + k(x)k(y).

As a is a nonzero additive function, m is a nonzero multiplicative bounded
function and b is bounded we derive from (4.26) that k 6= 0. Moreover k(−x) =
−k(x) for all x ∈ G, and from (4.25) we get that m(−x) = m(x) for all x ∈ G.
Hence, according to Proposition 3.3, fe and k are of the form

fe =
1

2
A2m (4.27)

and
k = Am, (4.28)

where A : G→ C is a nonzero additive function. It follows, from (4.26), (4.28)
and that m(−x) = m(x) for all x ∈ G, that A − a = bm. Hence, A − a is a
bounded additive function. Therefore A = a and b = 0. We deduce, taking
(4.27) and (4.28) into account, that

fe =
1

2
a2m. (4.29)

and
k = am. (4.30)
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Moreover, since the functions m and ψ are bounded, we deduce by using
(3.2), (3.12) and (4.25), that the function x→ fe(x)go(y) belongs to B(G) for
all y ∈ G. As seen earlier, we have fe 6∈ B(G). Hence

go = 0. (4.31)

Thus, by using (4.14), (4.25), (4.29), (4.30) and (4.31), and taking into account
that fo ∈ B(G), we conclude, by writing b instead of fo, that

 f = 1
2a

2m+ b,
g = m,
h = −iam.

The result occurs in (7) of Theorem 4.1.

(5) fe, ge and k satisfy the functional equation

fe(x+ y) = fe(x)ge(y) + ge(x)fe(y) + k(x)k(y) (4.32)

for all x, y ∈ G.

If fo = 0 then fe = f . Moreover we derive from (3.17) that ge = g. So, by
using (4.14), the functional equation (4.32) becomes

f(x+ y) = f(x)g(y) + g(x)f(y)− h(x)h(y)

for all x, y ∈ G. As h = ho we derive that f , g and h satisfy the functional
equation

f(x− y) = f(x)g(y) + g(x)f(y) + h(x)h(y)

for all x, y ∈ G. This is the result (8) of Theorem 4.1.

If fo 6= 0 then, according to (3.2), there exist a constant η ∈ C and an even
function ϕ ∈ B(G) such that

ge = η fe + ϕ.

Substituting this into (4.32) we obtain

fe(x+ y) = 2η fe(x)fe(y) + fe(x)ϕ(y) + ϕ(x)fe(y) + k(x)k(y) (4.33)

for all x, y ∈ G.
If η = 0, then the functional equation (4.33) can be written

fe(x+ y) = fe(x)ϕ(y) + ϕ(x)fe(y) + k(x)k(y) (4.34)

for all x, y ∈ G.
Notice that ϕ 6= 0. Indeed, if ϕ = 0 then we get, by putting y = e in (4.34)

and taking (4.14) into account, that

fe(x) + h(x)h(e) = 0
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for all x ∈ G. Since h = ho we have h(e) = 0. Hence fe(x) = 0 for all x ∈ G,
and then f = fo, which implies f ∈ B(G) which contradicts that f and h are
linearly independent modulo B(G). Moreover we derive from (4.34), according
to [4, Lemma 3.2], that ϕ is a multiplicative function because fe and k are
linearly independent modulo B(G) and ϕ ∈ B(G). Let m := ϕ. Then the
functional equation (4.34) becomes

fe(x+ y) = fe(x)m(y) +m(x)fe(y) + k(x)k(y)

for all x, y ∈ G. Since fe is an even function, m a nonzero multiplicative
function on the group G such that

m(−x) = ϕ(−x) = ϕ(x) = m(x)

for all x ∈ G, and k an odd function we deduce, according to Proposition 3.3,
that fe = 1

2a
2m and k = am where a : G→ C is a nonzero additive function.

So, taking (4.14), (3.17) and (3.18) into account, and using that fo ∈ B(G),
γ = η = 0 and ϕ = m, we derive, by setting b = fo, that

 f = 1
2a

2m+ b,
g = m,
h = −iam.

This is the result (7) of Theorem 4.1.

If η 6= 0, let λ ∈ C \ {0} such that λ2 = 1
2η . The functional equation (4.33)

can be written, by multiplying both sides by 1
λ2

and adding ϕ(x + y) to the
obtained functional equation, as follows

1

λ2
fe(x+ y) + ϕ(x+ y) = [

1

λ2
fe(x) + ϕ(x)][

1

λ2
fe(y) + ϕ(y)]

+
1

λ2
k(x)k(y) + ϕ(x+ y)− ϕ(x)ϕ(y)

for all x, y ∈ G. As ϕ ∈ B(G) we get that the function

x 7→ 1

λ2
fe(x+y)+ϕ(x+y)− [

1

λ2
fe(x)+ϕ(x)][

1

λ2
fe(y)+ϕ(y)]− 1

λ2
k(x)k(y)

belongs to the two-sided invariant linear space B(G) for all y ∈ G. Since the
functions fe and h are linearly independent modulo B(G) so are 1

