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Abstract. In this paper we establish the stability of the functional equation
flx—y) = f@)g(y) +9(=)f(y) + h(x)h(y), =,y € G,

where G is an abelian group.

1. INTRODUCTION

In many studies concerning functional equations related to the Cauchy equa-
tion f(xy) = f(z)f(y), the main tool is a kind of stability problem inspired by
the famous problem proposed in 1940 by Ulam [23]. More precisely, given a
group G and a metric group H with metric d, it is asked if for every function
f: G — H, such that the function (z,y) — f(xy)— f(x)f(y) is bounded, there
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exists a homomorphism x : G — H such that the function x — d(f(x), x(z))
is bounded.

The first affirmative answer to Ulam’s question was given in 1941 by Hyers
[14], under the assumption that G and H are Banach spaces. After Hyers’s
result a great number of papers on the subject have been published, general-
izing Ulam’s problem and Hyers’s result in various directions. The interested
reader should refer to [6, 7, 8, 9, 12, 13, 17, 19, 20] for a thorough account on
the subject of the stability of functional equations.

In this paper we will investigate the stability problem for the trigonometric
functional equation

flxz—y) = f(x)gy) +9(x) f(y) + h(x)h(y), z,y € G (1.1)

on abelian groups.
Székelyhidi [22] proved the Hyers-Ulam stability for the functional equation

flzy) = f(x)g(y) + 9(2)f(y), 2,y € G

and cosine functional equation

g9(zy) = g(x)g(y) — f(x)f(y), z,y € G
on amenable group G. Chung, Choi and Kim [10] studied the Hyers-Ulam
stability of
fle+o(y) = flx)gly) —9(@)f(y), v,y € G

where ¢ : G — (G is an involution.
Recently, in [3, 4] the authors obtained the stability of the functional equa-
tions

fxy) = f(x)g(y) + g(x) f(y) + h(2)h(y), 2,y € G,
fzo(y)) = f(z)g(y) + g(x) f(y), z,y € G,
fxo(y)) = f(x)f(y) —g(x)g(y), v,y € G

and

flzo(y)) = f(x)g(y) — g(x)f(y), v,y € G

on amenable groups, where ¢ : G — G is an involutive automorphism.
The aim of the present paper is to extend the previous results to the func-
tional equation (1.1) on abelian groups.

2. DEFINITIONS AND NOTATIONS

Throughout this paper (G,+) denotes an abelian group with the identity
element e. We denote by B(G) the linear space of all bounded complex-valued
functions on G.
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Let V be a linear space of complex-valued functions on G. We say that the

functions fi,- - -, fn : G — C are linearly independent modulo V if
Afit o+ Anfn €V
implies that A1 = --- =X, =0forany A1, ---, A, € C. We say that the linear

space V is two-sided invariant if f € V implies that the function z — f(z +y)
belongs to V for any y € G.

If I is the identity map of G we say that V is (—I)-invariant if f € V
implies that the function x +— f(—x) belongs to V. The space B(G) is an
obvious example of a linear space of complex-valued functions on G which is
two-sided invariant and (—1I)-invariant.

Let f: G — C be a function. We denote respectively by

fe(m) — f(:E) +2f(_$), re@
and
fO(x) — f(l‘) _2f(_$)7 re@

the even part and the odd part of f.
3. DBASIC RESULTS

In this section we present some general stability properties of the functional
equation (1.1). Throughout this section we let V denote a two-sided invariant
and (—I)-invariant linear space of complex-valued functions on G.

Lemma 3.1. Let f,g,h: G — C be functions. Suppose that the functions
x> flox—y) = f(2)g(y) — g(x)f(y) — h(x)h(y)

and
v fle—y)— fly—=) (3.1)
belong to V for all y € G. Then we have the following statements:
(1) feev.

(2) The following functions 1, p2,p3: G X G — C
[ @)g°(y) + g°(x) f°(y) + h(2)h°(y) = 1 (2, y), (32)
9°(x) [ (y) + h*(@)h*(y) = @2(z,y),
flx+y) = fl@—y) +2f°(2)g°(y) + 29°(2) f°(y) + 2h°(x)h°(y)
= p3(z,y)

are such that the functions © +— p1(x,y), x — p1(y, ), x — Ea(z,y),
x — p3(x,y) and x — @3(y,x) belong to V for all y € G.

(3.4)
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Proof. By setting y = e in (3.1) we get that the function x — f(x) — f(—x)
belongs to V which proves (1).
Let ¢ be the function defined on G x G by

b(x,y) = fl@—y) = f(2)9(y) —9(2)f(y) = h(x)h(y). (3.5)
From (3.5) we can verify easily that

Y(@,y) =[x —y) + [z —y) — f(x)g(y)

~ F()o(0) — (@) F(5) — A()h(o). 30
Now let
Pz, y) = v(z,y) = [z —y) + [2(2)g(y). (3.7)
Then by using (3.6) and (3.7) we get
fx—y) = f(x)g(y) + 9(2) f(y) + h(@)h(y) + é(x,y). (3.8)
Since f€ is an even function on the abelian group G, we have
fx—y)=f(—(z—y) = f((-2) - (-y)).
Hence, by applying (3.8) to the pair (—z, —y), we obtain
fz—y) = f(2)g(=y) + 9(=2)f(—=y) + h(—2)h(—y) + (-2, —y). (3.9)
Subtracting equatlon (3.9) from (3.8) we get that
2f°(@)g°(y) + 9(x) f(y) — 9(=2) f(—y) + h(@)h(y) — h(=z)h(-y)
- o) o) (310
For the pair (—z,y) the identity (3.10) becomes
2 () + =) £10) ~ o) () + H) —h@ACD)

= ¢z, —y) — ¢(—=,y).

By adding (3.10) and (3.11) we obtain
Af(2)g°(y) +29°(2)[f (y) — f(=y)] + 2h°(2)[h(y) — h(—y)]
= ¢(—x,—y) — ¢(z,y) + ¢z, —y) — d(—=,y).

Hence the identity (3.2) can be written as follows where

1002, ~9) = 9w ) + 6z, ~y) — H(-.y)].

