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1. Introduction

It is well known that systems of variational inequalities are important gener-
alizations of the classical variational inequality and have potential applications
in mechanic, physics, optimization and control, economics and engineering sci-
ences ([1–10]).

Utilizing the projection methods, Verma [10] investigated the existence of
solutions for a system of nonlinear variational inequalities in Hilbert spaces.
By means of the the resolvent operators, Nie et al. [5] discussed the approx-
imation solvability of a system of nonlinear variational inequalities involving
strongly monotone and pseudocontractive mappings. Using the resolvent op-
erators associated with (H, η)-monotone operators, Fang et al. [2] studied a
system of variational inclusions in Hilbert spaces, and obtained the existence
of solutions for the system of variational inclusions. Peng [6] and Peng and Zhu
[8] introduced systems of quasi-variational inequalities and generalized mixed
quasi-variational inclusions with (H, η)-monotone operators, respectively, and
proved the existence theorems of solutions and convergence results of iterative
algorithms for the systems of quasi-variational inequalities and generalized
mixed quasi-variational inclusions.

The purpose of this paper is to introduce and study a new system of gener-
alized nonlinear variational inclusions with (H, η)-monotone operators, which
includes the systems of variational inclusions in [2, 8] as special cases. By
using the resolvent operator techniques associated with the (H, η)-monotone
operators, we suggest an iterative algorithm for computing approximation so-
lutions of the system of generalized nonlinear variational inclusions, prove the
existence of solutions for the system of generalized nonlinear variational in-
clusions and discuss the convergence of the iterative sequence generated by
the algorithm. The result obtained in this paper improves some results in the
literature.

2. Preliminaries

Let H be a real Hilbert space with norm and inner product denoted by
‖ · ‖ and 〈·, ·〉, respectively. Let CB(H) denote the families of all nonempty

closed bounded subsets ofH and D̃(·, ·) denote the Hausdorff metric on CB(H)
defined by

D̃(A1, B1) = max
{

sup
a∈A1

d(a,B1), sup
b∈B1

d(A1, b)
}
, ∀A1, B1 ∈ CB(H),

where d(a,B1) = d(B1, a) = infb∈B1 ‖a− b‖.
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Definition 2.1. ([4]) Let η : H×H → H, H : H → H be two mappings and
M : H → 2H be a set-valued mapping. M is said to be

(1) η-monotone if

〈x− y, η(u, v)〉 ≥ 0, ∀u, v ∈ H, x ∈Mu, y ∈Mv,

(2) (H, η)-monotone if M is η-monotone and (H + λM)(H) = H for all
λ > 0.

Definition 2.2. Let H, g : H → H, η : H×H → H be three mappings. g is
said to be

(1) η-monotone if

〈gu− gv, η(u, v)〉 ≥ 0, ∀u, v ∈ H;

(2) strictly η-monotone if g is η-monotone and

〈gu− gv, η(u, v)〉 = 0 ⇐⇒ u = v;

(3) strongly monotone if there exists a constant r > 0 such that

〈gu− gv, u− v〉 ≥ r‖u− v‖2, ∀u, v ∈ H;

(4) strongly monotone with respect to H if there exists a constant γ > 0
such that

〈gu− gv,Hu−Hv〉 ≥ r‖u− v‖2, ∀u, v ∈ H;

(5) strongly η-monotone if there exists a constant r > 0 such that

〈gu− gv, η(u, v)〉 ≥ r‖u− v‖2, ∀u, v ∈ H;

(6) Lipschitz continuous if there exists a constant s > 0 such that

‖gu− gv‖ ≤ ‖u− v‖, ∀u, v ∈ H.

Definition 2.3. Let η : H×H → H be a mapping. η is said to be

(1) monotone if

〈η(u, v), u− v〉 ≥ 0, ∀u, v ∈ H;

(2) Lipschitz continuous if there exists a constant τ > 0 such that

‖η(u, v)‖ ≤ τ‖u− v‖, ∀u, v ∈ H.

