ON GENERALIZED HARMONIC VECTOR VARIATIONAL INEQUALITIES USING $H C_{*}$-CONDITION

S. N. Mishra ${ }^{1}$, P. K. Das ${ }^{2}$ and S. K. Mishra ${ }^{3}$
${ }^{1}$ Department of Mathematics Bhadrak Institute of Engineering and Technology
Barapada, Bhadrak-756113, Odisha (India)
e-mail: snmishra000@gmail.com
${ }^{2}$ Department of Mathematics
School of Applied Sciences, KIIT Deemed to be University
Bhubaneswar-751024, India
e-mail: dasprasantkumar@yahoo.co.in
${ }^{3}$ Department of Mathematics
School of Applied Sciences, KIIT Deemed to be University Bhubaneswar-751024, India
e-mail: smishrafma@kiit.ac.in

Abstract

In this paper some results on $H C_{*}$-condition are established in the harmonic invex set and are used to establish the existence theorem of the solution of the generalized harmonic variational inequalities and its dual problem using generalized harmonically monotone property of the operator.

1. Introduction

In 2014, Insan [5] has developed the structure of harmonically convex (HC) set and HC function. Using HC functions, he developed the Hermite-Hadamard type inequalities. Later Noor and Noor [7] have studied the harmonic variational inequality problems (HVIP) in the HC set related with a differentiable HC (DHC) function. Recently Mishra et al. have developed the harmonically

[^0]invex (HI) set and have studied the harmonic variational inequality problems (HVIP) in it.

In section 2, the componentwise multiplication and division operations are defined in a separable reflexive Banach space given with the Schauder basis with the help of an operator S. In section 3, the generalized HVIP (GHVIP) and the generalized dual HVIP (GDHVIP) are defined in ordered TVS with the help of operator S. In section 4, the concept of $H C_{*}$-condition is redefined in separable reflexive Banach space. Some results of the bi-function η are established in the HI set in the presence of $H C_{*}$-condition and the existence of the solution of the problems GHVIP and GDHVIP are also discussed in the HI set in the presence of $H C_{*}$-condition.

2. Component-wise operations of the elements of Separable reflexive Banach space

Suppose X is a topological vector space (TVS) in a separable reflexive Banach space \mathbb{B} with the Schauder basis \mathcal{B} given by

$$
\mathcal{B}=\left\{e_{i}: e_{i}=(0,0, \cdots, 0,1,0,0, \ldots), \text { where } i^{\text {th }} \text { element is } 1\right\}
$$

where the basis vectors $e_{i}, e_{j} \in \mathcal{B}$ satisfies the Kronecker's delta property for general product, i.e.,

$$
e_{i} e_{j}=\delta_{i j}= \begin{cases}1, & \text { if } i=j ; \\ 0, & \text { if } i \neq j .\end{cases}
$$

Let \mathbb{K} be the scalar field, i.e., either the real field \mathbb{R} or the complex field \mathbb{C}. A binary operation $\otimes: \mathcal{B} \times \mathcal{B} \rightarrow X$ is called a component-wise vector product via Kronecker's delta is defined in X by the rule

$$
\begin{aligned}
e_{i} \otimes e_{j} & = \begin{cases}e_{i} \delta_{i j}, & \text { if } i=j ; \\
0, & \text { if } i \neq j\end{cases} \\
a \otimes b & =a b \text { for all } a, b \in \mathbb{K} .
\end{aligned}
$$

Again an operator S is introduced to find the component-wise vector product \boxtimes of two elements of X as

$$
x \boxtimes y=S(x \otimes y)=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_{i} y_{j} e_{i} \otimes e_{j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_{i} y_{j} e_{i} \delta_{i j}=\sum_{i=1}^{\infty} x_{i} y_{i} e_{i} .
$$

For the nonzero elements set $X_{\odot}=X \backslash\{0\}=\left\{x \in X: x_{i} \neq 0, i=1,2, \cdots\right\}$, the reciprocals of the elements set X_{\odot} is

$$
\left[X_{\odot}\right]^{-1}=\left\{x^{-1} \in X_{\odot}: x^{-1}=\sum_{i=1}^{\infty} x_{i}^{-1} e_{i}\right\} .
$$