By using (3.7) and the identity above we get, by an elementary computation,

that

p1(z,y) =

1=, ~) = 9l y) + ¥(z, )

— (=, y) +2f(x —y) = 2f°(z + y)].
By interchanging x and y in (3.2) we obtain

9°(@) f(y) + f°(2)g°(y) + h°(2)h(y) = ¢1(y, x),

p1(r,y) = (3.12)
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and then we get

902(x>y) = (pl(yax) - fo('r)ge(y)’ T,y € G. (313)
On the other hand, by replacing y by —y in (3.5) we get that

Uz, —y) = f(z +y) — f(@)9(=y) — 9(x) f(=y) — h(x)h(=y). (3.14)

By subtracting the result of equation (3.5) from the result of equation (3.14)
we obtain

flz+y) — flz— y))
= —2f(2)g°(y) — 29(z) f°(y) — 2h(2)h°(y) + P(z, —y) — P (z,y)
= =2f%(x)g°(y) — 2f°(2)g°(y) — 29°(2) [°(y) — 29° () f*(y)
= 2h%(z)h°(y) — 2h°(2)h°(y) + ¥(z, —y) — ¥(z,9)
)

= —2f%(x)g°(y) — 29°(x) f*(y) — 2h°(2)h°(y)
= 2[f(2)g°(y) + g°() f*(y) + h*(2)h°(y)] + (2, —y) — ¥(z,y)
= —2f%(x)g°(y) — 29°(x) f*(y) — 2h°(2)h°(y)
= 2p1(z,y) + ¥(z, —y) — ¥(z,y).
Thus identity (3.4) can be written as follows:
e3(z,y) = —2p1(z,y) + ¥(z, —y) — P(z,y). (3.15)

Since = and y are arbitrary, by using the fact that the functions = — ¥ (z,y),
x— f(xr —y)— f(y—x) and f° belong to the two-sided invariant and (—I)-
invariant linear space V of complex-valued functions on G for all y € G,
and taking (3.12), (3.13) and (3.15) into account, we deduce the rest of the
proof. O

Lemma 3.2. Let f,g,h : G — C be functions. Suppose that f and h are
linearly independent modulo V, and that h® ¢ V. If the functions
x> flz—y) — f(@)g(y) — g(x)f(y) — h(z)h(y)
and
= flx—y)— fly—z)
belong to V for all y € G. Then we have the following statements:
(1)
h® =~ f° (3.16)
and
9°=—7h’—nf’ (3.17)
where v,n € C are constants.
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(2) Moreover, if f°# 0, then

gc=nf+e (3.18)
where p €V and p(—z) = p(x) for all x € G.

Proof. Since f and h are linearly independent modulo V then f ¢ V. Accord-
ing to Lemma 3.1(1) we have f° € V, then f¢ ¢ V and consequently f€ # 0.
Therefore, there exists yg € G such that f¢(yo) # 0. By setting y = o in (3.3)
we derive that there exist a constant v € C and a function b; € V such that

g° = —vh°+b. (3.19)
When we substitute this in (3.3) we obtain
(=7 h%(x) + 01(2)) f(y) + h°(2)h"(y) = p2(z,y),

which implies

(R°(y) — v fC(W)R°(x) = pa(z,y) — f(y)br(z).

So, x and y being arbitrary, we deduce that the function

z = (h(y) — v [ (Y)h°(x)

belongs to V for all y € G. As h® € V we get (3.16).
On the other hand we get, from (3.2), (3.16) and (3.19), that

pr(z,y) = f(2)bi(y) + g°(2) f*(y) (3.20)

for all z,y € G.

If f© # 0 then from (3.20) there exist a constant € C and a function ¢ € V
such that ¢¢ = n f¢ 4+ ¢ and p(—z) = ¢(z) for all x € G. This is the result
(2) of Lemma 3.2. When we substitute this in the identity (3.20) we get, by
a simple computation, that ¢1(z,) = () [b1(y) + 1 f°(3)] + ¢(x) f(y) for
all z,y € G. As the functions ¢ and = — ¢1(x,y) belong to V for all y € G,
we deduce that the function = — f¢(z)[b1(y) + 1 f°(y)] belongs to V for all
y € G. Thus, taking into account that f¢ &€V we infer that by = —n f°.

If f© =0 then we get from (3.20), and noticing that f¢ ¢ V, that b; = 0.
Hence, in both cases we have by = —n f°. By substituting this back into (3.19)
we obtain (3.17). This completes the proof. O

Proposition 3.3. Let m : G — C be a nonzero multiplicative function such
that m(—x) = m(x) for all x € G. Then the solutions f,h : G — C of the
functional equation

f(x+y) = f@)m(y) + m(z)f(y) + h(x)h(y), v,y € G (3.21)
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such that f(—x) = f(x), h(—x) = —h(zx) for allx € G and h # 0 are the pairs

1
f= §a2m and h =am,
where a : G = C is a nonzero additive function.

Proof. It is simple to check that the indicated functions are solutions of the
functional equation. It is thus left to show that any solutions f,h : G — C
can be written in the indicated forms. Replacing y by —y in (3.21) yields the
functional equation

flx—y) = f@)m(y) + m(z)f(y) — h(z)h(y),

because f and m are even functions, and h is an odd function. By (3.21) we
get that

f@+y)+ fl@—y) =2f(@)m(y) + 2m(z) f(y).
Notice that m(x) # 0 for all z € G, because m is a nonzero multiplicative
function on the group G. Moreover since m(—z) = —m(x) for all x € G we
have
m(z +y) = m(z —y) = m(x)m(y)

for all ,y € G. Thus, by dividing both sides of (3.21) by m(x + y) we get
that F':= f/m satisfies the classical quadratic functional equation

F(x+y)+ F(x —y) = 2F(z) + 2F (y).

Hence from [21, Theorem 13.13] we derive that F' has the form F'(x) = Q(z, ),
x € G, where @ : G x G — C is a symmetric, bi-additive map. Hence

f(z) = Q(z,x)m(z) (3.22)

for all z € G. Substituting this in (3.21) and dividing both sides by m(x+y) =
m(x)m(y), and using that @ is a symmetric, bi-additive map we derive that

2Q(z,y) = H(z)H(y) (3.23)

for all z,y € G with H := h/m. Since, H is a nonzero function on G, because
h is, we get that there exists yo € G such that H(yg) # 0. Hence, by setting
y = yp in the last identity and dividing both sides by H(yp), and taking into
account that @ is bi-additive, we deduce that H = a, where a : G — C is
additive. So h = am.

Notice that a is nonzero. On the other hand, by replacing H by a in (3.23)
and setting z = y we deduce that Q(z,z) = 3a*(z) for all z € G. When we
substitute this in (3.22) we get that f = %a2m. This completes the proof. [
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Proposition 3.4. Let f,g,h: G — C be functions. Suppose that f and h are
linearly independent modulo B(G). If the function

(z,y) = flz+y) — f(@)9(y) — 9(=)f(y) — h(z)h(y)
18 bounded then we obtain one of the following possibilities:
(1)
fo= —Nfo+ A,

2 2
g - fo + pgo + 1520,
h = Apfo+Xgo—Apb,

where b : G — C is a bounded function, p € C, X\ € C\ {0} are con-
stants and fo, g0 : G — C are functions satisfying the cosine functional
equation

fo(z +y) = fo(x) fo(y) — 90(x)g0(y), =,y € G;

f = MNM+am-+b,
g = BA1=3BANM + (1= BN)m — 38%am — 557,
h = A1—BX\)M —Am — Bam — Bb,

where m : G — C is a nonzero bounded multiplicative function, M :
G — C is a non bounded multiplicative function, a : G — C is
a nonzero additive function, b : G — C is a bounded function and
B eC, \e C\{0} are constants;