Definition 2.4. Let M : H → CB(H) and N : H×H → H be mappings.

(1) M is said to be D̃-Lipschitz continuous if there exists a constant ξ > 0
such that

D̃(Mu,Mv) ≤ ξ‖u− v‖, ∀u, v ∈ H;
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(2) N is said to be Lipschitz continuous in the first argument if there exists
a constant ξ > 0 such that

‖N(u, x)−N(v, x)‖ ≤ ξ‖u− v‖, ∀u, v, x ∈ H;

(3) N is said to be mixed Lipschitz continuous if there exist two constants
ξ > 0 and ζ > 0 such that

‖N(u, v)−N(x, y)‖ ≤ ξ‖u− x‖+ ζ‖v − y‖, ∀u, v, x, y ∈ H.

Similarly we can define the Lipschitz continuity of N in the second argu-
ment.

Definition 2.5. Let F : H → H, and N : H × H → H be mappings. N is
said to be F -strongly monotone in the first argument if there exists a constant
β > 0 such that

〈N(u, x)−N(v, x), Fu− Fv〉 ≥ β‖u− v‖2, ∀u, v, x ∈ H.

Definition 2.6. ([4]) Let η : H × H → H be a mapping, H : H → H be
a strictly η-monotone mapping and M : H → 2H be an (H, η)-monotone

mapping. Then the resolvent operator RH,ηM,ρ : H → H is defined by

RH,ηM,ρ(x) = (H + ρM)−1(x), ∀x ∈ H.

Lemma 2.7. ([4]) Let η : H×H → H be a Lipschitz continuous mapping with
constant τ > 0, H : H → H be a strongly η-monotone mapping with constant
γ > 0 and M : H → 2H be an (H, η)-monotone mapping. Then the resolvent

operator RH,ηM,ρ : H → H is Lipschitz continuous with constant τ
γ , that is,∥∥RH,ηM,ρ(x)−RH,ηM,ρ(y)

∥∥ ≤ τ

γ
‖x− y‖, ∀x, y ∈ H.

3. A system of generalized mixed quasi-variational inclusions
and iterative algorithm

In this section, we will introduce a new system of generalized nonlinear
variational inclusions with (H, η)-monotone mappings and construct a new
iterative algorithm for solving the system of generalized nonlinear variational
inclusions in Hilbert spaces. In what follows, unless other specified, we always
assume that H1 and H2 are two real Hilbert spaces, F, P : H1 × H2 →
H1, G, Q : H1 × H2 → H2, fi, gi, ri, Hi : Hi → Hi, ηi : Hi × Hi → Hi are
mappings for i ∈ {1, 2} and A1, C1 : H1 → CB(H1), B1, D1 : H2 → CB(H2)
are four set-valued mappings. Let M : H1×H1 → 2H1 and N : H2×H2 → 2H2

be two mappings, M(·, x) be an (H1, η1)-monotone mapping, N(·, y) be an
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(H2, η2)-monotone mapping for all x ∈ H1, y ∈ H2. We consider the following
problem of finding (x, y, u, v, w, z) with (x, y) ∈ H1 × H2, u ∈ A1x, v ∈
B1y, w ∈ C1x, z ∈ D1y such that{

0 ∈ F (x, y) + P (u, v) +M((f1 − g1)x, r1x),

0 ∈ G(x, y) +Q(w, z) +N((f2 − g2)y, r2y).
(3.1)

The problem (3.1) is called a system of generalized nonlinear variational in-
clusions.

Special cases

(i) If M((f1−g1)x, r1x) = M(g1x) and N((f2−g2)y, r2y) = N(g2y) for any
x ∈ H1 and y ∈ H2, then the problem (3.1) reduces to finding (x, y, u, v, w, z)
with (x, y) ∈ H1 ×H2, u ∈ A1x, v ∈ B1y, w ∈ C1x, z ∈ D1y such that{

0 ∈ F (x, y) + P (u, v) +M(g1x),

0 ∈ G(x, y) +Q(w, z) +N(g2y),
(3.2)

which was introduced and studied by Peng and Zhu [8].