For simplicity the index notations $S_{i j}$ and S_{i}^{j} are defined as follows

$$
S_{i j}=\sum_{j=1}^{\infty} e_{i} \otimes e_{j}= \begin{cases}\sum_{i=1}^{\infty} e_{i}, & \text { if } i=j ; \\ 0, & \text { if } i \neq j\end{cases}
$$

and

$$
S_{i}^{j}=\sum_{i=1}^{\infty} e_{i} e_{j}=\sum_{i=1}^{\infty} \delta_{i j} .
$$

The component-wise binary operations in the topological vector space X modeled in the reflexive separable Banach space \mathbb{B} over a scalar field $\mathbb{K}=\mathbb{R}$ or \mathbb{C} are \oplus and \ominus which are same as tensor addition and tensor subtraction respectively. Other component-wise binary operations defined on X over \mathbb{K} are defined as follows:

Definition 2.1. For $x=\sum_{i=1}^{\infty} x_{i} e_{i}$ and $y=\sum_{i=1}^{\infty} y_{i} e_{i}$ in X, and $\alpha \in \mathbb{K}$ the scalar field, we have
(i) the component-wise product \boxtimes is given by $x \boxtimes y=\sum_{i=1}^{\infty} x_{i} y_{i} e_{i}=y \boxtimes x$,
(ii) component-wise division \boxtimes is defined by $x \boxtimes y=x \boxtimes y^{-1}=\sum_{i=1}^{\infty} x_{i} y_{i}^{-1} e_{i}$,
(iii) component-wise multiplicative identity element in X is

$$
1_{X}=(1,1, \cdots)=\sum_{i=1}^{\infty} e_{i} \text {, because } x \boxtimes 1_{X}=\sum_{i=1}^{\infty} x_{i} e_{i}=x=1_{X} \boxtimes x,
$$

(iv) component-wise multiplicative inverse element of x in X is x^{-1}

$$
\text { because } x \boxtimes x=x \boxtimes x^{-1}=\sum_{i=1}^{\infty} x_{i} x_{i}^{-1} \quad e_{i}=\sum_{i=1}^{\infty} e_{i}=(1,1, \cdots)=1_{X} .
$$

By the algebraic structure of basis set $(\mathcal{B}, S)=\left\{e_{i}\right\}_{i=1}^{\infty}$ defined by the operator S, the structures of the points in $X_{\odot}=X \backslash\{0\}$ the strictly non-zero point set of X, X^{-1} the reciprocal space of X, component-wise addition of spaces $X \oplus X$, component-wise subtraction of spaces $X \ominus X$, component-wise multiplication of spaces $X \boxtimes X$ and component-wise division of spaces $X \boxtimes X_{\odot}$ are defined as follows
(1) $X \oplus X=\left\{z \in X: z=x \oplus y=\sum_{i=1}^{\infty}\left(x_{i}+y_{i}\right) e_{i}\right\}$,
(2) $X \ominus X=\left\{z \in X: z=x \ominus y=\sum_{i=1}^{\infty}\left(x_{i}-y_{i}\right) e_{i}\right\}$,
(3) $X \boxtimes X=\left\{z \in X: z=x \boxtimes y=\sum_{i=1}^{\infty} x_{i} y_{i} e_{i}\right\}$,
(4) $X \boxminus X_{\odot}=\left\{z \in X: z=x \boxtimes y=\sum_{i=1}^{\infty} x_{i} y_{i}^{-1} e_{i}\right\}$.

3. Modeling of Generalized HVIP

Assume that $X=(X, \tau)$ is a TVS with topology τ in a separable reflexive (real or complex) Banach space \mathbb{B} with the Schauder basis $\mathcal{B} \subset \tau, K \subset X$ and $Y=(Y, P)$ is an ordered TVS (OTVS) equipped with closed convex pointed cone P with nonempty interior, i.e., int $P \neq \varnothing$. Here $X=\prod_{i=1}^{\infty} X_{i}$ is a product space in the Banach space $\mathbb{B}, K=\prod_{i=1}^{\infty} K_{i}$ and $Y=\prod_{i=1}^{\infty} Y_{i}^{*}$. Here $K_{i} \subset X_{i}=\mathbb{K}$ given with $X_{i}^{*}=\mathbb{K}$ the dual space of X_{i} and $Y_{i}^{*}=\mathbb{K}$ the dual space of Y_{i} for each $i=1,2, \cdots$.
3.1. Expression of GHVIP using S operator. Let $T: K \subset X \rightarrow L(X, Z)$ be any map where Z is either a scalar field \mathbb{K} or a vector field. The problem is to find $y \in K$ such that