(3)
f = %a2m+%a1m+b,
g = —1B%m+Bam— 8% m+m—L15%,
h = —3Ba’m+am— 3Ba;m— (b,

where m : G — C is a nonzero bounded multiplicative function, a,aq :
G — C are additive functions such that a is nonzero, b: G — C is a
bounded function and B € C is a constant;

(4) f(z+y) = fl)m(y) +m(z)f(y) + (a(z)m(z) + b(x))(a(y)m(y) + b(y))
for all xz,y € G,

g= —%Bzf + (1 + Ba)m + Bb

and
h=-8f+am+0b,
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where m : G — C 1is a nonzero bounded multiplicative function, a :
G — C is a nonzero additive function, b : G — C is a bounded func-
tion and B € C is a constant;

(5) f(z+y) = f(@)g(y) + 9(x) f(y) + h@)h(y) for all z,y € G.
Proof. We proceed as in the proof of [4, Lemma 3.4]. O

4. STABILITY OF EQUATION (1.1)

In this section we prove the main result of the present paper.
Theorem 4.1. f,g.h: G — C be functions. The function
(@,y) = flz —y) — f(@)g(y) — 9(2) f(y) — h(z)h(y)

1s bounded if and only if one of the following assertions holds:

(1) f =0, g is arbitrary and h € B(G);
(2) f.9,h € B(G);

(3)
f = am—ab,
g = 1751,\2m + 1+3,\2b_ Ao,
h = alm—alb+ p,

where m : G — C is a multiplicative function such that m(—z) = m(x)
for all x € G or m € B(G), b, : G — C are bounded functions and
a € C\ {0}, € C are constants;

(4)
f = Jo
AQ
g = —5fotgo—Ab,
h = AXfo+b,

where b : G — C is a bounded function, A € C is a constant and
fo,90 : G — C are functions satisfying the functional equation

fo(z —y) = fo(x)g0(y) + g0(x) fo(y), =,y € G;
(5)
f = =Xfo+ A%,

2 9
g = 2 f+pgo+ 50,
b= ApfotAgo—Apb
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where b : G — C is a bounded function, p € C, A\ € C\ {0} are con-
stants and fo,g90 : G — C are functions satisfying the cosine functional
equation

folz +y) = fo(x) fo(y) = g0(x)g0(y), 2,y € G,
such that fo(—x) = fo(z) and go(—z) = go(x) for all x € G;

;o= Nf- 2,
g = %fo + %ba
h = Ago,
where b : G — C is a bounded function, A € C\ {0} is a constant and
fo,90 : G — C are functions satisfying the cosine functional equation
folx +y) = folx) fo(y) — g0(x)g0(y), 2,y € G,
such that fo(—x) = fo(z) and go(—z) = —go(z) for all z € G;

f = %aQ m + b,
g = m,
h = —iam,

where m : G — C is a nonzero bounded multiplicative function, a :
G — C is a nonzero additive function and b : G — C is a bounded
function such that m(—z) = m(x) and b(—x) = —b(z) for all x € G;

(8) flz —y) = f(x)g(y) +g(x) f(y) + h(x)h(y) for all x,y € G;

f = F0+907
g = —30°Fo+Go+dHy—pe,
h = —5F0+H0—5g0,

where p € C, 6 € C\ {0} are constants and the functions Fy, Go, Hy :
G — C are of the forms (6)-(7) under the same constraints, with
Fo(—z) = Fo(z), Go(—z) = Go(z), Ho(—z) = —Ho(z), p(-z) =
—(x) for all x € G, such that
(i) b(—z) = b(x) for allx € G and p = 1‘5/%2‘52 if Fo, Go and Hy are
of the form (6),
(ii) b=0 and p = %52 if Fo, Go and Hy are of the form (7).

Proof. To study the stability of the functional equation (1.1) we will discuss
two cases according to whether f and h are linearly independent modulo B(G)
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or not.

Case A: f and h are linearly dependent modulo B(G). We split the discussion
into the cases h € B(G) and h & B(G).

Subcase A.1: h € B(G). Then the function
(z,y) = f(z —y) = f(2)g9(y) — 9(x) f(y)

is bounded. Since the group G is abelian it is an amenable group. So, according
to [3, Theorem 3.3], we have of the following assertions:

(1) f = 0, g is arbitrary and h € B(G). The result occurs in (1) of
Theorem 4.1.

(2) f,g,h € B(G). The result occurs in (2) of Theorem 4.1.

(3) f =am+band g = m, where a : G — C is an additive function,
m : G — C is a bounded multiplicative function and b: G — C is a
bounded function such that m(—z) = m(x) and a(—z) = a(x) for all
x € G. Then 2a(x) = a(x) + a(—x) = a(x — x) = a(e) = 0 for all
x € G. Hence a(x) = 0 for all z € G. We deduce that f,g,h € B(G).
This is the result (2) of Theorem 4.1.

(4) f=am—ab, g=4m+3b, where « € C\{0} is a constant, b : G — C
is a bounded function and m : G — C is a multiplicative function such
that m(—z) = m(z) for all z € G or m € B(G). This is the result (3)
of Theorem 4.1 for A = 0.

(5) flx —y)) = f(x)g(y) + g(x)f(y) for all z,y € G. Therefore, taking
into account that h € B(G), we obtain the result (4) of Theorem 4.1
for A = 0.

Subcase A.2: h & B(G). Then f ¢ B(G). Indeed if f € B(G) then the
functions z — f(z)g(y) and x — f(x — y) belong to B(G) for all y € G.
As the function x — 9 (z,y) belongs to B(G) for all y € G we get that the
function = — g¢(z)f(y) + h(z)h(y) belongs to B(G) for all y € G. So, taking
into account that h ¢ B(G), we get that there exist a constant a € C\ {0}
and a function k£ € B(G) such that

h=ag+k. (4.1)
Substituting (4.1) in (3.5) we get, by an elementary computation, that
V(x,y) = flz—y) = k@)k(y) — 9(@)[f(y) + ah(y)] — 9W)[f (@) + ak(z)]

for all z,y € G. Tt follows that the function z — g(z)[f(y) + ah(y)] belongs
to B(G) for all y € G, so that h = —1 f or g € B(G). Hence, taking (4.1) into
account, we get that h € B(G), which contradicts the assumption on h. We
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deduce that f ¢ B(G). Since f and h are linearly dependent modulo B(G) we
deduce that there exist a constant A € C\ {0} and a function ¢ € V such that

h=Xf+e. (4.2)
When we substitute (4.2) in (3.5) we obtain by an elementary computation

V(x,y) +e(@)p(y) = fz —y) — f(x)o(y) — ¢(x) f(y) (4.3)

for all z,y € G, where

)\2
¢::g+?f—i—)\go. (4.4)

Since the functions ¢ and ¢ are bounded we derive from (4.3) that the function
(x,y) = flx—y) — f(x)p(y) — o(x) f(y) is also bounded. Hence, according to
[3, Theorem 3.3] and taking (4.2) into account and that h ¢ B(G), we have
one of the following possibilities:

(1) f =am+band ¢ = m, where a : G — C is an additive function,
m : G — C is a bounded multiplicative function and b: G — C is a
bounded function such that m(—z) = m(x) and a(—=z) = a(x) for all
x € G. As in Case A.1(3) we prove that the result (2) of Theorem 4.1
holds.