(ii) If P = Q = 0, M((f1−g1)x, r1x) = M(x) and N((f2−g2)y, r2y) = N(y)
for any x ∈ H1 and y ∈ H2, then the problem (3.1) is equivalent to finding
(x, y) ∈ H1 ×H2 such that{

0 ∈ F (x, y) +M(x),

0 ∈ G(x, y) +N(y),
(3.3)

which was introduced by Fang et al. [2].

Lemma 3.1. Let ρi be a positive constant, ηi : Hi ×Hi → Hi be a mapping
and Hi : Hi → Hi be a strictly ηi-monotone mapping for each i ∈ {1, 2}.
Let M : H1 × H1 → 2H1 be (H1, η1)-monotone and N : H2 × H2 → 2H2 be
(H2, η2)-monotone. Then (x, y, u, v, w, z) with (x, y) ∈ H1×H2, u ∈ A1x, v ∈
B1y, w ∈ C1x, z ∈ D1y is a solution of the problem (3.1) if and only if{

(f1 − g1)x = RH1,η1
M(·,r1x),ρ1(H1(f1 − g1)x− ρ1F (x, y)− ρ1P (u, v)),

(f2 − g2)y = RH2,η2
M(·,r2y),ρ2(H2(f2 − g2)y − ρ2G(x, y)− ρ2Q(w, z)),

(3.4)

where

RH1,η1
M(·,r1x),ρ1 = (H1 + ρ1M(·, r1x))−1, RH2,η2

M(·,r2y),ρ2 = (H2 + ρ2N(·, r2y))−1.

Proof. The fact directly follows from Definition 2.6. �

Based on Lemma 3.1 and Nadler’s lemma, we suggest the following iterative
algorithm for the problem (3.1).
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Algorithm 3.2. For any given x0 ∈ H1 and y0 ∈ H2, compute the sequences
{xn}n≥0, {yn}n≥0, {un}n≥0, {vn}n≥0, {wn}n≥0 and {zn}n≥0 by iterative sche-
mes

xn+1 = xn − (f1 − g1)xn +RH1,η1
M(·,r1xn),ρ1(H1(f1 − g1)xn

− ρ1F (xn, yn)− ρ1P (un, vn)),

yn+1 = yn − (f2 − g2)yn +RH2,η2
N(·,r2yn),ρ2(H2(f2 − g2)yn

− ρ2G(xn, yn)− ρ2Q(wn, zn)),

(3.5)

un ∈ A1xn, ‖un+1 − un‖ ≤
(

1 +
1

n+ 1

)
D̃(A1xn+1, A1xn),

vn ∈ B1yn, ‖vn+1 − vn‖ ≤
(

1 +
1

n+ 1

)
D̃(B1yn+1, B1yn),

wn ∈ C1xn, ‖wn+1 − wn‖ ≤
(

1 +
1

n+ 1

)
D̃(C1xn+1, C1xn),

zn ∈ D1yn, ‖zn+1 − zn‖ ≤
(

1 +
1

n+ 1

)
D̃(D1yn+1, D1yn)

(3.6)

for all n ≥ 0, where ρ1 and ρ2 are positive constants.

4. Existence of solutions of the problem (3.1) and convergence
of Algorithm 3.2

In this section, we will prove the existence of solutions for the problem (3.1)
and the convergence of the iterative sequences generated by Algorithm 3.2.