$$
\begin{equation*}
\langle T(y), z\rangle \geq_{Z} 0 \forall z \in X \tag{3.1}
\end{equation*}
$$

where the pairing $\langle f, z\rangle$ denotes the value of $f \in L(X, Z)$ at $z \in X$. Above problem is written by a summable series form using the operator S.
(1) Let $Z=\mathbb{K}$ the scalar field and $T: K \rightarrow X^{*}$. Let $T_{i}: K_{i} \rightarrow \mathbb{K}$ where $K_{i} \subset X_{i}$. By taking $T=\sum_{i=1}^{\infty} T_{i} e_{i}$ where the problem (3.1) can be written as $\langle T(y), z\rangle=(T \boxtimes y) \otimes z \geq 0$, i.e.,

$$
0 \leq\langle T(y), z\rangle=S(T \otimes y) \otimes z \forall y \in K, z \in X
$$

(2) If $Z=Y$ is the vector field in the Banach space and P is the closed convex pointed cone in Y with nonempty interior. Since $T: K \rightarrow$ $L(X, Y)$, taking $T=\sum_{i=1}^{\infty} T_{i} e_{i}$ where $T_{i}: K_{i} \subset X_{i} \rightarrow L\left(X_{i}, Y_{i}\right)$, the problem (3.1) can be written as

$$
\begin{aligned}
\langle T(y), z\rangle & =\sum_{i=1}^{\infty}\left\langle T_{i}\left(y_{i}\right), z_{i}\right\rangle e_{i}=(T \boxtimes y) \boxtimes z \\
& =S([S(T \otimes y)] \otimes z) \\
& \geq_{P} 0 \forall y \in K, z \in X .
\end{aligned}
$$

For our study $Z=Y \subset \mathbb{B}$. If $\xi \in Y$, then for the expression $\xi \in P$ or $\xi \geq_{P} 0$, we mean $\xi \geqq 0$, implying $\xi_{i} \geq 0$ for each $i ; \xi \in-P$ or $\xi \leq_{P} 0$ we mean $\xi \leqq 0$, implying $\xi_{i} \leq 0$ for each i and $\xi \in-P \cap P$ we mean $\xi \equiv 0$, implying $\xi_{i}=0$ for each i (component-wise) in Banach space Y.

For $T: K \rightarrow L(X, Y)$ and $\eta: K \times K \rightarrow X$, the generalized harmonic variational inequality problems (GHVIP) are defined as follows:
(a) The GHVIP is of finding

$$
\begin{equation*}
y \in K:\left\langle T(y), x y[\eta(x, y)]^{-1}\right\rangle \geqq 0 \forall x \in K, \tag{GHVIP}
\end{equation*}
$$

(b) the generalized dual HVIP is of finding

$$
\begin{equation*}
y \in K:\left\langle T(x), x y[\eta(x, y)]^{-1}\right\rangle \geqq 0 \forall x \in K . \tag{GDHVIP}
\end{equation*}
$$

Remark 3.1. The problem GHVIP coincides with HVIP developed by Noor and Noor [7] if $Y=\mathbb{R}$ and $\eta(x, y)=y-x$.
4. Condition $H C_{*}$ and some results using Condition $H C_{*}$

Consider a set

$$
D_{h}=\left\{v \in X_{\odot}: x y v^{-1} \in X, x_{\lambda}=y+\lambda v \in K \subset X, \forall x, y \in K, \lambda \in[0,1]\right\}
$$

in X that forms the nonempty starlike subspace $K(v)$ of X from the point $y \in K$ in the direction $v \in X$ as

$$
K(v)=\left\{x \in K: x=y+\lambda v, v \in D_{h}, \lambda \in(0,1]\right\} .
$$

Assume that $\eta(x, y)=\left\{\eta_{i}(x, y)\right\} \in \prod_{i=1}^{\infty} X_{i}=X$ where $\eta_{i}: K \times K \rightarrow X_{i}$ is continuous for each i. We recall the following definitions for our requirement.
Definition 4.1. The set $K \subset X$ is
(a) η-invex [4] w.r.t. the mapping $\eta: K \times K \rightarrow X$ if $K(\eta)=K$ where

$$
K(\eta)=\left\{x_{\lambda} \in K: x_{\lambda}=y+\lambda \eta(x, y) \forall x, y \in K, \lambda \in[0,1]\right\},
$$