(2) f=am—ab, ¢ = im+1b, where € C\{0} is a constant, b : G — C
is a bounded function and m : G — C is a multiplicative function such
that m(—x) = m(x) for all x € G or m € B(G). So, by using (4.4) and
(4.2) we get that

1 1, A 1 —a)? 1+ a)?
g—im—i-ib—?(am—ab)—)\«p— 5 Mt

b— Aoy

and h = aAm — aXb+ ¢. The result occurs in (3) of Theorem 4.1.

(3) fl@—y) = f(x)o(y) + ¢(x) f(y) for all z,y € G. By putting fo := f
and go := ¢ we get the result (4) of Theorem 4.1.

Case B: f and h are linearly independent modulo B(G). Then f & B(G).
Moreover, according to Lemma 3.1(1), we have f° € B(G) and then f¢ # 0.
It follows from (3.3), with ¢y satisfying the same constraint in Lemma 3.1,
that if h° € B(G) then ¢° € B(G). So we will discuss the following subcases:
h° € B(G) and h° & B(G).
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Subcase B.1: h° € B(G). Let z,y € G be arbitrary. From (3.5) we get,
by using (3.2) and (3.3), that

[z —y) =[f(2) + f2(@)lg°(y) + ¢° ()]
+ [9°(z) + g°(@)][f(y) + f°(v)]
+ [h°(z) + h°(2)][R°(y) + h°(y)]
— [z —y) +¥(2,y)
= f(2)g°(y) + g°(x) f(y) + h(x)h (y
+ [f9(2)g°(y) + g°(2) f(y) + h(2)h°(y)]
+ [f2(2)g°(y) + ¢° () f(y) + h°(2)h(y)]
+ f2(2)g°(y) + 9° () [°(y) + h°(2)h°(y)
— fz —y) +¢(z,y)
= f(2)g°(y) + 9°(2) f(y) + h°(z)h"(y)
+ f°(2)9°(y) + 9°(2) f*(y) + h°(x)h°(y)

- fo(:C - ) + ng(CC,y) + Cpl(y?x) +¢($7y)

Thus, x and y being arbitrary, by using the fact that the functions f°, ¢°,
he and 1 are bounded, and taking (3.12) into account, we deduce from the
identity above that the function (z,y) — f¢(z—y)— f(z)g%(y) — g°(x) f¢(y) —
he(z)h¢(y) is bounded, so is the function (z,y) — f(x +y) — fé(x)g(y) —
9¢(x) f(y) — he(x)h¢(y). Moreover since the functions f and h are linearly in-
dependent modulo B(G) and f°, h° € B(G) we get that f¢ and h® are linearly
independent. Hence, according to Proposition 3.4 we are lead to one of the
following possibilities:

(1)

¢ = " f+pg+ 0,
h® = Apfo+Ago—Apb,

where b : G — C is a bounded function, p € C, A € C\ {0} are constants and
fo, 90 : G — C are functions satisfying the cosine functional equation

fo(z +y) = folx) fo(y) — go(x)g0(y), =,y € G.

Notice that fo & B(G) because f¢ = —A2 fo+A2b, f¢ & B(G) and b € B(G).
Since f¢ and h¢ are linearly independent modulo B(G) so are the functions
fo and gg. Indeed, if not then there exist a constant @ € C and a function
¢ € B(G) such that gy = afy + ¢. Hence

he = Xp fo+ Xafo+¢)—Apb=X(p+a)fo+ b1,

{f@ = N fo+ A%,



608 A. Omar, E. Elhoucien and Th. M. Rassias

where by := Ay — A pb belongs to B(G). Then
MRS+ (p 4+ Q) f¢ = Ab1 + X2(p + )b,

which implies that the function A h¢+ (p+ ) f¢ belongs to B(G). This contra-
dicts the fact that f¢ and h® are linearly independent modulo B(G) because
A # 0. Hence fy and gg are linearly independent modulo B(G).

On the other hand let ¢ := f°, ¢9 := ¢° and 3 := h°. The identity (3.2)
implies

o1(z,y) = (=X fo(z) + Ab(x))ha2(y)

2 —
(o) + pgoe) + L b(@))n ()

+ (A p fo(x) + Ago(z) — Apb(x))s(y)

2
= @)= Xua(y) + L1 () + A ps(y)]
+90(x)[pr(y) + As(y)]

H)a(0) + L (0) — Ap (o),

for all x,y € G. So, taking (3.12) into account and that the functions 1, b, 1,
1o and 13 are bounded, we deduce from the identity above that the function

2
1) + A ps()] + 90l (v) + Ava(y)]

belongs to B(G) for all y € G. Since fj and gg are linearly independent modulo
B(G) we get that

2

z = fo(@)[=N* a(y) +

1+ p?
2

— 1o (y) + Yi(y) + Apis(y) =0

and
p1(y) + Atps(y) =0
for all y € GG, from which we derive by a small computation that o = %da
and 3 = =541, As f = fo+ [0 = fo4ip1, g = g°+9° = g°+1b2 = 96+12i\32¢1
and h = h® + h® = h® + o3 = h® + %wl, we deduce that
fo= =Xfo+ b+,

2 _ 2 2
() g = S fot+pgo+5b+ S5,
h = Apfo+Ago—Apb— K.

Moreover, since f¢, g¢ and h® are even functions, and ¢ = f°, we get that
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P1(—x) = = (x)

—fo(=z) + b(=2) = — fo(z) + b(z)

3fo(=2) + pgo(—2) + 3b(—2) = 3 fo(z) + pgo(x) + 3b(z),

p fo(=z) + go(—x) — pb(—z) = p fo(x) + go(z) — pb(x),
which implies fo(—z) = fo(z), go(—z) = go(x), b(—z) = b(x) and ¢1(—z) =
—1(x) for all z € G. Thus we obtain, by writing b instead of b+ % 1 in (1),
the result (5) of Theorem 4.1.

(2)

g¢ = BA(1-— %ﬁA)M—I— (1 —=8XN)m — %B2am— %52(),

he = AX1—=BXN)M —Am—Bam — (b,
where m : G — C is a nonzero bounded multiplicative function, M : G — C
is a non bounded multiplicative function, a : G — C is a nonzero additive
function, b : G — C is a bounded function and g € C, A € C\{0} are constants.
Then B f¢ +h® = BN M +Bam+ Bb+A(1—BAN)M —Am — Bam — b=
A (M —m). So that

{fe = MM+am+b,

M(—z) —m(—z) = M(z) — m(x) (4.5)
for all x € G. Moreover, since f¢ and g° are even functions, and
a(—x) +a(r) =a(—z+z) =ale) =0
for all x € G, we get that
N M (—z) — a(x) m(—z) + b(—z) = A\*> M(x) + a(z) m(x) + b(z) (4.6)

and

BAQL — ZANIM (=) + (1~ BX)m(—z) + 2 7% ala) m(~2) — 5> b(~a)
1

= BA(L= L8N M (@) + (1 - 6A)m(z) — 56” ala) m(z) — 55 b(x),

(4.7)

for all z € G. By multiplying (4.6) by 332 and adding the result to (4.7) we
get that

BA(M(x) — m()) — BA (M(~2) — m(—a)) + m(z) — m(—z) = 0

for all z € G. We deduce, by taking (4.5) into account, that m(—x) = m(z)
and M(—z) = M(x) for all x € G. When we substitute this back into (4.6)
we get that

—a(x) m(z) + b(—x) = a(z) m(x) + b(x)
for all x € G. Hence a(z) = —b°(x)m(—x) for all x € G. As b and m
are bounded functions we derive that the additive function a is bounded, so
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a(x) = 0 for all x € G, which contradicts the condition on a. Therefore the
present case does not occur.