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces, A1, C1 : H1 →
CB(H1), B1, D1 : H2 → CB(H2) be D̃-Lipschitz continuous with constants
lA1 , lB1 , lC1 , lD1, respectively. Let ηi : Hi × Hi → Hi be Lipschitz continuous
with constant τi, Hi : Hi → Hi be strongly ηi-monotone and Lipschitz continu-
ous with constants γi and hi, respectively, ri : Hi → Hi be Lipschitz continuous
with constant δi, fi, gi : Hi → Hi be mappings such that fi − gi be Lipschitz
continuous and strongly monotone with constants li and δi, respectively, for
i ∈ {1, 2}. Let F : H1 × H2 → H1 be H1(f1 − g1)-strongly monotone in the
first argument with constant µ1, Lipschitz continuous in the first and second
arguments with constants lF1 and lF2, respectively. Let P : H1 × H2 → H1

be mixed Lipschitz continuous with constants lP1 and lP2, G : H1 ×H2 → H2

be H2(f2 − g2)-strongly monotone in the second argument with constant µ2,
Lipschitz continuous in the first and second arguments with constants lG1 and
lG2, respectively, Q : H1 ×H2 → H2 be mixed Lipschitz continuous with con-
stants lQ1 and lQ2. Let M : H1 ×H1 → 2H1 and N : H2 ×H2 → 2H2 satisfy
that M(·, x) is an (H1, η1)-monotone mapping for each x ∈ H1, N(·, y) is an
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(H2, η2)-monotone mapping for each y ∈ H2 and there exist positive constants
ξ1 and ξ2 satisfying∥∥RH1,η1

M(·,r1x),ρ1(z)−RH1,η1
M(·,r1y),ρ1(z)

∥∥ ≤ ξ1‖r1x− r1y‖, ∀x, y, z ∈ H1, (4.1)∥∥RH2,η2
N(·,r2x),ρ2(z)−RH2,η2

N(·,r2y),ρ2(z)
∥∥ ≤ ξ2‖r2x− r2y‖, ∀x, y, z ∈ H2. (4.2)

Let

A = l2F1
− (lP1 lA1 + lF2 + lP2 lB1)2;

B = µ1 −
γ1
τ1

(
1−

√
1− 2σ1 + l21 − ξ1δ1

)
(lP1 lA1 + lF2 + lP2 lB1);

C = h21l
2
1 −

γ21
τ21

(
1−

√
1− 2σ1 + l21 − ξ1δ1

)2
;

A′ = l2G2
− (lQ1 lC1 + lG1 + lQ2 lD1)2;

B′ = µ2 −
γ2
τ2

(
1−

√
1− 2σ2 + l22 − ξ2δ2

)
(lQ1 lC1 + lG1 + lQ2 lD1);

C ′ = h22l
2
2 −

γ22
τ22

(
1−

√
1− 2σ2 + l22 − ξ2δ2

)2
.

If there exist constants ρ1 and ρ2 satisfying

0 < ρ1 <
γ1
(
1−

√
1− 2σ1 + l21 − ξ1δ1

)
τ1(lP1 lA1 + lF2 + lP2 lB1)

,

0 < ρ2 <
γ2
(
1−

√
1− 2σ2 + l22 − ξ2δ2

)
τ2(lQ1 lC1 + lG1 + lQ2 lD1)

(4.3)

and one of

A > 0, B2 > AC,

∣∣∣∣ρ1 − B

A

∣∣∣∣ <
√
B2 −AC
A

; (4.4)

A = 0, 2Bρ1 > C; (4.5)

A < 0, B2 > AC,

∣∣∣∣ρ1 − B

A

∣∣∣∣ > −
√
B2 −AC
A

(4.6)

and one of

A′ > 0, B′
2
> A′C ′,

∣∣∣∣ρ2 − B′

A′

∣∣∣∣ <
√
B′2 −A′C ′

A′
; (4.7)

A′ = 0, 2B′ρ2 > C ′; (4.8)

A′ < 0, B′
2
> A′C ′,

∣∣∣∣ρ2 − B′

A′

∣∣∣∣ > −
√
B′2 −A′C ′

A′
, (4.9)
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then the problem (3.1) admits a solution (x, y, u, v, w, z) with (x, y) ∈ H1 ×
H2, u ∈ A1x, v ∈ B1y, w ∈ C1x, z ∈ D1y and the sequences {xn}n≥0, {yn}n≥0,
{un}n≥0, {vn}n≥0, {wn}n≥0, {zn}n≥0 generated by Algorithm 3.2 converge to
x, y, u, v, w, z, respectively.

