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Abstract. This paper presents higher-order necessary and sufficient optimality conditions

in nonsmooth multiobjective optimizaton problems involving a cone-constraint and a set

constraint in terms of the Ginchev directional derivatives of higher order.

1. Introduction

Let f and g be maps from a normed space X into other normed spaces Y
and Z, respectively. Let C be a subset of X, and let Q and S be closed convex
cones in Y and Z, respectively. This paper addresses higher-order necessary
and sufficient conditions for efficient solutions (with respect to the cone Q) of
the following multiobjective optimization problem:

min f(x),

(MP) subject to

− g(x) ∈ S,

x ∈ C.

Denote by M the feasible set of Problem (MP)

M =
{

x ∈ C : −g(x) ∈ S
}

.
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Higher order optimality conditions for Problem (MP) have been extensively
studied by many authors (see, e.g., [2], [4], [5], [7]-[14]). Ginchev [4] introduces
notions of lower and upper directional derivatives of higher order for extended-
real-valued functions based on the Taylor expansion and establishes higher
order optimality conditions for Problem (MP) without constraint in case f is
an extended-real-valued function. It is shown in [4] that if solutions of the
considering problem are isolated, then characteristic conditions for those are
obtained. The notions of isolated minimizer and strict minimizer are extended
to multiobjective programming by Jiménez [6] and Ginchev [5] to become
respectively strict local Pareto minimizer of order n and strict local Pareto
minimizer. Luu-Kien [9] study further minimizers of these types and establish
higher-order necessary and sufficient conditions in terms of the Ginchev higher-
order directional derivatives for multiobjective optimization problems with set
constraints.

The purpose of this paper is to develop further the results obtained in [9] to
multiobjective optimization problems involving both cone-constraint and set
constraint. The remainder of the paper is organized as follows. After some
preliminaries, Section 3 will be devoted to developing higher-order necessary
conditions for weak efficiency in general case and for strict local Pareto mini-
mizer in case Y = Rr and Q is the nonnegative orthant Rr

+ in Rr. Section 4
deals with higher-order sufficient conditions for strict local Pareto minimizer
of order n in general case and in case Y = Rr, Q = Rr

+.

2. Preliminaries

Recall [4] that the nth order lower and upper directional derivatives f
(n)
− (x; v)

and f
(n)
+ (x; v), respectively, of an extended-real-valued function f defined on

X at x ∈ X in a direction v are defined as

f
(0)
− (x; v) = lim inf

t↓0,u→v
f(x + tu),

f
(n)
− (x; v) = lim inf

t↓0,u→v

n!
tn

[
f(x + tu)−

n−1∑

j=0

tj

j!
f

(j)
− (x; v)

]
,

f
(0)
+ (x; v) = lim sup

t↓0,u→v
f(x + tu),

f
(n)
+ (x; v) = lim sup

t↓0,u→v

n!
tn

[
f(x + tu)−

n−1∑

j=0

tj

j!
f

(j)
+ (x; v)

]

(n = 1, 2, . . . ).
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In case f is a mapping from X into Y , the nth order directional derivatives
of f at x in the direction v are defined as follows

f (0)(x; v) = lim
t↓0,u→v

f(x + tu),

f (n)(x; v) = lim
t↓0,u→v

n!
tn

[
f(x + tu)−

n−1∑

j=0

tj

j!
f (j)(x; v)

]

(n = 1, 2, . . . ),

if these limits exists. Note that if f is Fréchet differentiable at x with the
Fréchet derivatives f ′(x), then f (1)(x; v) = f ′(x)v (∀ v ∈ X).