(3)

fe = %a2m+%a1m+b,
g° = —3Ba>m+Bam— 67 arm+m— 6%,
he = —iBa’m+am—3Baym—Bb,

where m : G — C is a nonzero bounded multiplicative function, a,a; : G — C
are additive functions such that a is nonzero, b : G — C is a bounded function
and § € C is a constant.

Notice that 8 f¢ + h® = am and 2¢¢ = B2 f¢ 4+ 28 h¢ 4+ 2m, then m and
am are even functions. As seen earlier we have a(—xz) = —a(z) for all z € G.
Hence —a(x) m(x) = a(x) m(z) for all z € G, so a = 0, which contradicts the
condition on a. We conclude that the present possibility does not occur.

(4)
fx+y) = f(x)my) + m(z) f(y) + (a(z)m(z) + b(z))(a(y)m(y) + b(y))
for all x,y € G,
1
9" =58+ (1+Ba)m + b
and
he = =B f°4+am+0b,

where m : G — C is a nonzero bounded multiplicative function, a : G — C is
a nonzero additive function, b : G — C is a bounded function and g € C is a

constant.
The second and the third identities above imply

1
m = =28 f + 9" = B,

from which we deduce that m(—x) = m(x) for all z € G. Moreover the third
identity above implies that the function am+b is even. Since a(—x) = —a(z)
for all x € G, we get that

—a(x)m(z) + b(—z) = a(z)m(z) + b(z)

for all x € G. Hence a = —b°m. As b and m are bounded functions and a
is an additive function we deduce that a = 0, which contradicts the condition
on a. We conclude that the present possibility does not occur.

(5) f€, g° and h® satisfy the functional equation

[z +y) = f(2)g°(y) + g°(z) f(y) + h°(x)h(y) (4.8)
for all z,y € G.
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If f¢ = 0 then f¢ = f. Moreover, taking into account that f¢ and h¢ are
linearly independent, we derive from (3.2) that ¢° = 0 and h° = 0, hence
g¢ = g and h® = h. So the functional equation (4.8) becomes f(z —y) =
f(@)g(y) + g(z)f(y) + h(z)h(y) for all x,y € G. This is the result (8) of
Theorem 4.1.

If f© # 0 then, according to (3.2), there exist two constants «, 5 € C and
an even function b € B(G) such that

¢ =a fC+Bh+b. (4.9)
By substituting (4.9) into (4.8) we get, by a similar computation to the one
of Case A of the proof of [4, Lemma 3.4], that

Foe+y) = 2a =B (@) f(y) + [(2)bly) + b(z) f(y)
+[8f(x) + h*(@)][B f(y) + h°(y)]
for all x,y € G. We have the following subcases:

(4.10)

Subcase B.1.1: 2a # 2. Proceeding exactly as in Subcase A.1 of the
proof of [4, Lemma 3.4] we get that

e = =Xfo+ N,

2 _ 2
¢ = S fo+pgo+ 550,
h = Xpfo+Ago—Apb.

So we go back to the possibility (1) and then obtain the result (5) of Theorem
4.1.

Subcase B.1.2: 2a = 2. By similar computations to the ones in Subcase
A.1 of the proof of [4, Lemma 3.4] we get that there exist a constant n € C
such that

H(z +y) = H(z)m(y) + m(x)H(y) +n H(z)H(y) (4.11)
for all z,y € G and
b=m (4.12)

where n € C, H := f f¢+ h® and m € B(G) is an even multiplicative function.
If n = 0 then H satisfies the functional equation

H(z +y) = H(x)m(y) + m(x)H(y)

for all z,y € G. As f¢ and h° are linearly independent modulo B(G) we have
H # 0, hence m is a nonzero multiplicative function on the group G. So, from
the functional equation above we deduce that there exists an additive function
a: G — C such that H = am. Since H is even so is a, hence a = 0 which
contradicts the fact that H # 0.
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If » # 0 then, by multiplying both sides of (4.11) by n and adding m(x +y)
to both sides of the obtained identity, we get, by a small computation, that

m(z +y) +n*H(z +y) = [m(z) +n H(x)][m(y) +n H(y)

for all x,y € G. So there exist an even multiplicative function M : G — C
and a constant A € C\{0} such that H = A(M —m). By substituting this into
(4.10) and taking (4.12) into account we obtain

() f(y) + N (M (z) — m(z))(M(y) — m(y))
() (y) + N’ M (z + y)
— XM (z)m(y) — N*m(z)M(y) + N’>m(z + y)

fAle+y) =

for all z,y € G. Since m is a nonzero multiplicative function on the group G
we have m(z) # 0 for all x € G. So, by dividing both sides of the functional
equation above we get that

[z +y) = N M(z+y)
m(x +y)

fo(x) = N M()

m(z)

fey) = N*M(y)
m(y)

+A% = FAZ) +A7]

for all x,y € G, hence there exists an additive function a : G — C such that

fe(x) = XM (z)
m(x)

for all x € G. Since f¢;, M and m are even functions so is the additive
function a, then a(z) = 0 for all x € G. Hence f¢ = A2(M — m). Then
f¢=AH = A5 f¢+ Ah® which contradicts the linear independence modulo
B(G) of f¢ and h¢. We conclude that the Subcase B.1.1 does not occur.

Subcase B.2: h° € B(G). Since B(G) is a two-sided invariant and (—1)-
invariant linear space of complex-valued functions on G, then we deduce, ac-
cording to Lemma 3.2, that h® = v f¢ and ¢° = —y h® — n f°, where v,n € C
are two constants. We split the discussion into the cases v = 0 and v # 0.