Proof. Let an = H1(f1 − g1)xn − ρ1F (xn, yn) − ρ1P (un, vn). By (3.5) and
Lemma 2.7, we have

‖xn+1 − xn‖
≤ ‖xn − xn−1 − ((f1 − g1)xn − (f1 − g1)xn−1)‖

+
∥∥RH1,η1

M(·,r1xn),ρ1(an)−RH1,η1
M(·,r1xn−1),ρ1

(an)
∥∥

+
∥∥RH1,η1

M(·,r1xn−1),ρ1
(an)−RH1,η1

M(·,r1xn−1),ρ1
(an−1)

∥∥, ∀n ≥ 1.

(4.10)

Since f1−g1 is strongly monotone and Lipschitz continuous with constants σ1
and l1, respectively, we have

‖xn − xn−1 − ((f1 − g1)xn − (f1 − g1)xn−1)‖2

= ‖xn − xn−1‖2 − 2〈xn − xn−1, (f1 − g1)xn − (f1 − g1)xn−1〉
+ ‖(f1 − g1)xn − (f1 − g1)xn−1‖2

≤ (1− 2σ1 + l21)‖xn − xn−1‖2, ∀n ≥ 1.

(4.11)

It follows from (4.1) and the Lipschitz continuity of r1 that∥∥RH1,η1
M(·,r1xn),ρ1(an)−RH1,η1

M(·,r1xn−1),ρ1
(an)

∥∥
≤ ξ1‖r1xn − r1xn−1‖ ≤ ξ1δ1‖xn − xn−1‖, ∀n ≥ 1.

(4.12)

By Lemma 2.7, we deduce that∥∥RH1,η1
M(·,r1xn−1),ρ1

(an)−RH1,η1
M(·,r1xn−1),ρ1

(an−1)
∥∥

≤ τ1
γ1
‖an − an−1‖, ∀n ≥ 1.

(4.13)

Since F is Lipschitz continuous in the second argument and P is mixed Lips-
chitz continuous, it follows from (3.6) that

‖an − an−1‖
≤ ‖H1(f1 − g1)xn −H1(f1 − g1)xn−1 − ρ1(F (xn, yn)− F (xn−1, yn))‖

+ ρ1‖F (xn−1, yn)− F (xn−1, yn−1)‖
+ ρ1‖P (un, vn)− P (un−1, vn−1)‖
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≤ ‖H1(f1 − g1)xn −H1(f1 − g1)xn−1 − ρ1(F (xn, yn)− F (xn−1, yn))‖

+ ρ1lF2‖yn − yn−1‖+ ρ1lP1

(
1 +

1

n

)
D̃(A1xn, A1xn−1)

+ ρ1lP2

(
1 +

1

n

)
D̃(B1yn, B1yn−1), ∀n ≥ 1.

(4.14)
Note that H1 and f1 − g1 are Lipschitz continuous with constants h1 and l1,

respectively, A1 and B1 are D̃-Lipschitz continuous with constants lA1 and
lB1 , and F is H1(f1 − g1)-strongly monotone in the first argument. It follows
that

‖H1(f1 − g1)xn −H1(f1 − g1)xn−1 − ρ1(F (xn, yn)− F (xn−1, yn))‖2

= ‖H1(f1 − g1)xn −H1(f1 − g1)xn−1‖2

− 2ρ1〈H1(f1 − g1)xn −H1(f1 − g1)xn−1, F (xn, yn)− F (xn−1, yn)〉
+ ρ21‖F (xn, yn)− F (xn−1, yn)‖2

≤ (h21l
2
1 − 2ρ1µ1 + ρ21l

2
F1

)‖xn − xn−1‖2, ∀n ≥ 1,

(4.15)