(b) harmonically η-invex (HI) [6] w.r.t. the mapping $\eta: K \times K \rightarrow X$ if $K_{h}(\eta)=K$ where

$$
K_{h}(\eta)=\left\{x y x_{\lambda}^{-1} \in K ; x, y \in K, x_{\lambda} \in K(\eta), 0 \leq \lambda \leq 1\right\} .
$$

In other words, K is η-HI if $x_{\lambda} \in K$ if and only if $x y x_{\lambda}^{-1} \in K \forall x, y \in K, 0 \leq \lambda \leq 1$.

Definition 4.2. Let X be a TVS and $K \neq \varnothing$ be a η-invex subset of X_{\odot}. The bi-function η is said to satisfy harmonic condition $H C_{\star}$ on $K_{h}(\eta)$ if the following conditions hold:
(a) $\eta(y, x)=-\eta(x, y)$ for all $x, y \in K$, i.e., η is anti-symmetric on K,
(b) for all $x, y \in K, y_{\lambda}=x y[y+\lambda \eta(x, y)]^{-1}$ and $0<\lambda \leq 1$, we have

$$
y_{\lambda} y\left[\eta\left(y_{\lambda}, y\right)\right]^{-1}=x y[(1-\lambda) \eta(x, y)]^{-1},
$$

(c) for all $x, y \in K, y_{\lambda}=x y[y+\lambda \eta(x, y)]^{-1}$ and $\lambda>0$, we have

$$
y_{\lambda} x\left[\eta\left(y_{\lambda}, x\right)\right]^{-1}=-x y[\lambda \eta(x, y)]^{-1},
$$

(d) for all $x, y \in K, x_{\lambda}=x y[x+\lambda \eta(y, x)]^{-1}$ and $\lambda>0$, we have

$$
x_{\lambda} y\left[\eta\left(x_{\lambda}, y\right)\right]^{-1}=-x y[\lambda \eta(y, x)]^{-1}
$$

(e) for all $x, y \in K, x_{\lambda}=x y[x+\lambda \eta(y, x)]^{-1}$ and $\lambda>0$, we have

$$
x_{\lambda} x\left[\eta\left(x_{\lambda}, x\right)\right]^{-1}=x y[(1-\lambda) \eta(y, x)]^{-1} .
$$

Remark 4.3. The harmonic conditions of η can be written as

$$
z_{\lambda} y\left[\eta\left(z_{\lambda}, y\right)\right]^{-1}= \begin{cases}x y[(1-\lambda) \eta(x, y)]^{-1}, & \text { if } z_{\lambda}=x y[y+\lambda \eta(x, y)]^{-1} \\ -x y[\lambda \eta(y, x)]^{-1}, & \text { if } z_{\lambda}=x y[x+\lambda \eta(y, x)]^{-1}\end{cases}
$$

and

$$
z_{\lambda} x\left[\eta\left(z_{\lambda}, x\right)\right]^{-1}= \begin{cases}-x y[\lambda \eta(x, y)]^{-1}, & \text { if } z_{\lambda}=x y[y+\lambda \eta(x, y)]^{-1} ; \\ x y[(1-\lambda) \eta(y, x)]^{-1}, & \text { if } z_{\lambda}=x y[x+\lambda \eta(y, x)]^{-1}\end{cases}
$$

Example 4.4. If $\eta(x, y)=x-y$, then for all $x, y \in K \subset X, \eta$ satisfies the condition $H C_{\star}$ on $K_{h}(\eta)$.