Subcase B.2.1: v = 0. Then, from Lemma 3.1(1), (3.16) and (3.17), we
deduce that h® = h and ¢° € B(G). So we get, from the identities (3.4) and
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(3.5), that
fl@z+y) = flx)g(y) + 9(x) f(y) + h(z)h(y) — 2f°(x)9°(y) — 29°(x) [°(y)
— 2h(x)h(y) + P (x,y) + e3(z,y)
= [f(z) + f°(@)][g°(y) + ¢°(¥)] + [9°(2) + ¢°(@)][f(y) + f°(y)]
— h(z)h(y) — 2f°(x)g°(y) — 29°(x) f*(y) + ¥ (z,y) + p3(z,y)
= f(2)g°(y) + 9°(2) f(y) — h(@)h(y) + ([ (2)g°(y) + g°(2) [°(y))
+ (9°(2) f(y) + [2(2)g°(y)) — f(2)g°(y) — 9°(2) f(y) + ¥(z, y)
+ 3(,y)

for all z,y € G. Hence, taking into account that h® = 0, and by using (3.2)
and (3.15), a small computation shows that

fo+y) = [(2)g°(y) + 9°(2) [(y) + k(2)k(y) + ¥(z,y) (4.13)

for all z,y € G, where

k :=ih (4.14)

and
U(x,y) = (@, —y) +e1(y,x) —e1(z,y) — [z +y) — f2(2)g°(y) — 9°(x) f°(y)
(4.15)

for all z,y € G. As the functions f°, ¢g° and ¥ are bounded we deduce, from
(3.12), (4.13) and (4.15), that the function

(@,y) = [z +y) = [(2)9°(y) — 9°(2) [ (y) — k(x)k(y)
is bounded. Hence, according to Proposition 3.4 we obtain one of the following
possibilities:

(1)

2 _ 52
9° H fo+pgo+ S5,
k Apfo+Ago—Apb,
where b: G — C is a bounded function, p € C, A € C\ {0} are constants and
fo, 90 : G — C are functions satisfying the cosine functional equation

fo(z +y) = fo(x)fo(y) — g0(x)g0(y), =,y € G.

Since f¢ and g¢ are even functions, k is an odd function and A # 0 we get
that

{f@ = X fo+ A0,

fo(=z) = b(=x) = fo(z) — b(x), (4.16)
fo(=z) +2pgo(—2) + b(—z) = fo(x) +2pgo(z) + b(7) (4.17)

and

p(fo(—z) = b(=z)) + go(—z) = —p (fo(z) — b(x)) — go(x) (4.18)
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for all € G. The identity (4.16) implies

fo =70 (4.19)
By using this and the identity k = A p fo+ A go— A pb, and taking into account
that k is an odd function we obtain

k= Xgg. (4.20)

By multiplying both sides of (4.16) by p and subtracting (4.18) from the result
we deduce that

96=—p(fo—b). (4.21)
Moreover, we derive from (4.17) that
2p (90(z) = go(—2)) = =(fo(x) = fo(=2)) — (b(x) — b(—x))
for all x € G, which implies, by taking (4.19) into account, that

pgg = —b°. (4.22)
From (4.20), (4.22) and (4.14) we get that
ph = \il®. (4.23)

Since b is a bounded function on G we deduce from (4.23) that ph is also a
bounded function. As h ¢ B(G) we get that p = 0. It follows that

fe = = fo+ A%,
(I ¢ = 3fo+3b,
k = )\gg.

Let ¢1 := ¢° and v := f°. By using that h® = 0, (3.2), the first and the
second identities in (/1) we obtain

o1(2,) = (=32 fole) + 32 b)) + (5 fol) + 5 b)ba(y)

= @)l =X 1 (y) + 5uau)] + b2 Ya(y) + 3a(v)]

for all x,y € G. So, taking (3.12) into account and the that the functions 1), b,
11 and 9 are bounded, we deduce from the identity above that the function

v fol@) X2 (y) + 50a(y)]
belongs to B(G) for all y € G. Since
fe==XNfo+ N0,
f¢ ¢ B(G) and b € B(G) we deduce that fo ¢ B(G). Hence

N a(y) + 3a(y) =0
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for all y € GG, which implies that
Py = 2X% 41,
Since
=1+ =t =F+ 2201, o° +¢° = 9"+
we deduce, taking (4.14) and (/) into account, that

[ = =X fo+X2b+2)\29,
(III){ g = 3fo+3b+1n,
h = —)Vigo.

On the other hand, we get from the identities (4.22), (4.19), (4.21) and
1 =g°, that

b(—=x) = b(z), fo(—2) = fo(x), go(—z) = —go(z) and Y1 (—z) = —1(z)

for all x € G, and ¥ € B(G). So we obtain, by writing b and A instead of
b+ 2y and —\i respectively in (I11), the result (6) of Theorem 4.1.

(2)
f¢& = AN M+am+b,
¢ = BAL—LBNM + (1— BNm— L8%am— 3%,
k= M1—=BNM—Am—Bam— (b,

where m : G — C is a nonzero bounded multiplicative function, M : G — C
is a non bounded multiplicative function, a : G — C is a nonzero additive
function, b : G — C is a bounded function and § € C, A € C\ {0} are
constants.

We have Sk = —%52 f¢+ ¢g¢ — m, which implies, taking into account that
k is an odd function, that Sk = —m°. Hence Sk € B(G). As k & B(G) we
get that 8 = 0. Then ¢ = m and k = A(M — m). Since A # 0 we get that
m(—x) = m(z) and M(—z) — m(—z) = —M(x) +m(zx) for all z € G. So that
2m(z) = M(—xz) + M(x) for all x € G. Since m and M are multiplicative
functions we deduce, according to [21, Corollary 3.19], that m = M, which
contradicts the conditions m € B(G) and M ¢ B(G). Thus the present possi-
bility does not occur.

(3)
fe = ia®m+Jaim+b,
e T 12 2 _1p2 _1p2
g pra*m+ Bam — 38°a1m+m — 55°0b,
k = —§ﬁa2m+am—%ﬂa1m—ﬁb,
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where m : G — C is a nonzero bounded multiplicative function, a,a; : G — C
are additive functions such that a is nonzero, b : G — C is a bounded function
and 8 € C is a constant.

Notice that Sk = —%BQ f¢4g°—m. Asin the possibility above we get that
8 = 0. Hence we obtain

fe = %a2m+%a1m+b,
(IV)< ¢g¢ = m,
k = am.

From the second identity of (IV') we deduce that m(—x) = m(z) for all x € G.
As f¢(—x) = f(x), a(—x) = —a(z) and a1(—z) = —ay(z) for all x € G, we
deduce from the first identity of (V') that

1cﬂ(av)m(ac) + 1al(gzt)m(nr:) + b(z)

1 1
sa?(z)m(z) — a1 (z)m(z) + b(—z) = 2 2

2 2

for all x € G. So
ar(z)m(z) = b(z) — b(—x)

for all x € G, from which we get, taking into account that m(—x) = m(x) for
all x € G and m is a nonzero multiplicative function on the group G, that
a; = —2mb°. As m,b € B(G) and a; is an additive function we deduce that
a; = 0 and b(—z) = b(x) for all z € G. Hence the first identity of (IV)
becomes f¢ = %aQ m—+b. So, taking into account that g¢ = m and h® = 0, the
identity (3.2) becomes

e1(z,y) = [5a”(@)m(z) + b(2)]g°(y) + m(z) f°(y)

= 5a”(@)m(2)g°(y) + b(x)g°(y) + m(x) f*(y),

for all z,y € G. As the functions m, b, g° and f° are bounded and m is a
nonzero multiplicative function on the group G, we deduce from the identity
above that the function
z > a*(2)g°(y)

belongs to B(G) for all y € G. Since a? is a non bounded function, because
of the fact that a is a nonzero additive function on G, we deduce that g° = 0.
We infer from (IV'), taking (4.14) into account, and using that f = f¢ + f°
and g = ¢g° + ¢°, that

= %azm—l—b—l—fo,
= m’
= —am.