λ2
fe+ϕ and

1
λ2
k. Hence, according to [22, Lemma 3.1] and taking (4.14) into account, the

functional equation

1

λ2
fe(x+ y) + ϕ(x+ y) = [

1

λ2
fe(x) + ϕ(x)][

1

λ2
fe(y) + ϕ(y)]− 1

λ2
h(x)h(y)

for all x, y ∈ G, is valid, from which we deduce that
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(V )

{
fe = λ2 f0 − λ2ϕ,
h = λ g0,

where

f0 :=
1

λ2
fe + ϕ

and g0 := 1
λ h satisfy the functional equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y)

for all x, y ∈ G.
Moreover, since ϕ is an even function and he = 0 we get easily that

f0(−x) = f0(x)

and

g0(−x) = −g0(x)

for all x ∈ G.
On the other hand, by taking into account that f = fe+fo and g = ge+go,

and by using (3.17), (3.18) and (V ), we derive by an elementary computation
that

 f = λ2 f0 − λ2 b,
g = 1

2 f0 + 1
2 b

h = λ g0,

where b := ϕ− 1
λ2
fo is a bounded function. The result occurs in (6) of Theo-

rem 4.1.

Subcase B.2.2: γ 6= 0. Let x, y ∈ G be arbitrary. By substituting (3.16)
and (3.17) in (3.2) we obtain by an elementary computation

ϕ1(x, y) = [−η fe(x) + ge(x)]fo(y). (4.35)

On the other hand, since f = fe + fo and g = ge + go the identity (3.5) can
be written

ψ(x, y) = fe(x− y)− fe(x)ge(y)− ge(x)fe(y)

− ge(x)fo(y)− fe(x)go(y)

− fe(y)go(x)− fo(x)ge(y)− fo(x)go(y)

− go(x)fo(y)− h(x)h(y) + fo(x− y).
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By using (3.17) we obtain

ψ(x, y) = fe(x− y)− fe(x)ge(y)− ge(x)fe(y)− h(x)h(y)− ge(x)fo(y)

− fe(x)[−γ ho(y)− η fo(y)]− fe(y)[−γ ho(x)− η fo(x)]− fo(x)ge(y)

− fo(x)[−γ ho(y)− η fo(y)]− fo(y)[−γ ho(x)− η fo(x)] + fo(x− y)

= fe(x− y)− fe(x)ge(y)− ge(x)fe(y)− h(x)h(y)

+ γ fe(x)ho(y) + γ fe(y)ho(x) + γ fo(x)ho(y) + γ ho(x)fo(y)

+ 2η fo(x)fo(y)− [−η fe(x) + ge(x)]fo(y)

− [−η fe(y) + ge(y)]fo(x) + fo(x− y),

from which we infer, by using that h = he + ho, and taking (3.16) and (4.35)
into account, that

ψ(x, y) = fe(x− y)− fe(x)ge(y)− ge(x)fe(y)− [he(x) + ho(x)][he(y) + ho(y)]

+ he(x)ho(y) + he(y)ho(x) + γ fo(x)ho(y) + γ ho(x)fo(y)

− ϕ1(x, y)− ϕ1(y, x) + 2η fo(x)fo(y) + fo(x− y)

= fe(x− y)− fe(x)ge(y)− ge(x)fe(y)− he(x)he(y)

− ho(x)ho(y) + γ fo(x)ho(y) + γ ho(x)fo(y)

− ϕ1(x, y)− ϕ1(y, x) + 2η fo(x)fo(y) + fo(x− y)

= fe(x− y)− fe(x)ge(y)− ge(x)fe(y)− γ2fe(x)fe(y)

− ho(x)ho(y) + γ fo(x)ho(y) + γ ho(x)fo(y)

− ϕ1(x, y)− ϕ1(y, x) + 2η fo(x)fo(y) + fo(x− y).

So that

fe(x− y)− fe(x)[ge(y) +
1

2
γ2fe(y)]− [ge(x) +

1

2
γ2fe(x)]fe(y)

− [ho(x)− γ fo(x)][ho(y)− γ fo(y)]

= ψ(x, y) + ϕ1(x, y) + ϕ1(y, x)− (γ2 + 2η)fo(x)fo(y)− fo(x− y)

(4.36)

for all x, y ∈ G. Let

F0 := fe, G0 := ge +
1

2
γ2fe, H0 := ho − γ fo. (4.37)

Since f = fe + fo, g = ge + go and h = he + ho, we get by setting δ = −γ and
ϕ = fo, and taking (3.16), (3.17) and (4.37) into account, that

(V I)


f = F0 + ϕ,
g = −1

2δ
2F0 +G0 + δ H0 − (η + δ2)ϕ,

h = −δ F0 +H0 − δ ϕ.
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If ϕ = 0 the result (9) of Theorem 4.1 is obviously satisfied. In the following
we assume that ϕ 6= 0. By using (4.35), the first identity and the second one
in (4.36), and replacing fo by ϕ, we get, by a small computation, that