For an extended-real-valued f defined on X, the lower and upper Hadamard
directional derivatives of f at x in the direction v is

df(x; v) = lim inf
t↓0,u→v

f(x + tu)− f(x)
t

,

df(x; v) = lim sup
t↓0,u→v

f(x + tu)− f(x)
t

·

In case df(x; v) = df(x; v) we donote their common value by df(x; v). This
is Hadamard directional derivatives of f at x in the direction v. We say that
f is directionally Hadamard differentiable at x if df(x; v) exists for all v ∈ X.
Note that if df(x; v) exists, then usual directional derivative:

f ′(x; v) = lim
t↓0

f(v + tv)− f(x)
t

also exists, and they are equal. If f is directionally Hadamard differentable
at x, then df(x; .) is continuous on X, f is continuous at x (see [3, Theorem
3.2]), and

df(x; v) = f (1)(x; v) = f ′(x; v).
Turning to Problem (MP), a point x ∈ M is said to be a weakly local

minimum (resp. local Pareto minimum) of Problem (MP) if there exists a
number δ > 0 such that

f(x)− f(x) 6∈ −intQ (∀x ∈ M ∩B(x; δ))

(resp. f(x)− f(x) 6∈ −Q \ {0} for all x ∈ M ∩B(x; δ)),
where B(x; δ) stands for the open ball of radius δ around x, intQ indicates the
interior of Q.

Following [6], the point x is called a strict local Pareto minimum of order n
(resp. strict local Pareto minimum) of Problem (MP) if there exists numbers
δ > 0 and α > 0 such that

(f(x) + Q) ∩B(f(x);α‖x− x‖n) = ∅ (∀x ∈ M ∩B(x; δ) \ {x})
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(resp. f(x)− f(x) 6∈ −Q for all x ∈ M ∩B(x; δ) \ {x}).

3. Higher order necessary conditions for efficiency

Recall [1] that the contingent cone to the set C at x ∈ clC is

KC(x) =
{

v ∈ X : there exist sequences tm ↓ 0 and

vm → v such that x + tmvm ∈ C for all m
}

,

where clC indicates the closure of C. In this section we assume that intS 6= ∅.
We shall begin with a higher-order necessary condition for weakly local

minima of Problem (MP) in terms of higher order directional derivatives.

Theorem 3.1. Let intQ 6= ∅ and x be a weakly local minimum of Problem
(MP). Assume that g is directionally Hadamard differentiable at x, and for
each v ∈ KC(x)∩{u : −g′(x; u) ∈ intS}, the directional derivatives f (j)(x; v)
(j = 0, 1, . . . , n) exist. Then the following conditions hold:
(i) f (0)(x; v)− f(x) 6∈ − intQ (∀ v ∈ KC(x) ∩ {u : −g′(x;u) ∈ intS});
(ii) If for v ∈ KC(x)∩{u : −g′(x;u) ∈ intS}, f (0)(x; v) = f(x), f (j)(x; v) = 0
(j = 1, . . . , n− 1), then f (n)(x; v) 6∈ − intQ.

Proof. The minimality of x implies that there exists a neighborhood U of x
satisfying

f(x)− f(x) ∈ −(Y \ intQ) (∀x ∈ M ∩ U). (3.1)

Now for v ∈ KC(x) ∩ {u : −g′(x; u) ∈ intS}, there exists sequences tm ↓ 0
and vm → v such that x + tmvm ∈ M (∀m), where M is the feasible set of
Problem (MP). So there is a natural number N1 such that for every m > N1,

x + tmvm ∈ C ∩ U. (3.2)

Since g is directionally Hadamard differentiable at x, dg(x; .) is continuous on
X (see [3, Theorem 3.2]), and dg(x; vm) = g′(x, vm). Hence, there is a natural
number N2 (> N1) such that for every m > N2,

−g′(x; vm) ∈ intS.

Consequently, there is a natural number N3 (> N2) such that for every m >
N3,

g(x + tmvm) = g(x) + tm

[
g′(x; vm) +

o(tm)
tm

]

∈ g(x)− S

⊂ −S − S ⊂ −S,
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where o(tm)/tm → 0 as m → +∞. This together with (3.2) yields that for
every m > N3,

x + tmvm ∈ M ∩ U.