S %
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By writing b instead of b + f° in the identities above we obtain the result
(7) of Theorem 4.1.

(4) f€ satisfies the functional equation

[ +y) = f(@)mly) +m(x) f(y) + (a(z)m(z) + b(z))(aly)m(y) + b((y))

for all x,y € G,
1
9" =58 f + (1 +Baym+Bb
and
k=—-8f°+am-+b,
where m : G — C is a nonzero bounded multiplicative function, a : G — C is
a nonzero additive function, b : G — C is a bounded function and 5 € C is a
constant.

A simple computation shows that 8k = —%62 f€+ g¢ —m. Thus, as in the
possibility (2), we have 5 = 0. Hence

g¢¢=m (4.25)

and
k=am+b. (4.26)
From (4.24) and (4.26) we deduce that f¢ and k satisfy the functional equation

[ +y) = f(x)ymly) + mz) f(y) + k(z)k(y).
As a is a nonzero additive function, m is a nonzero multiplicative bounded
function and b is bounded we derive from (4.26) that k& # 0. Moreover k(—z) =
—k(z) for all x € G, and from (4.25) we get that m(—z) = m(z) for all z € G.
Hence, according to Proposition 3.3, f¢ and k are of the form

fe= %A2m (4.27)
and

k= Am, (4.28)
where A : G — C is a nonzero additive function. It follows, from (4.26), (4.28)
and that m(—z) = m(z) for all x € G, that A —a = bm. Hence, A —a is a
bounded additive function. Therefore A = a and b = 0. We deduce, taking
(4.27) and (4.28) into account, that

fe=-a"m. (4.29)

and
k=am. (4.30)
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Moreover, since the functions m and 1) are bounded, we deduce by using
(3.2), (3.12) and (4.25), that the function z — f¢(x)g°(y) belongs to B(G) for
all y € G. As seen earlier, we have f¢ ¢ B(G). Hence

g°=0. (4.31)

Thus, by using (4.14), (4.25), (4.29), (4.30) and (4.31), and taking into account
that f° € B(G), we conclude, by writing b instead of f°, that

f = %aQ m + b,
g = m,
h = —itam.

The result occurs in (7) of Theorem 4.1.

(5) f€, ¢¢ and k satisfy the functional equation

[z +y) = f(2)g°(y) + g°(z) f(y) + k(x)k(y) (4.32)
for all z,y € G.
If f©=0 then f¢ = f. Moreover we derive from (3.17) that ¢¢ = g. So, by
using (4.14), the functional equation (4.32) becomes
f@+y) = f(2)g(y) + 9(x) f(y) — h(z)h(y)

for all z,y € G. As h = h° we derive that f, g and h satisfy the functional
equation

fx—y) = f(2)g(y) + 9(2) f(y) + h(x)h(y)
for all z,y € G. This is the result (8) of Theorem 4.1.

If f° # 0 then, according to (3.2), there exist a constant 7 € C and an even
function ¢ € B(G) such that

g =nf"+e
Substituting this into (4.32) we obtain
fe+y) =20 f(2) [ () + [ (2)ey) + (@) f(y) + k(@)k(y)  (4.33)
for all z,y € G.
If n = 0, then the functional equation (4.33) can be written
fx +y) = [ @)e(y) + (@) [(y) + k(z)k(y) (4.34)

for all z,y € G.
Notice that ¢ # 0. Indeed, if ¢ = 0 then we get, by putting y = e in (4.34)
and taking (4.14) into account, that

fé(z) + h(z)h(e) =0
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for all z € G. Since h = h°® we have h(e) = 0. Hence f¢(z) =0 for all z € G,
and then f = f°, which implies f € B(G) which contradicts that f and h are
linearly independent modulo B(G). Moreover we derive from (4.34), according
to [4, Lemma 3.2], that ¢ is a multiplicative function because f¢ and k are
linearly independent modulo B(G) and ¢ € B(G). Let m := . Then the
functional equation (4.34) becomes

fz+y) = f(x)m(y) + m(z) f(y) + k(z)k(y)

for all z,y € G. Since f¢ is an even function, m a nonzero multiplicative
function on the group G such that

m(—z) = p(-z) = p(z) = m(z)

for all z € G, and k an odd function we deduce, according to Proposition 3.3,
that f¢ = %an and k = am where a : G — C is a nonzero additive function.
So, taking (4.14), (3.17) and (3.18) into account, and using that f° € B(G),
v =mn =0 and ¢ = m, we derive, by setting b = f°, that

f = %aQ m + b,
g = m,
h = —iam.

This is the result (7) of Theorem 4.1.
If n # 0, let A € C\ {0} such that \2 = %

can be written, by multiplying both sides by % and adding ¢(x + y) to the
obtained functional equation, as follows

. The functional equation (4.33)

3 1)+ () = 57 £ + el ) + o)

for all z,y € G. As ¢ € B(G) we get that the function

1

23 H@k()
belongs to the two-sided invariant linear space B(G) for all y € G. Since the
functions f¢ and h are linearly independent modulo B(G) so are % fé+p and

T~ % Faty)+o(r+y) - [% fe(ff)ﬂo(w)][% ) +ey)] -

/\% k. Hence, according to [22, Lemma 3.1] and taking (4.14) into account, the
functional equation

1

h(@)h(y)

3 1) ol ) = (55 £(@) + o]l ) + o)

for all x,y € G, is valid, from which we deduce that
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foo= Ny,
(V){ ho— g

where
1
Jo:= 2 ff+e
and go := 3 L1 satisfy the functional equation

fo(z +y) = fo(@) fo(y) — go(x)g0(y)

for all z,y € G.
Moreover, since ¢ is an even function and h® = 0 we get easily that

Jo(=z) = fo(x)
and
go(—x) = —go(x)
for all x € G.
On the other hand, by taking into account that f = f¢+ f° and g = g°+¢°,

and by using (3.17), (3.18) and (V'), we derive by an elementary computation
that

f = )\QfO_AQb')
g = Sfo+5b
h = )\go,

where b := ¢ — /\% f¢ is a bounded function. The result occurs in (6) of Theo-
rem 4.1.