ϕ1(x, y) = −[(η +
1

2
δ2)F0(x)−G0(x)]ϕ(y)

for all x, y ∈ G. Since fo and ψ are bounded functions, we deduce, taking
(3.12) and the identity above into account, that

(η +
1

2
δ2)F0 −G0 ∈ B(G), (4.38)

and, from (4.36) and (4.37), we derive that the function

(x, y) 7→ F0(x− y)− F0(x)G0(y)−G0(x)F0(y)−H0(x)H0(y)

is bounded. Since f and h are linearly independent modulo B(G), we deduce
easily, by using the first and the third identities in (4.36), that H0 and F0

are because fo ∈ B(G) and ho 6∈ B(G). Moreover we have Ho
0 = H0 and

Ho
0 6∈ B(G), hence we go back to Subcase B.2.1. As F0 and G0 are even func-

tions we derive that we have the following subcases:

Subcase B.2.2.1: F0, G0, and H0 are of the form (6) with the same con-
straints. Then

F0 = λ2f0 − λ2b, G0 =
1

2
fo +

1

2
b, H0 = λ g0,

where λ ∈ C\{0} is a constant and b, f0, g0 : G→ C are functions satisfying the
same constraints indicated in (6) of Theorem 4.1, unless to take b(−x) = b(x)
for all x ∈ G, then a small computation shows, by using (4.38) and the formulas
of F0 and G0, that

[
1

2
− λ2(η +

1

2
δ2)]f0 ∈ B(G).

As F0 and H0 are linearly independent modulo B(G) and b ∈ B(G), we get
f0 6∈ B(G). So that

1

2
− λ2(η +

1

2
δ2) = 0

and then

η =
1

2λ2
− 1

2
δ2.

By substituting this back into (V I) we obtain the result (9) of Theorem 4.1
with the constraint (i).
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Subcase B.2.2.2: F0, G0, and H0 are of the form (7) with the same
constraints. Then we get, taking into account that F0(−x) = F0(x) and
b(−x) = −b(x) for all x ∈ G, that b = 0. So that

F0 =
1

2
a2m, G0 = m, H0 = −iam,

where m : G→ C is a nonzero bounded multiplicative function, a : G→ C is
a nonzero additive function such that m(−x) = m(x) for all x ∈ G. By using
(4.38) and the formulas of F0 and G0 we get, by an elementary computation,
that (η + 1

2δ
2)a2 ∈ B(G). Since a is a nonzero additive function we get that

a2 6∈ B(G). Hence η = −1
2δ

2. By substituting this back into (V I) we obtain
the result (9) of Theorem 4.1 with the constraint (ii).

Subcase B.2.2.3: F0, G0, and H0 satisfy the functional equation in the
result (8) of Theorem 4.1, i.e.,

F0(x− y) = F0(x)G0(y) +G0(x)F0(y) +H0(x)H0(y)

for all x, y ∈ G. Since F0 and G0 are even functions and H0, replacing y by
−y yields the functional equation

F0(x+ y) = F0(x)G0(y) +G0(x)F0(y) + (iH0(x))(iH0(y)).

From (4.38) we derive that there exist a constant α ∈ C and a function b0 ∈
B(G) such that G0 = α

2F0 + b0. So that the last functional equation becomes

F0(x+ y) = αF0(x)F0(y) + F0(x)b0(y) + b0(x)F0(y) + (iH0(x))(iH0(y)),

for all x, y ∈ G. Hence, by applying a similar idea used to solve (4.33) (see
Subcase B.2.1(5)) we prove that:

If α = 0, then F0 = 1
2a

2m, G0 = m and H0 = −iam, where m : G → C
is a nonzero bounded multiplicative function such that m(−x) = m(x) for all
x ∈ G, so we go back to Subcase B.2.2.2 and obtain the result (9) of Theorem
4.1 with the constraint (ii).

If α 6= 0, then

F0 = λ2 f0 − λ2 b0, G0 =
1

2
f0 +

1

2
b and H0 = λ g0,

where b : G → C is a bounded function, λ ∈ C \ {0} is a constant and
f0, g0 : G→ C are functions satisfying the cosine functional equation

f0(x+ y) = f0(x)f0(y)− g0(x)g0(y)

for all x, y ∈ G, such that

f0(−x) = f0(x), g0(−x) = −g0(x)

and b(−x) = −b(x) for all x ∈ G, so we go back to Subcase B.2.2.1 and obtain
the result (9) of Theorem 4.1 with the constraint (i).
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Conversely if f, g and h are of the forms (1)-(9) in Theorem 4.1 we check
by elementary computations that the function

(x, y) 7→ f(x− y)− f(x)g(y)− g(x)f(y)− h(x)h(y)

is bounded. This completes the proof. �
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