Making use of (3.1) it results that

f(x + tmvm)− f(x) ∈ −(Y \ intQ), (3.3)

which leads to the following

lim
m→+∞ f(x + tmvm)− f(x) = f (0)(x; v)− f(x) ∈ −(Y \ intQ),

which gives (i).
We now observe that if for v ∈ KC(x) ∩ {u : −g′(x; u) ∈ intS}, the

directional derivatives f (j)(x; v) (j = 0, 1, . . . , n) exist and f (0)(x; v) = f(x),
f (1)(x; v) = · · · = f (n−1)(x; v) = 0, then

f (n)(x; v) = lim
m→+∞

n!
tnm

[
f(x + tmvm)−

n−1∑

j=0

tjm
j!

f (j)(x; v)
]

= lim
m→+∞

n!
tnm

[
f(x + tmvm)− f(x)

]
,

which along with (3.3) yields that

f (n)(x; v) 6∈ − intQ,

as was to be shown. ¤

Let us consider the case Y = Rr, Q = Rr
+, f = (f1, . . . , fr). Denote by f

(j)
i,+

(j = 0, 1, . . . , n) the jth order upper Ginchev directional derivatives of fi at
x ∈ X in a direction v ∈ X, that is

f
(0)
i,+(x; v) = lim sup

t↓0,u→v
fi(x + tu),

f
(j)
i,+(x; v) = lim sup

t↓0,u→v

j!
tj

[
fi(x + tmvm)−

j−1∑

k=0

tk

k!
f

(k)
i,+(x; v)

]

(j = 1, . . . , n).

A higher-order necessary condition for strict local Pareto minima of Problem
(MP) in terms of upper directional derivatives of higher order can be stated
as follows.

Theorem 3.2. Let x be a strict local Pareto minimum of Problem (MP).
Assume that g is directionally Hadamard differentiable at x. Then for every
v ∈ KC(x) ∩ {u : −g′(x; u) ∈ intS}, there is i ∈ {1, . . . , r} such that
(a) f

(0)
i,+(x; v) > fi(x),
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(b) If f
(0)
i,+(x; v) = fi(x), f

(j)
i,+(x; v) 6 0 (j = 1, . . . , n− 1), then

f
(n)
i,+ (x; v) > 0.

Proof. We first invoke Theorem 3.7 [6] to deduce that there exist a neighbor-
hood U of x and sets Vi (i = 1, . . . , s; s 6 r) such that {Vj , j = 1, . . . , s} is a
covering of (M ∩ U) \ {x} and verifying

fj(x) > fj(x) for all x ∈ Mj \ {x}, (3.4)

where M is the feasible set of (MP), Mj = (M ∩ U ∩ Vj) ∪ {x}. Hence,

M ∩ U =
s⋃

j=1

Mj .

Setting Wj = Vj ∪ ((C \ M) ∩ U), we can see that {Wj , j = 1, . . . , s} is a
covering of (C ∩ U) \ {x}, and

C ∩ U =
s⋃

j=1

Cj , (3.5)

where Cj = (C ∩ U ∩Wj) ∪ {x} (j = 1, . . . , s). Putting D = {x : −g(x) ∈ S},
we deduce that for each j = 1, . . . , s,

Cj ∩D = ((C ∩ U ∩Wj) ∪ {x}) ∩D

=
[
M ∩ U ∩ (Vj ∪ ((C \M) ∩ U)

] ∪ {x}
= (M ∩ U ∩ Vj) ∪ {x} = Mj ,

which along with (3.4) yields that

fj(x) > fj(x) for all x ∈ Cj ∩D \ {x} (j = 1, . . . , s). (3.6)

On the other hand, making use of a result due to Aubin-Frankowska [1,
Table 4.1], it follows from (3.5) that

KC(x) = KC∩U (x) =
s⋃

j=1

KCj (x).