By (4.10)-(4.15), we know that

‖xn+1 − xn‖ ≤ bn max{‖xn − xn−1‖, ‖yn − yn−1‖}, ∀n ≥ 1, (4.16)

where

bn =
√

1− 2σ1 + l21 + ξ1δ1 +
τ1
γ1

[√
h21l

2
1 − 2ρ1µ1 + ρ21l

2
F1

+ ρ1

(
lP1 lA1

(
1 +

1

n

)
+ lF2 + lP2 lB1

(
1 +

1

n

))]
→ b =

√
1− 2σ1 + l21 + ξ1δ1 +

τ1
γ1

[√
h21l

2
1 − 2ρ1µ1 + ρ21l

2
F1

+ ρ1
(
lP1 lA1 + lF2 + lP2 lB1

)]
as n→∞.

(4.17)

Similarly, we have

‖yn+1 − yn‖ ≤ cn max{‖xn − xn−1‖, ‖yn − yn−1‖}, ∀n ≥ 1, (4.18)

where

cn =
√

1− 2σ2 + l22 + ξ2δ2 +
τ2
γ2

[√
h22l

2
2 − 2ρ2µ2 + ρ22l

2
G2

+ ρ2

(
lQ2 lD1

(
1 +

1

n

)
+ lG1 + lQ1 lC1

(
1 +

1

n

))]
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→ c =
√

1− 2σ2 + l22 + ξ2δ2 +
τ2
γ2

[√
h22l

2
2 − 2ρ2µ2 + ρ22l

2
G2

+ ρ2
(
lQ1 lC1 + lG1 + lQ2 lD1

)]
as n→∞.

(4.19)

Put θ = max{b, c} and θn = max{bn, cn} for any n ≥ 0. Obviously, (4.17) and
(4.19) ensure that limn→∞ θn = θ. It follows from (4.3) and one of (4.4)-(4.6)
and one of (4.7)-(4.9) that 0 < θ < 1. Put ω = 1+θ

2 . In view of (4.16) and
(4.18) we infer that there exists n0 ≥ 1 satisfying

max{‖xn+1 − xn‖, ‖yn+1 − yn‖}
≤ ωmax{‖xn − xn−1‖, ‖yn − yn−1‖}, ∀n ≥ n0,

(4.20)

which implies that {xn}n≥0 and {yn}n≥0 are Cauchy sequences. In light of the
Lipschitz continuity of A1 and (3.6), we know that

‖un+1 − un‖ ≤
(

1 +
1

n+ 1

)
lA1‖xn+1 − xn‖,

which together with (4.20) gives that {un}n≥0 is a Cauchy sequence. Simi-
larly, we conclude that {vn}n≥0, {wn}n≥0 and {zn}n≥0 are Cauchy sequences.
Therefore, there exist x, u, w ∈ H1 and y, v, z ∈ H2 such that xn → x, yn → y,
un → u, vn → v, wn → w, zn → z as n→∞.

Notice that
d(u,A1x) ≤ ‖u− un‖+ d(un, A1x)

≤ ‖u− un‖+ D̃(A1x,A1xn)

≤ ‖u− un‖+ lA1‖xn − x‖
→ 0 as n→∞.

Since A1x is closed, we get that u ∈ A1x. Similarly, we have v ∈ B1y, w ∈
C1x, z ∈ D1y. By Algorithm 3.2 and the Lipschitz continuity of f1− g1, f2−
g2, H1, H2, F, G, P, Q, R

H1,η1
M(·,r1x),ρ1 , R

H2,η2
M(·,r2y),ρ2 , we conclude that

(f1 − g1)x = RH1,η1
M(·,r1x),ρ1(H1(f1 − g1)x− ρ1F (x, y)− ρ1P (u, v))

and

(f2 − g2)y = RH2,η2
N(·,r2y),ρ2(H2(f2 − g2)y − ρ2G(x, y)− ρ2Q(w, z)).

It follows from Lemma 3.1 that (x, y, u, v, w, z) is a solution of the problem
(3.1). This completes the proof. �

Remark 4.2. Theorem 4.1 is a generalization of Theorem 4.1 in [8].
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