Subcase B.2.2: v # 0. Let 2,y € G be arbitrary. By substituting (3.16)
and (3.17) in (3.2) we obtain by an elementary computation

o1(x,y) = [-n () + g°(@)] £ (v) (4.35)

On the other hand, since f = f¢+ f° and g = g° + ¢° the identity (3.5) can
be written

P(z,y) = f(x -y

QS
|
/'\
8
® ~—
NS
[
—~
<
O ~—
Q
/-\
\_/
A
<
S~—
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By using (3.17) we obtain

Y(x,y) = fY(z—y) — f(2)g°(y) — g°(x) f(y) — h(x)h(y) — 9°(x) f°(y)
— @)=y r°y) —n W] = fW=rh°(x) —n f(x)] — f2(x)g°(y)
= @ [=vr°(y) = W) = W=y h°(x) —n ()] + (. —y)

] -
=[x —y) = [(2)g°(y) — 9°(2) [*(y) — h(2)h(y)
+y @R (y) + v F(y)h (@) + 7 f(2)h°(y) + v h°(x) f°(y)
+ 20 f(@) f(y) = [=n f(2) + g°(2)] f°(y)
— [0 y) + 9°WIf(x) + f(x —y),

from which we infer, by using that h = h¢ 4+ h°, and taking (3.16) and (4.35)
into account, that

Y(z,y) =[x —y) — f(2)9°(y) — g°(2) [ (y) — [h(z) + h°()][h°(y) + h°(y)]
+ hé(z)h°(y) + he(y)h ( )+ (@) (y) + v h°(x) f(y)
—o1(2,y) = p1(y, ) + 2 f(2) f(y) + [z —y)

= [z —y) — f(2)g9°(y) — 9°() f(y) — h°(z)h"(y)
— h2(2)h°(y) +~ f°(2)h°(y) + v b (2) f(y)
—o1(z,y) — ( sx) +2n fO(x) f(y) + fO(x —y)
= [z —y) — f(2)g°(y) — 9° (@) f(y) = *F(2) f(y)
— h2(2)h°(y) +~ fO(2)h°(y) +vh(2)f(y)
—p1(z,y) — <p1(y z) +2n f2(x) f(y) + fO(x —y).
So that
Fow— ) ~ @) + 372 W]~ @) + 522 @)
— [h(x) =5 @A (y) — 7 £ (v)] (4.36)
= ¥(z,y) + e1(z,9) + e1(y, 1) — (VP +20) f(2) f(y) — f(z — y)
for all z,y € G. Let
Fy:= f¢ Go =g+ %’ff’i Hy:=h—~ f°. (4.37)

Since f = f¢+ f° g = g%+ ¢° and h = h® + h°, we get by setting § = —v and
¢ = f°, and taking (3.16), (3.17) and (4.37) into account, that

(VI){

FO+S0)
—182Fy + Go + 0 Hy — (n+ 62)g,
—0 Fo+ Hy — 6§ .

>
o
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If ¢ = 0 the result (9) of Theorem 4.1 is obviously satisfied. In the following
we assume that ¢ # 0. By using (4.35), the first identity and the second one
in (4.36), and replacing f° by ¢, we get, by a small computation, that

o1(2,9) =~ [0+ 501 Fo(a) — Go(@)]e(w)

for all x,y € G. Since f° and @ are bounded functions, we deduce, taking
(3.12) and the identity above into account, that

1
(n+ 50%)Fo — Go € B(G), (4.38)
and, from (4.36) and (4.37), we derive that the function
(z,y) = Fo(z —y) — Fo(z)Go(y) — Go(x)Fo(y) — Ho(z)Ho(y)

is bounded. Since f and h are linearly independent modulo B(G), we deduce
easily, by using the first and the third identities in (4.36), that Hy and Fp
are because f° € B(G) and h® ¢ B(G). Moreover we have H] = Hp and
H§ ¢ B(G), hence we go back to Subcase B.2.1. As Fy and G are even func-
tions we derive that we have the following subcases:

Subcase B.2.2.1: Fj, G, and Hj are of the form (6) with the same con-
straints. Then

1 1
Fo =M fo— X\, Go = §fo + 517, Hy = X go,

where A € C\{0} is a constant and b, fy, go : G — C are functions satisfying the
same constraints indicated in (6) of Theorem 4.1, unless to take b(—x) = b(z)
for all z € G, then a small computation shows, by using (4.38) and the formulas
of Fy and Gy, that

(5~ N+ 5o € B(G).

As Fy and Hj are linearly independent modulo B(G) and b € B(G), we get
fo & B(G). So that

1 1
- )\2 *(52 _
5 (n+50%) =0
and then
1 1
= — Z§°
222 2

By substituting this back into (VI) we obtain the result (9) of Theorem 4.1
with the constraint (i).
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Subcase B.2.2.2: Fjy, Gy, and Hj are of the form (7) with the same
constraints. Then we get, taking into account that Fy(—z) = Fy(x) and
b(—x) = —b(x) for all x € G, that b = 0. So that

= %a2 m, Go =m, Hy = —iam,
where m : G — C is a nonzero bounded multiplicative function, a : G — C is
a nonzero additive function such that m(—z) = m(x) for all z € G. By using
(4.38) and the formulas of Fy and Gy we get, by an elementary computation,
that (n + 302)a® € B(G). Since a is a nonzero additive function we get that
a? ¢ B(G). Hence n = —346. By substituting this back into (VI) we obtain
the result (9) of Theorem 4.1 with the constraint (ii).

Subcase B.2.2.3: Fy, Go, and Hj satisfy the functional equation in the
result (8) of Theorem 4.1, i.e.,

Fy(z —y) = Fo(x)Go(y) + Go(z) Fo(y) + Ho(z)Ho(y)
for all z,y € G. Since Fy and Gy are even functions and Hy, replacing y by

—y yields the functional equation
Fy(z +y) = Fo(z)Go(y) + Go(z)Fo(y) + (iHo(z))(iHo(y))-
From (4.38) we derive that there exist a constant o € C and a function by €
B(G) such that Go = §Fp + bg. So that the last functional equation becomes
Fo(z +y) = aFo(x)Fo(y) + Fo(z)bo(y) + bo(x) Fo(y) + (iHo(z))(iHo(y)),

for all z,y € G. Hence, by applying a similar idea used to solve (4.33) (see
Subcase B.2.1(5)) we prove that:

If « = 0, then Fy = %an, Gy = m and Hy = —iam, where m : G — C
is a nonzero bounded multiplicative function such that m(—z) = m(z) for all
z € G, so we go back to Subcase B.2.2.2 and obtain the result (9) of Theorem
4.1 with the constraint (ii).

If o # 0, then

1 1
Fo =\ fo — X by, G0=§f0+§baﬂd Ho = Ago,

where b : G — C is a bounded function, A € C\ {0} is a constant and
fo,90 : G — C are functions satisfying the cosine functional equation

fo(z +y) = fo(x) fo(y) — go(x)g0(y)
for all z,y € G, such that
fo(=z) = fo(z), go(—z) = —go(z)

and b(—z) = —b(x) for all z € G, so we go back to Subcase B.2.2.1 and obtain
the result (9) of Theorem 4.1 with the constraint (i).
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Conversely if f,g and h are of the forms (1)-(9) in Theorem 4.1 we check
by elementary computations that the function

(z,y) = flz —y) — f(x)g(y) — g9(x) f(y) — h(z)h(y)

is bounded. This completes the proof. O
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