Note also that the existence of dg(x; .) implies the existence of g′(x; .) and they
are equal. Taking v ∈ KC(x) ∩ {u : −g′(x; u) ∈ intS}, there is i ∈ {1, . . . , s}
such that v ∈ KCi(x) ∩ {u : −g′(x; u) ∈ intS}, and so there exist sequences
tm ↓ 0 and vm → v such that

x + tmvm ∈ Ci \ {x}. (3.7)
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Since g is directionally Hadamard differentiable at x, g′(x; .) is continuous on X

(see [3, Theorem 3.2]). Hence, for sufficiently large m, g′(x; vm)+
o(tm)
tm

∈ −S,

as −g′(x; v) ∈ intS. Consequently,

g(x + tmvm) = g(x) + tm

[
g′(x; vm) +

o(tm)
tm

]

∈ −S − S ⊂ −S,

which together with (3.7) yields that

x + tmvm ∈ Mi \ {x}.
In view of (3.6), we get that for sufficiently large m,

fi(x + tmvm) > fi(x), (3.8)

which implies that

f
(0)
i,+(x; v) > lim sup

m→+∞
fi(x + tmvm) > fi(x).

We thus arrive at (i).
Next, we take v ∈ KC(x) ∩ {u : −g′(x;u) ∈ intS} satisfying

f
(0)
i,+(x; v) = fi(x), f

(j)
i,+(x; v) 6 0 (j = 1, . . . , n− 1). (3.9)

Taking account of (3.8) and (3.9), we get

f
(n)
i,+ (x; v) > lim sup

m→+∞
n!
tnm

[
fi(x + tmvm)− fi(x)−

n−1∑

j=1

tjm
j!

f
(j)
i,+(x; v)

]

> 0,

which completes the proof. ¤

Remark 3.3. Theorems 3.1 and 3.2 obtained here are generalizations of The-
orems 3.1 and 5.1 [9], respectively.

Theorem 3.2 is illustrated by the following example.

Example 3.4. Let X = Y = R2, Q = S = R2
+, x = (0, 0), and

C = {x = (x1, x2) : x2
1 + x2

2 6 5, x1 > 0, x2 6 0}.
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Let f and g be defined as

f(x) = (f1(x), f2(x)),

f1(x) = |x1|k + |x2|k,
f2(x) = −|x2|,
g(x) = (x2

1 − |x1|, x2
2 + 2x2),

where k is a positive integer number. Then M = [0, 1] × [−2, 0], KC(x) =
R+ × R−, and x = (0, 0) is a strict local Pareto minimum of f under the
constraints −g(x) ∈ S and x ∈ C, where R− = −R+.

For u = (u1, u2) ∈ R2, g′(x; u) = (−|u1|, 2u2), and hence,

{u ∈ R2 : −g′(x; u) ∈ R2
+} = R× R−.

Therefore, KC(x)∩{u : −g′(x; u) ∈ R2
+} = R+×R−. Then, for v = (v1, v2) ∈

KC(x) ∩ {u : −g′(x; u) ∈ R2
+},

f
(0)
1,+(0; v) = f1(0), f

(j)
1,+(0; v) = 0 (j = 1, . . . , k − 1),

f
(k)
1,+(0; v) = |v1|k + |v2|k > 0.

4. Higher-order sufficient conditions for efficiency

We set Sg(x) = cone(S + g(x)), where cone(S + g(x)) denotes the closure
of the cone generated by S + g(x). Let dimX < +∞.

We are now in a position to formulate a higher-order sufficient condition
for strict local Pareto minima of order n of Problem (MP) in terms of higher
order directional derivatives in finite dimensions.

Theorem 4.1. Let x be a feasible point of (MP) and let dg(x; v) exist for all
v ∈ KC(x) \ {0}. Assume that there is a positive integer number n such that
for every v ∈ KC(x) ∩ {u : −g(x; u) ∈ Sg(x)} \ {0}, the directional derivatives
f (j)(x, v) (j = 0, 1, . . . , n) exist, and one of the following conditions (Ak)
(k = 1, . . . , n) holds:

(Ak) f (0)(x; v) = f(x), f (j)(x; v) = 0 (j = 1, . . . , k − 1), f (k)(x; v) 6∈ −Q.

Then x is a strict local Pareto mimimum of order n for (MP).