Example 4.5. If $p: K \rightarrow K$ is a ρ-projective linear map 3] and $p(x)=\widetilde{x} \in K$ for all $x \in K$ and 0 otherwise. The map $\eta: \operatorname{Ran} p \times \operatorname{Ran} p \rightarrow X$ defined by $\eta(\widetilde{x}, \widetilde{y})=\widetilde{x}-\widetilde{y}$ satisfies $\widetilde{x}_{\lambda}=\widetilde{y}+\lambda \eta(\widetilde{x}, \widetilde{y}) \in X_{\odot}$ for all $\widetilde{x}, \widetilde{y} \in \operatorname{Ran} p$ and $\lambda \in[0,1]$. The harmonically invex set $K_{h}(\eta)$ is constructed by

$$
K_{h}(\eta)=\left\{\widetilde{z} \in K: \eta(\widetilde{x}, \widetilde{y}) \in X_{\odot}, \text { and } \widetilde{z}=\widetilde{x} \widetilde{y}\left[\widetilde{x}_{\lambda}\right]^{-1} \in K, \forall \widetilde{x}, \widetilde{y} \in \operatorname{Ran} p .\right\}
$$

Then η satisfies $H C_{\star}$-condition on $K_{h}(\eta)$.
Proposition 4.6. Suppose that $K \subset X_{\odot}$ where $\eta: K \times K \rightarrow X_{\odot}$ satisfies the $H C_{\star}$-condition on $K_{h}(\eta)$. Let $x, y \in K$ and $\lambda \in(0,1)$. Then
(1) For $\bar{y}=x y[y+\lambda \eta(x, y)]^{-1}$, we have
(a) $y \bar{y}[\eta(y, \bar{y})]^{-1}=-x y[(1-\lambda) \eta(x, y)]^{-1}$,
(b) $x \bar{y}[\eta(x, \bar{y})]^{-1}=x y[\lambda \eta(x, y)]^{-1}$;
(2) for $\bar{y}=x y[x+\lambda \eta(y, x)]^{-1}$ and $\lambda \in(0,1)$, we have
(a) $y \bar{y}[\eta(y, \bar{y})]^{-1}=x y[\lambda \eta(y, x)]^{-1}$,
(b) $x \bar{y}[\eta(x, \bar{y})]^{-1}=-x y[(1-\lambda) \eta(y, x)]^{-1}$.

Proof. Given $\eta(y, x)=-\eta(x, y)$ for $x, y \in K$ and $\lambda \in(0,1)$.
(1) Let $\bar{y}=y_{\lambda}=x y[y+\lambda \eta(x, y)]^{-1}$.
(a) Using condition (b) of $H C_{\star}$, then we have
$y \bar{y}[\eta(y, \bar{y})]^{-1}=x_{\lambda} y\left[\eta\left(y, y_{\lambda}\right)\right]^{-1}=-x_{\lambda} y\left[\eta\left(y_{\lambda}, y\right)\right]^{-1}=-x y[(1-\lambda) \eta(x, y)]^{-1}$.
(b) Using condition (c) of $H C_{\star}$, then we have

$$
x \bar{y}[\eta(x, \bar{y})]^{-1}=x_{\lambda} x\left[\eta\left(x, y_{\lambda}\right)\right]^{-1}=-x_{\lambda} x\left[\eta\left(y_{\lambda}, x\right)\right]^{-1}=x y[\lambda \eta(x, y)]^{-1} .
$$

(2) Let $\bar{y}=x_{\lambda}=x y[x+\lambda \eta(y, x)]^{-1}$.
(a) Using condition (d) of $H C_{\star}$, then we have
$y \bar{y}[\eta(y, \bar{y})]^{-1}=x_{\lambda} y\left[\eta\left(y, x_{\lambda}\right)\right]^{-1}=-x_{\lambda} y\left[\eta\left(x_{\lambda}, y\right)\right]^{-1}=x y[\lambda \eta(y, x)]^{-1}$,
(b) Using condition (e) of $H C_{\star}$, then we have
$x \bar{y}[\eta(x, \bar{y})]^{-1}=x_{\lambda} x\left[\eta\left(x, x_{\lambda}\right)\right]^{-1}=-x_{\lambda} x\left[\eta\left(x_{\lambda}, x\right)\right]^{-1}=-x y[(1-\lambda) \eta(y, x)]^{-1}$, which is the required result.