Proof. Contrary to the conclusion, suppose that condition (Ak) holds, but x
is not a strict local Pareto of order n for (MP). We invoke Proposition 3.4 [6]
to deduce that there exist xm ∈ M , xm 6= x, xm → x and bm ∈ Q such that

lim
m→+∞

f(xm)− f(x) + bm

‖xm − x‖n
= 0, (4.1)
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where M is the feasible set of Problem (MP). Putting vm =
xm − x

‖xm − x‖n
and

tm = ‖xm − x‖, we get that tm ↓ 0 and xm = x + tmvm ∈ M ⊂ C. Since
dimX < +∞, there is a subsequence of {vm} converging to v0 with ‖v0‖ = 1.
Without loss of generality, we can assume that vm → v0, and so v0 ∈ KC(x) \
{0}.

Moreover, since dg(x; v0) exists, it results that

lim
m→+∞

g(x + tmvm)− g(x)
tm

= dg(x; v0).

Observing that g(x + tmvm) ∈ −S, we deduce that

g(x + tmvm)− g(x)
tm

∈ −Sg(x) for all m,

whence,

g′(x; v0) = dg(x; v0) ∈ −Sg(x).

We can thus contend that

v0 ∈ KC(x) ∩ {
u : g′(x;u) ∈ −Sg(x)

} \ {0}.

On the other hand, by (4.1) it results that for each k ∈ {1, n},

lim
m→+∞

f(x + tmvm)− f(x) + bm

tkm
= 0. (4.2)

If for k ∈ {1, n}, f (0)(x; v0) = f(x) and f (j)(x; v0) = 0 (j = 1, . . . , k− 1), then

f (k)(x; v0) = lim
m→+∞

k!
tkm

[
f(x + tmvm)− f(x)

]
.

Hence, the existence of f (k)(x; v0) implies the existence of the following limit:

lim
m→+∞

f(x + tmvm)− f(x)
tkm

,

which together with (4.2) yields the existence of the limit lim
m→+∞

bm

tkm
. We can

also see that lim
m→+∞

bm

tkm
∈ Q, as bm ∈ Q and Q is closed. Consequently, by

(4.2) it follows readily that

f (k)(x; v0) ∈ −Q.

But this conflicts with condition (Ak). ¤
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Let us consider the case Y = Rr, Q = Rr
+, f = (f1, . . . , fr) and dimX <

+∞. Denote by f
(j)
i,− (j = 0, 1, . . . , n) the jth order lower Ginchev directional

derivatives of fi at x in the direction v, that is

f
(0)
i,−(x; v) = lim inf

t↓0,u→v
fi(x + tu),

f
(j)
i,−(x; v) = lim inf

t↓0,u→v

j!
tj

[
fi(x + tu)−

j−1∑

k=0

tk

k!
f

(k)
i,−(x; v)

]

(j = 1, . . . , n).

In what follows we give a higher-order sufficient condition for strict local
Pareto minima of order n for Problem (MP) in terms of lower directional
derivatives of higher order.

Theorem 4.2. Let x be a feasible point of Problem (MP). Assume that g is
directionally Hadamard differentiable at x, and there are i0 ∈ {1, n} and a
positive integer number n such that for every v ∈ KC(x) ∩ {u : −g′(x;u) ∈
Sg(x)} \ {0}, one of the following conditions (Bk) (k = 1, . . . , n) holds:

(Bk) f
(0)
i0,−(x; v) > fi0(x), f

(j)
i0,−(x, v) > 0 (j = 1, . . . , k − 1),

f
(k)
i0,−(x; v) > 0.

Then x is a strict local Pareto minimum of order n for Problem (MP).

Proof. Let us consider the following problem:

(Pi0) min
{

fi0(x) : −g(x) ∈ S, x ∈ C
}

,

where g, S, C are as in Problem (MP). Note that the feasible set of this
problem is also M . We shall begin with showing that x is a strict local
minimum of order n for (Pi0).

Suppose, for a contradiction, that condition (Bk) holds, but x is not a strict
local minimum of order n for (Pi0). Then for any integer number m > 1, there
would exists xm ∈ M , xm 6= x, xm → x such that

fi0(xm) 6 fi0(x) +
1
m
‖xm − x‖n. (4.3)

We set tm = ‖xm − x‖, vm = (xm − x)/tm, and get that tm ↓ 0 and xm =
x + tmvm ∈ M ⊂ C. Since C is finite dimensional, without loss of generality,
we can assume that vm → v0 with ‖v0‖ = 1, and so v0 ∈ KC(x) \ {0}.