Proposition 4.7. Let $\eta: K \times K \rightarrow X$ satisfies condition $H C_{\star}$ on η-HI set $K_{h}(\eta)$, and $x, y \in K$.
(a) If $\bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in K_{h}(\eta)$, then

$$
\lambda x \bar{y}[\eta(x, \bar{y})]^{-1}+(1-\lambda) y \bar{y}[\eta(y, \bar{y})]^{-1}=0 .
$$

(b) If $\bar{y}=x y[x+\lambda \eta(y, x)]^{-1} \in K_{h}(\eta)$, then

$$
(1-\lambda) x \bar{y}[\eta(\bar{y}, x)]^{-1}+\lambda y \bar{y}[\eta(\bar{y}, y)]^{-1}=0 .
$$

Proof. Letting $\bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in K_{h}(\eta) \subset K$ for $\lambda \in(0,1)$ and using Proposition 4.6 we have

$$
x \bar{y}[\eta(x, \bar{y})]^{-1}=-x y[\lambda \eta(x, y)]^{-1} \text { and } y \bar{y}[\eta(y, \bar{y})]^{-1}=-x y[(1-\lambda) \eta(x, y)]^{-1}
$$

for all $x, y \in K_{h}(\eta)$. Thus

$$
\begin{aligned}
& \lambda\left(x \bar{y}[\eta(x, \bar{y})]^{-1}\right)+(1-\lambda)\left(y \bar{y}[\eta(y, \bar{y})]^{-1}\right) \\
& \quad=\lambda\left(x y[\lambda \eta(x, y)]^{-1}\right)+(1-\lambda)\left(x y[-(1-\lambda) \eta(x, y)]^{-1}\right) \\
& \quad=x y[\eta(x, y)]^{-1}-x y[\eta(x, y)]^{-1}=0
\end{aligned}
$$

for all $x, y \in K$. This proves (a).
Since $\eta(x, \bar{y})=-\eta(\bar{y}, x)$, letting $\bar{y}=x y[x+\lambda \eta(y, x)]^{-1} \in K_{h}(\eta)$ for $\lambda \in$ $(0,1)$ and using Proposition 4.6, we have

$$
x \bar{y}[\eta(\bar{y}, x)]^{-1}=x y[(1-\lambda) \eta(y, x)]^{-1} \text { and } y \bar{y}[\eta(\bar{y}, y)]^{-1}=-x y[\lambda \eta(y, x)]^{-1}
$$

for all $x, y \in K_{h}(\eta)$. Thus

$$
\begin{aligned}
& (1-\lambda) x \bar{y}[\eta(\bar{y}, x)]^{-1}+\lambda y \bar{y}[\eta(\bar{y}, y)]^{-1} \\
& \quad=(1-\lambda)\left(x y[(1-\lambda) \eta(y, x)]^{-1}\right)+\lambda\left(-x y[\lambda \eta(y, x)]^{-1}\right) \\
& \quad=x y[\eta(y, x)]^{-1}-x y[\eta(y, x)]^{-1}=0
\end{aligned}
$$

for all $x, y \in K$ which proves (b). Hence the proof is completed.

Proposition 4.8. Let $\eta \in X_{\odot}$ satisfies the $H C_{\star}$-condition on η-HI set $K_{h}(\eta)$ and $T: K \rightarrow X^{*}$. If for $x, y \in K$ and $\lambda \in(0,1), \bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in$ $K_{h}(\eta)$, then we have
(a) $\lambda\left\langle T(\bar{y}), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(\bar{y}), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \equiv 0$,
(b) $\lambda\left\langle T(u), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(u), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \equiv 0$, for any $u \in K_{h}(\eta)$,
(c) $\lambda\left\langle T(x), x \bar{y}[\eta(\bar{y}, x)]^{-1}\right\rangle+(1-\lambda)\left\langle T(y), y \bar{y}[\eta(\bar{y}, y)]^{-1}\right\rangle$ $\equiv-\left\langle T(x)-T(y), x y[\eta(x, y)]^{-1}\right\rangle$.
Proof. Since all the conditions of Proposition 4.7 are satisfied, we have

$$
\lambda x \bar{y}[\eta(x, \bar{y})]^{-1}+(1-\lambda) y \bar{y}[\eta(y, \bar{y})]^{-1}=0
$$

for all $x, y \in K$, for any $\bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in K_{h}(\eta)$ and $t \in[0,1]$. Thus

$$
\begin{aligned}
& \lambda\left\langle T(\bar{y}), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(\bar{y}), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \\
& \quad \equiv\left\langle T(\bar{y}), \lambda x \bar{y}[\eta(\bar{y}, x)]^{-1}+(1-\lambda) y \bar{y}[\eta(\bar{y}, y)]^{-1}\right\rangle \\
& \quad \equiv\langle T(\bar{y}), 0\rangle \equiv 0
\end{aligned}
$$

for all $x, y \in K$, for any $\bar{y}=x y[y+t \eta(x, y)]^{-1} \in K_{h}(\eta)$ and $t \in[0,1]$ since $T(x) \in L(X, Y)$. This proves (a).