Since g is directionally Hadamard differentiable at x, it holds that dg(x; vm) =
g′(x; vm). Hence,

g(x + tmvm) = g(x) + tm

[
g′(x; vm) +

o(tm)
tm

]
,
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which leads to the following

g′(x; vm) +
o(tm)
tm

∈ −Sg(x), (4.4)

as g(x + tmvm) ∈ −S. Moreover, since g is directionally Hadamard differen-
tiable at x, it results that g′(x; .) is continuous on X (see [3, Theorem 3.2]).
By letting m → +∞, it follows from (13) that

g′(x; v0) ∈ −Sg(x).

Consequently,

v0 ∈ KC(x) ∩
{

u : −g′(x; u) ∈ Sg(x)

}
\ {0}.

In view of (4.3), we get

fi0(x + tmvm) 6 fi0(x) +
tkm
m
‖vm‖n (k = 1, . . . , n). (4.5)

Now if v0 satisfies the following conditions:

f
(0)
i0,−(x; v0) > fi0(x), f

(j)
i0,−(x; v0) > 0 (j = 1, . . . , k − 1),

then these along with (4.5) yields that

f
k)
i0,−(x; v0) 6 lim inf

m→+∞
k!
tkm

[
fi0(x + tmvm)−

k−1∑

j=0

tjm
j!

f
(j)
i0,−(x; v0)

]

6 lim inf
m→+∞

k!
tkm

[
fi0(x + tmvm)− fi0(x)

]

6 lim inf
m→+∞

k!
tkm

· tkm
m
· ‖vm‖n = 0,

which is in contradiction to condition (Bk). Hence, x is a strict local minimum
of order n of Problem (Pi0).

Let us show that x is a strict local Pareto minimum of order n of Problem
(MP). If it were false, then according to Proposition 3.4 [6], there would exist
a sequence xm ∈ M , xm 6= x and bm = (bm1 , . . . , bmr) ∈ Rr

+ such that xm → x,
and

lim
m→+∞

f(xm)− f(x) + bm

‖xm − x‖n
= 0,

which implies that

lim
m→+∞

fi0(xm)− fi0(x) + bmi0

‖xm − x‖n
= 0.

Taking account of Proposition 3.4 [6] once more, we claim that x is not a
strict local minimum of order n of (Pi0), which is in contradiction to the
above proof. ¤
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Remark 4.3. Theorems 4.1 and 4.2 obtained here are generalizations of The-
orems 4.1 and 5.2 [9], respectively.

We close this paper with an example which will be illustrated Theorem 4.2.

Example 4.4. Let X = Y = R2, Q = S = R2
+, x = (0, 0), C = [−1, 1] ×

[−1, 0]. Let f and g be given by

f(x) = (f1(x), f2(x)),

f1(x) =
p∑

i=0

αi‖x‖k+i (x = (x1, x2) ∈ R2),

f2(x) = −| sinx|,
g(x) = (x2

1 − x1, x
2
2 − |x2|),

where k and p are positive integer numbers, ‖x‖ =
(|x1|2 + |x2|2

)1/2. Then x
is a feasible point of the following problem:

min
{

f(x) : −g(x) ∈ R2
+, x ∈ C

}
. (4.6)

We can see that KC(x) = R× R−, and
{

u ∈ R2 : −g′(x; u) ∈ R2
+

}
= R+ × R.

For v ∈ KC(x) ∩ {u : −g′(x;u) ∈ R2
+} = R+ × R−, we have

f
(0)
1,−(0; v) = f1(0), f

(j)
1,−(0, v) = 0 (j = 1, . . . , k − 1),

f
(k)
1,−(0; v) = α0‖v‖k > 0.

By Theorem 4.2, the point x = (0, 0) is a strict local Pareto minimum of order
k (with respect to the cone Q = R2

+) of Problem (4.6).
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