Similarly for any $u \in K_{h}(\eta)$, we have

$$
\begin{aligned}
& \lambda\left\langle T(u), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(u), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \\
& \quad \equiv\left\langle T(u), \lambda x \bar{y}[\eta(\bar{y}, x)]^{-1}+(1-\lambda) y \bar{y}[\eta(\bar{y}, y)]^{-1}\right\rangle \\
& \quad \equiv\langle T(u), 0\rangle=0
\end{aligned}
$$

for all $x, y \in K$, for any $\bar{y}=x y[y+t \eta(x, y)]^{-1} \in K_{h}(\eta)$ and $t \in[0,1]$. This proves (b).

Finally taking $\bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in K_{h}(\eta)$ for $\lambda \in(0,1)$ and using Proposition 4.6 we have

$$
x \bar{y}[\eta(\bar{y}, x)]^{-1}=-x y[\lambda \eta(x, y)]^{-1}
$$

and

$$
y \bar{y}[\eta(\bar{y}, y)]^{-1}=x y[(1-\lambda) \eta(x, y)]^{-1} .
$$

Thus

$$
\begin{aligned}
\lambda\langle & \left.T(x), x \bar{y}[\eta(\bar{y}, x)]^{-1}\right\rangle+(1-\lambda)\left\langle T(y), y \bar{y}[\eta(\bar{y}, y)]^{-1}\right\rangle \\
& \equiv \lambda\left\langle T(x), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(y), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \\
& \equiv \lambda\left\langle T(x),-x \bar{y}[\lambda \eta(x, y)]^{-1}\right\rangle+(1-\lambda)\left\langle T(y), y \bar{y}[(1-\lambda) \eta(x, y)]^{-1}\right\rangle \\
& \equiv-\left\langle T(x), x y[\eta(x, y)]^{-1}\right\rangle+\left\langle T(y), x y[\eta(x, y)]^{-1}\right\rangle \\
& \equiv-\left\langle T(x)-T(y), x y[\eta(x, y)]^{-1}\right\rangle
\end{aligned}
$$

for all $x, y \in K_{h}(\eta)$, for any $\bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in K_{h}(\eta)$ and $\lambda \in(0,1)$ which proves (c). The proof is completed.

Definition 4.9. The mapping $T: K \rightarrow L(X, Y)$ is said to be
(i) harmonically η-monotone on K if

$$
\left\langle T(x), x y[\eta(x, y)]^{-1}\right\rangle+\left\langle T(y), y y[\eta(y, x)]^{-1}\right\rangle \geqq 0 \forall x, y \in K,
$$

(ii) generalized harmonically η-monotone on K if

$$
\left\langle T(x)-T(y), x y[\eta(x, y)]^{-1}\right\rangle \geqq 0 \forall x, y \in K .
$$

For strictly harmonically η-monotonicity case, equality hold in the above equation for $x=y$ only.

In the following theorem, the result is shown to approach the existence theorems of dual harmonic variational inequality problems in the presence of generalized harmonically η-monotone property of T.

Theorem 4.10. Let $K \subset X_{\odot}$ harmonically η-invex set $K_{h}(\eta)$. Then $\bar{y} \in$ $K_{h}(\eta)$ solves both the harmonic problem (GHVIP) and (GDHVIP) on $K_{h}(\eta)$, if η satisfies $H C_{*}$-conditions, T is generalized harmonically η-monotone on K and for some $\lambda>0$,

$$
\begin{aligned}
\left\langle T\left(x_{\lambda}\right), x_{\lambda} \bar{y}\left[\eta\left(x_{\lambda}, \bar{y}\right)\right]^{-1}\right\rangle \leq & (1-\lambda)\left\langle T(\bar{y}), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle \\
& +\lambda\left\langle T(x), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle
\end{aligned}
$$

for all $x \in K, x_{\lambda}=x \bar{y}[\bar{y}+\lambda \eta(x, \bar{y})]^{-1}, \bar{y}=x y[y+\lambda \eta(x, y)]^{-1} \in K_{h}(\eta)$.
Proof. For each $\bar{y} \in K_{h}(\eta), T$ is generalized harmonically η-monotone on K, i.e.,

$$
\left\langle T(x)-T(y), x y[\eta(x, y)]^{-1}\right\rangle \geqq 0
$$

for all $x, y \in K$. By (c) of Theorem 4.8, we have

$$
\begin{aligned}
\lambda & \left\langle T(x), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(y), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \\
& \equiv\left\langle T(x)-T(y), x y[\eta(x, y)]^{-1}\right\rangle \geqq 0
\end{aligned}
$$

for all $x, y \in K$ and at $\bar{y} \in K_{h}(\eta) \subset K$. Hence

$$
\lambda\left\langle T(x), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+(1-\lambda)\left\langle T(y), y \bar{y}[\eta(y, \bar{y})]^{-1}\right\rangle \geqq 0
$$

for all $x, y \in K$. By taking limit as $\lambda \rightarrow 1$ we obtain

$$
\left\langle T(x), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle \geqq 0
$$

that is, $\bar{y} \in K_{h}(\eta)$ solves the harmonic problem GDHVIP on $K_{h}(\eta)$.
Replacing x by $x_{\lambda}=x \bar{y}[\bar{y}+\lambda \eta(x, \bar{y})]^{-1}$ for some $\lambda \in(0,1)$, we have

$$
\begin{aligned}
0 & \leqq\left\langle T\left(x_{\lambda}\right), x_{\lambda} \bar{y}\left[\eta\left(x_{\lambda}, \bar{y}\right)\right]^{-1}\right\rangle \\
& \leq(1-\lambda)\left\langle T(\bar{y}), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle+\lambda\left\langle T(x), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle
\end{aligned}
$$

for all $x \in K$. Taking limit as $\lambda \rightarrow 0$, we get

$$
0 \leqq\left\langle T(\bar{y}), x \bar{y}[\eta(x, \bar{y})]^{-1}\right\rangle
$$

for all $x \in K$ and $\bar{y} \in K_{h}(\eta)$. Hence $\bar{y} \in K_{h}(\eta)$ solves the harmonic problem (GHVIP) on $K_{h}(\eta)$. This completes the proof.

Acknowledgments: The authors are thankful to the learned referee for his/her deep observations.

References

[1] A. Behera and P. K. Das, Variational Inequality Problems in H-spaces, Inter. J. Math. Math. Sci., article 78545 (2006), 1-18.
[2] G. Y. Chen and X.Q. Yang, The vector complementarity problem and its equivalences with the weak minimal elements in the ordered spaces, J. Math. Anal. Appl., 153(1) (1990), 136-158.
[3] P. K. Das and A. Behera, Generalized Affine Manifold and Multivalued Generalized Subdifferential Dominated Vector Variational Inequalities, Trans. on Math. Progr. and Appl., 2(9) (2014), 1-43.
[4] M. A. Hanson, On Sufficiency of the Kuhn-Tucker Conditions, J. Math. Anal. Appl., 80 (1981), 545-550.
[5] I. Insan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. of Math. and Statistics, 43(6) (2014), 935-942.
[6] S.N. Mishra, P.K. Das and G.C. Nayak, On generalized Hermite-Hadamard type inequalities for generalized harmonic variational inequalities, Inter. J. of Pure and Appl. Math., 115(4) (2017), 813-820.
[7] M.A. Noor and K.I. Noor, Harmonic variational inequalities, Appl. Math. and Inform. Sci., 10(5) (2016), 10-14.
[8] G. Stampachchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
[9] T. Weir and B. Mond: Pre-invex functions in multiple objective optimizaton, J. Math. Anal. Appl., 136 (1988), 29-38.

[^0]: ${ }^{0}$ Received February 16, 2019. Revised June 29, 2019.
 ${ }^{0} 2010$ Mathematics Subject Classification: 65K10, 90C33, 47J30.
 ${ }^{0}$ Keywords: Invex set, harmonic invex set, $H C_{*}$-condition, generalized harmonic variational inequalities.
 ${ }^{0}$ Corresponding author: P. K. Das (dasprasantkumar@yahoo.co.in).

